Skip to main content
. 2021 Jan 6:1–11. Online ahead of print. doi: 10.1007/s12559-020-09795-5

Table 2.

DL applications on detecting COVID-19 from chest X-ray images

Literature Data set without augmentation DL tool Accuracy Specificity Sensitivity F1 score
Loey et al. [16]

3 Classes

N/C/P

69/79/79

ALexnet 85.19 - 85.19 85.19
Googlenet 81.48 - 81.48 81.46
Resnet18 81.48 - 81.48 84.66
Apostolopoulos and Mpesiana [13]

3 classes

Dataset_1

N/C/BP

504/224/700

VGG19 93.48 98.75 92.85
MobileNet (v2) 92.85 97.09 99.10
Inception 92.85 99.70* 12.94*
Xception 92.85 99.99* 0.08*
Inception ResNet v2 92.85 99.83* 0.01*

3 classes

Dataset_2 N/C/BP+VP

504/224/714

MobileNet (v2) 94.72 96.46 98.66 -
Ucar and Korkmaz [6]

3 classes

N/C/P

1583/76/4290

SqueezeNet with raw dataset 76.37 79.93 - 98.25

3 classes

N/C/P

1536/1536/1536

SqueezeNet with augmented dataset 98.26 99.13 - 98.25
Ozturk et al. [17]

3 Classes

N/C/P

500/127/500

Darknet 87.02 92.18 85.35 87
Proposed study

3 Classes

N/C/VP

350/210/350

COV19-CNNet 94.28 96.94 94.33 94.20
COV19-ResNet 97.61 98.72 97.61 97.62

N: Normal (healthy)

C: COVID-19

NC: Non-COVID-19

P: Pneumonia

VP: Viral pneumonia

BP: Bacterial pneumonia