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Of all microorganisms in the human body, the largest and most complex population resides in the gastrointestinal (GI) tract. The gut 
microbiota continuously adapts to the host environment and serves multiple critical functions for their hosts, including regulating 
host immunity, procuring energy from food, and preventing the colonization of pathogens. Mounting evidence has suggested gut 
microbial imbalance (dysbiosis) as a core pathophysiology in the development of GI motility and metabolic disorders, such as irritable 
bowel syndrome and diabetes. Current research has focused on discovering associations between these disorders and gut microbial 
dysbiosis; however, whether these associations are a consequence or cause is still mostly unexplored. State-of-the-art studies have 
investigated how gut microbes communicate with our body systems through microbiota-derived metabolites and how they are able 
to modulate host physiology. There is now mounting evidence that alterations in the composition of small intestinal microbes have an 
association with GI dysmotility and metabolic disorders. Although treatment options for gut microbial dysbiosis are currently limited, 
antibiotics, fecal microbiota transplantation, probiotics, and dietary interventions are currently the best options. However, treatment 
with broad-spectrum antibiotics has been viewed with skepticism due to the risk of developing antibiotic resistant bacteria. Studies 
are warranted to elucidate the cellular and molecular pathways underlying gut microbiota-host crosstalk and for the development of a 
powerful platform for future therapeutic approaches. Here, we review recent literature on gut microbial alterations and/or interactions 
involved in the pathophysiology of GI dysmotility and metabolic disorders.
(J Neurogastroenterol Motil 2021;27:19-34)
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Introduction 	

Trillions of microorganisms live inside every human being.1,2 
Not surprisingly, these microbial inhabitants outnumber all of the 
human cells in the entire body by approximately one order of mag-
nitude (1014 vs 1013, respectively).3 To better grasp the role that gut 
microbes play in health and disease, scientists around the globe are 
investigating gut microbiota and their metabolites that play a fun-
damental role in modulating metabolic, developmental, and physi-
ological aspects.1,4 Many human diseases originate from distorted 
gut microbiota composition (dysbiosis) leading to dysregulation of 
physiological and metabolic processes.3-5 Gut microbial dysbiosis 
has been implicated in functional gastrointestinal (GI) disorders in-
cluding irritable bowel syndrome (IBS), functional dyspepsia (FD), 
and inflammatory bowel diseases (Crohn’s disease and ulcerative 
colitis).6-9

In 2019 there were approximately 463 million people suffering 
from type 2 diabetes (T2D) and 4.2 million deaths due to T2D-
related complications.10 Currently, T2D is projected to affect 700 
million people worldwide by 2045, which could become a greater 
burden to the medical community already facing grim statistics.10 
Approximately 50% of diabetic patients also suffer from GI motility 
disorders including but not limited to diarrhea, fecal incontinence, 
constipation, dyspepsia, and gastroparesis.11-13 GI motility disorders 
are also extremely common, with approximately 40% of adults 
suffering from functional bowel disorders worldwide.14 There is 
a great need to understand the molecular mechanisms that oc-
curs in conditions associated with dysbiosis and how these altered 
pathways contribute to the development of GI motility disorders 

and T2D. There are currently many studies focused on creating a 
deeper understanding of microbiota-related mechanisms of disease 
pathogenesis with hope that it will lead to the development of effec-
tive, preventative, and therapeutic interventions.15-19 Here, we sum-
marize the impact that the gut microbiome and its metabolites have 
on both GI motility disorders and metabolic diseases. Although, 
extensive review of current literature identifies a lack of knowledge, 
the question persists as to whether the disruption of gut microbial 
communities is a consequence or cause of chronic GI and metabolic 
diseases.

