Skip to main content
. 2020 Sep 28;51(3):1492–1512. doi: 10.1007/s10489-020-01889-9

Table 2.

Hyperparameter selection

Prediction model Hyperparameter Parameter selection Best hyperparameter used
LR dual [True, False] False
max_iter [100,110,120,130,140] 100
C [1,1.5,2,2.5] 2
SVR kernel rbf rbf
C [0.1, 1, 100, 1000] 100
Gamma [0.0001, 0.001,0.01 0.005, 0.1, 1, 3, 5] 0.1
Epsilon [0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 10] 0.0001
RFR bootstrap [True, False] True
max_depth [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None] 70
max_features [‘auto’, ‘sqrt’] auto
min_samples_leaf [1, 2, 4] 4
min_samples_split [2, 5, 10] 10
n_estimators [100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000] 400
LSTM neurons [1–5] 1
batches [1, 2, 4] 4
epochs [500, 1000, 2000, 4000, 6000] 1000