Function, Composition, and the Dysbiosis of 
the Gut Microbiota 	

The GI tract is home to vast microbial communities including 
bacteria, fungi, archaea, and viruses.1,20 The microbe population is 
more sparse in the upper gut (stomach, duodenum, and jejunum) 
with approximately 103 bacteria per mL of aspirate, where there are 
approximately 107-1012 bacteria per mL of aspirate in the lower gut 
(ileum and proximal colon).21 Gut microbiota perform many diverse 
functions, such as aiding in the digestion of food, production of es-
sential vitamins, synthesis of metabolites, prevention of pathogenic 
bacteria colonization, gut-immune regulation, drug metabolism, 
detoxification, and maintenance of GI physiological homeostasis 
(Fig. 1).20,22,23 Hence, maintaining a healthy proportion of beneficial 
microbes, also called eubiosis, is essential for human health.

Gut microbial imbalance, known as dysbiosis, can include an 
increase in the proportion of small bowel bacteria, alteration in the 
relative proportion of benevolent microbes to pathogenic ones, as 
well as the translocation of colonic bacteria.4,24 At a fundamental 
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level, there are many contributing factors for the progression of a 
diseased states including microbe-microbe interactions, microbial 
metabolites, host immune response, host physiology, diet, and the 
host environment.5,25,26

Gut microbiota composition and relative abundance changes 
throughout the varying microenvironments of the GI tract27 and 
over 50 bacterial phyla have been identified in the human GI tract 
so far.28 In the healthy host, Bacteroidetes and Firmicutes are the 
most predominantly found phyla in the gut, while Proteobacteria, 
Verrucomicrobia, Actinobacteria, Fusobacteria, and Cyanobacte-
ria are found in much smaller proportions.29 Generally, the vari-
ous segments of the GI tract are colonized by different microbial 
communities; Gram-positive bacteria are prevalent in the small 
intestine, while Gram-negative bacteria are predominate in the 
large intestine.21 Approximately 95% of bacteria presiding in the 
colon are strict anaerobes, which is determined by the available 
nutrients.30 Small intestinal bacterial overgrowth (SIBO) is largely 
determined by intrinsic and extrinsic factors.31 The most notable 
intrinsic factors preventing this overgrowth of bacteria are gastric 
acid and bile acid (BA) secretion, peristaltic movement, normal gut 
defense mechanisms, the production of mucin, gut antibacterial 
peptides, and prevention of bacterial retrograde translocation from 
the lower gut to the upper gut via the ileocecal valve.32,33 Extrinsic 
factors include nutrient intake and diet, bacterial and viral infection, 
medications altering motility (prokinetics), and drugs modulating 
the gut microbiota, for instance, pre and probiotics, proton pump 
inhibitors, H2 blockers, and antibiotics.34-36 If any one of the extrin-
sic factors cause imbalance to off-set the many protective mecha-
nisms set in place, commensal and pathogenic gut microbiota may 
colonize disproportionately and lead to dysbiosis. One example of 
dysbiosis is the development of SIBO, diagnosed by overall bacte-
rial overgrowth equal to or greater than 105 CFU per mL of upper 
gut (eg, jejunal) aspirate culture.37 However, overgrowth of bacteria 
equal to or greater than 103 CFU/mL of upper gut aspirate has also 
been included in the diagnosis of SIBO recently.38 Based on jejunal 
aspirate cultures, one study showed that Escherichia coli, Strepto-
coccus species (spp.), Pseudomonas aeruginosa, Staphylococcus 
spp., Acinetobacter baumannii, Acinetobacter lwoffii, Enterococcus 
faecium, Klebsiella pneumoniae, and Enterococcus faecalis were 
predominantly found in patients with SIBO who suffered altered 
GI motility.39

Gut Microbiota Affect Host Physiology 	

The gut microbiota provide its host with essential health ben-

efits primarily by maintaining healthy gut homeostasis.4,5 Currently, 
scientists are investigating what makes a healthy gut microbiome, 
and exploring the molecular mechanisms and signaling pathways 
that allow for crosstalk between gut microorganisms and the host. 
Many studies have shown that pathogens have the ability to impair 
the epithelial barrier function.40-42 In contrast, commensal gut mi-
crobiota have been found to act as gatekeepers to protect epithelial 
cell integrity from penetration and disease caused by pathogens.43 
Other beneficial effects of commensal gut microbiota include mi-
cronutrient production, such as vitamin K and folate.44 Colonic bac-
teria ferment unabsorbed carbohydrates to short-chain fatty acids 
(SCFAs), which can be subsequently absorbed through the colonic 
mucosa and used as an additional energy source.45 Most important-
ly, commensal gut microbiota are essential to prevent colonization 
and translocation with pathogenic bacteria at the intestinal epithelial 
barrier.46

SIBO has been found to lead to several complications in af-
fected hosts,28,47 including destruction of microvilli and heightened 
epithelial inflammatory response, which often results in impaired 
absorption.48,49 The bacteria responsible for the harmful effects 
of SIBO are often aerobes; however, in a healthy gut the small 
intestine primarily houses facultative anaerobes.50 This microbial 
shift in patients with SIBO leads to the malabsorption of fat and a 
deficiency in the fat-soluble vitamins D, E, A, and K.51 Common 
symptoms of SIBO are abdominal discomfort, gas, distension, and 
bloating and are likely caused by the dysregulated fermentation 
of carbohydrates and bacterial colonization in the small intestine, 
which produce methane, carbon dioxide, and hydrogen.52,53

Gut Microbial Alterations in Gastrointesti-
nal Dysmotility and Metabolic Disorders 	

Gut Microbial Alterations and Gastrointestinal 
Dysmotility

Peristaltic movements are of paramount importance for food 
to properly travel through the gut.54 Peristalsis is generated by a 
coordination of both contraction and relaxation of the circular and 
longitudinal smooth muscles of the muscularis externa55 and are 
regulated by the enteric nervous system (ENS), GI smooth muscle 
cells, pacemaker cells called interstitial cells of Cajal, enterochro-
maffin (EC) cells, as well as other factors.56-60 In addition to host-
specific genetic predispositions, diet and microbiota are critical 
regulators of GI physiology.16,17,61 Furthermore, altered microbiota 
composition of the lumen and mucus layer covering the epithe-
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lium often accompany GI disorders.7 As the complexities of the 
gut microbiota are being increasingly understood, it has revealed 
that microbe-host interaction, including immune and metabolic 
responses, are extremely important pathological factors of GI motil-
ity disorders. Previous research has shown significant changes in 
the gut microbiota of patients with IBS when compared to that of 
healthy individuals, which may contribute significantly to altered 
bowel habits caused by impaired colonic transit.62,63 However, it is 
still inconclusive whether the gut microbial signature is different 
between IBS patients and healthy controls. Also, more robust future 
studies are warranted to confirm whether this is an association and/
or causation. A microbiome “signature” for diseases like IBS has 
been proposed and based upon previous literature would generally 
include reduced overall microbial diversity as well as an abundance 
of methanogenic or Clostridium spp., which are more commonly 
associated with increasing severity of IBS symptoms.64 Clostridium 
spp. have been shown to adversely affect normal GI activity due to 
their role in serotonin (5-hydroxytryptamine [5-HT]) synthesis, 
although more research is needed to confirm the causative relation-
ship.6 Immune dysregulation, intestinal barrier dysfunction, and 
altered gut microbial signaling have been at the forefront of under-
standing the microbiome-related pathogenesis of GI disease.7,15,65

Further evidence of the relationship between microbial dysbiosis 
and GI motility is demonstrated by the association between SIBO 
and GI dysfunction. Proper GI motility allows for a constant flow 
of luminal material through the GI tract, which prevents bacterial 
overgrowth in the small intestine.66 However, patients presenting 
with GI dysmotility have a stagnant flow of luminal material, con-
tributing to the development of SIBO.67 For example, patients with 
malabsorption syndromes have delayed upper gut motility and later 
also developed SIBO.67 Additionally, SIBO predisposes dysfunc-
tional defense mechanisms of the gut.68 Gut defense mechanisms 
that prevent SIBO are mediated via secretory IgA, gastric acid, 
duodenal bile, and defensins.69 Defensins are host antimicrobial 
peptides, which contribute to the innate immunity of the gut and as 
one type of microbicidal agent, the adequate concentration of de-
fensin plays a vital role in inhibiting pathogenic organism coloniza-
tion and maintaining commensal bacteria.70,71 For instance, SIBO-
induced GI dysfunction is a result of several mechanisms including 
disproportionate immune activation and inflammation, inadequate 
GI motility, intestinal epithelial barrier dysfunction, dysregulated 
BA deconjugation and serotonergic modulation.20,72,73 Individuals 
with SIBO often contain bacteria that is commonly found in the 
colon, including the Gram-negative, carbohydrate-fermenting, 
facultative aerobes and anaerobes such as E. coli, K. pneumonia, 

Enterococcus spp., and Proteus mirabilis.31,52,74-76 Not surprisingly, 
in patients with SIBO versus those without, the small intestinal lu-
minal contents had different metabolomic profiles,77 and in another 
study patients with malabsorption syndrome had higher quantities 
of total BAs, lactate, acetate, and formate compared to controls.78 A 
similar study in subjects with SIBO found that patients were also 
unable to properly absorb these substances.35 Additionally, patients 
with malabsorption syndrome were found to have a positive cor-
relation with the quantity of acetate and the degree of symptom 
severity of SIBO.35 In the same study, unconjugated BAs positively 
correlated with the degree of steatorrhea, or malabsorption of fat in 
the intestine.35 This indicates that bacteria commonly found in the 
small intestine of SIBO patients contributes to the excess produc-
tion of acetate and deconjugated BA, leading to malabsorption of 
fat. The inability of intestinal epithelial cells to absorb SCFAs leads 
to further damage in small intestinal epithelial cells, inducing barrier 
dysfunction, ileal brake, leading to stasis and eventually bacterial 
colonization.24 

Gut Microbial Alterations and Metabolic Disorders
There have been many studies demonstrating that gut micro-

biota contributes to the regulation of metabolic homeostasis and 
that microbial dysbiosis can lead to metabolic dysregulation and 
diseases; mechanisms include but are not limited to changes to gut 
barrier function and metabolic inflammation.5,79,80 Furthermore, 
there is surmounting evidence of the importance of the microbiota 
in regulating body weight and in the development of T2D. For 
example, fecal microbiota transplantation (FMT) with healthy gut 
bacteria improves insulin sensitivity and weight loss in mice and hu-
man subjects.81 The gut microbiota are able to produce and absorb 
host metabolism signaling molecules by regulating available energy 
extracted from indigestible carbohydrates to the host.82,83 While the 
primary phyla of the healthy gut remain relatively stable, coloniza-
tion can be modified by diet, including prebiotics, and with probiot-
ics and antibiotics, which have an effect on the production of mi-
crobial metabolites.84 Still, future studies are warranted to confirm 
the occurrence of a gut microbial shift caused by the administration 
of prebiotics and probiotics. Antibiotics have the ability to decimate 
microbial populations and have been associated with the develop-
ment of metabolic disease, especially with early life exposure.80 
Conversely, there has been recent evidence that the use of antibiotics 
may help regulate metabolic function by improving peripheral insu-
lin sensitivity in obese patients.84 A considerable amount of experi-
mental data has been produced backing the role of microbiota in 
metabolic regulation and in the genesis of obesity.85-87 Therefore, it 
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should not be unexpected that several studies have found SIBO as 
a comorbidity in obese and diabetic patients alike.88 Further, among 
individuals with T2D, the presence of SIBO has been associated 
with delayed gut transit, indicating an association between gut 
microbial dysbiosis, GI dysmotility, and metabolic disorder.89 How-
ever, present knowledge is lacking robust and highly-controlled 
human studies examining the effects of microbial mechanisms on 
host metabolism. As discussed, these studies provide evidence that 
changes in the gut microbiota may provide an auspicious platform 
to treat diabetes-related metabolic disorders.

Microbial Signaling Uncovers Pathogenesis 
of Gastrointestinal Dysmotility and Meta-
bolic Disease 	

Microbial signaling via metabolites or structural components of 
bacteria are transmitted across the intestinal epithelium to commu-
nicate with distant organs.26 Once these signals are transmitted, they 
are able to affect organs through subsequent signaling via nerves or 
hormones.90 Metabolic signaling from the gut microbiota have the 
potential to significantly affect the host, influencing health status. 

Immune Signals 
Immune signaling begins with the recognition of microbe-

associated molecular patterns, which can include structural com-
ponents such as lipopolysaccharide, flagellin, and peptidoglycan by 
pattern-recognition receptors. While there are many different types 
of pattern-recognition receptors, Toll-like receptors, retinoic acid-
inducible gene-I-like receptors, and nucleotide-binding oligomer-
ization domain-like receptors located on epithelial and immune cells 
are commonly used for host-microbe immune interactions.91 In ad-
dition, the aryl hydrocarbon receptor (AHR), which is a transcrip-
tion factor important for coordinating cellular responses to external 
stimuli, is stimulated by the Lactobacilli tryptophan ligand, indole-
3-aldehyde.92 Remarkably, it has been shown that in the dysbiosis-
associated conditions, the microbiota fail to generate AHR ligands 
contributing to the pathogenesis of GI and metabolic disorders,93,94 
as a recent study showed that AHR functions as a biosensor that 
connect the environment of the intestinal lumen to programming of 
the ENS via intestinal motility.17 The ENS regulates most aspects 
of gut physiology through intrinsic neural networks, which inner-
vate throughout the GI system and is commonly called the second 
brain.57 Distinct neuronal transcriptomes have been identified in 
various delineations of the GI tract as well as microbiota commu-
nities in mice. These transcriptome data led to the discovery that 

AHR has a defined role in regulating microbe-associated intestinal 
peristalsis in the surveillance pathway of the ENS.17 Murine studies 
have also found that AHR deficiency enhances insulin sensitivity 
and reduces peroxisome proliferator-activated receptor-α, a key 
metabolic protein.95 Thus, modulating AHR signaling indepen-
dently or though gut microbiota modulation could help to treat 
conditions commonly associated with impaired gut motility and 
metabolic diseases. Taken together, the studies reviewed demon-
strate that gut microbial dysbiosis alters host immune signals, which 
is a central pathogenic mechanism for GI dysmotility and metabolic 
disorders.

Short-chain Fatty Acids
Butyrate, propionate, and acetate are the 3 most commonly 

studied SCFAs and are the major fermentation metabolites gener-
ated from gut microbial degradation of dietary fiber and help to 
provide up to 10% of the total energy required by the host.96 Butyr-
ate, propionate, and acetate are also important multifunctional sig-
nals produced by the gut microbiota and can bind to the G-protein-
coupled receptors (GPR43 and GPR41), also known as free fatty 
acid receptor 2 and 3 (FFAR2 and FFAR3), respectively. SCFAs 
binding to FFAR3 induces expression of the hormone peptide YY 
in enteroendocrine L-cells, which has been shown to normalize gut 
motility allowing for an increase in available energy harvested from 
food in mice.97 Binding of SCFAs to FFAR2 and FFAR3 in the 
epithelial cells of the small intestine and colon activates secretion of 
glucagon-like peptide-1 by L-cells, substantially impacting overall 
pancreatic function and insulin release, and hormonal effects regu-
lating appetite.98,99 Independently, SCFAs perform a wide range of 
metabolic functions; propionate and butyrate are able to stimulate 
expression of intestinal gluconeogenic enzymes, and propionate is 
able to independently act as a precursor for intestinal gluconeogen-
esis.100 All 3 major SCFAs are able to activate FFAR2 in mouse 
white adipose tissue, suppressing insulin signaling and therefore 
decreasing fat accumulation and further stimulating energy expen-
diture in hepatocytes and myocytes.19,101

A study by Reigstad et al102 demonstrated that gut microbiota 
derived metabolites in human and mouse trigger tryptophan hy-
droxylase 1 (Tph1) gene expression and 5-HT production in the 
colon through stimulation of EC cells via SCFAs. In this study, to 
explore the association between intestinal microbes, gut contractility, 
and serotonergic gene expression, germ-free (GF) or humanized 
(HM; ex-GF mice colonized with human gut microbiota) mice 
were used. Findings showed that the microbiota from convention-
ally raised mice and HM mice had caused a significant increase 
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in colonic mRNAs of TPH1 compared to the GF mice.102 These 
studies demonstrate that GI and metabolic homeostasis rely on 
SCFA production by the gut microbiota, which play a central role 
in regulating GI motility and metabolic functions.

Tryptamine
Similar to 5-HT, tryptamine is a monoamine metabolite pro-

duced from tryptophan by gut bacteria, particularly Ruminococcus 
gnavus and Clostridium sporogenes, and is found abundantly in 
human and rodent stool samples.103 In a study reported by Bhattarai 
et al,16 investigators determined that the role of tryptamine in the GI 
tract is facilitated by the 5-HT4 receptor that is only found in co-
lonic epithelium. Tryptamine produced by both GF and HM mice 
were shown to increase movement across the colonic epithelium 
as well as fluid secretions in colonoids, validating the importance 
of tryptamine for proper intestinal secretion. Additionally, im-
proved GI motility was seen in GF mice that were colonized with 
tryptamine-producing engineered Bacteroides thetaiotaomicron mi-
crobes.16 This study demonstrates that bacterial metabolites are able 
to control different facets of host physiology and could be used for 
localized treatments for GI disorders associated with constipation.

The aforementioned studies provide evidence that metabolites 
and byproducts essential to gut microbiome signaling fill a specific 
niche to maintain proper GI function and metabolic regulation. 
Further, these findings give insight into gut microbiota and host 
crosstalk alluding to future potential therapeutic options for GI dys-
motility and metabolic disorders.

The Gut-Brain Axis and Gut Microbiota: Gas-
trointestinal Dysmotility and Metabolic Syn-
drome 	

The endocrine and nervous systems are able to conduct and co-
ordinate with absolute synergy in each organ system in the body in 
order to maintain homeostasis.104 The processes between the brain 
and the gut are bi-directional; as the brain modulates gut physiology, 
the gut is also able to influence brain function.105 This bi-directional 
interaction has been demonstrated through the improvement in 
patients with hepatic encephalopathy after gut-microbiota directed 
antibiotic treatment.106 Moreover, animal and human studies have 
demonstrated how the gut microbiota is able to affect brain func-
tion. For example, the study by De Palma et al107 demonstrated that 
GF mice have altered hippocampal brain-derived neurotrophic fac-
tors (BDNF), dysregulated hypothalamic pituitary stress responses, 
impaired neurotransmission, diminished tryptophan availability 

and dysregulated metabolism, further demonstrating a connection 
between the gut microbiota and the gut-brain axis. 

Bi-directional gut-brain interactions serve as important modu-
lators of GI functionality influencing motility, gastric secretions, 
blood flow, immune activity, and visceral sensations.108 Brain-to-gut 
bi-directional signaling can also affect the GI tract through indi-
rect signaling between the gut microbiota and the host. Microbial 
organisms residing in the GI tract can cause increased intestinal 
epithelial permeability and modulate the mucosal immune response, 
leading to changes in host physiology.109 Some evidences support 
that communication between the gut microbiota and intestinal epi-
thelial cells occurs through luminal release from neurons, Paneth 
cells, and EC cells.110 The perception of gut stimuli and modulation 
of various gut functions are conducted through the emotional motor 
system. The emotional motor system is described as complimentary 
parallel outflow systems, which includes the sympathetic and para-
sympathetic branches of the autonomic system, and endogenous 
pain-modulation systems.108 A bi-directional gut-brain microbiota 
axis is established through the gut microbiota interactions with gut 
based effector systems and visceral afferent pathways.108 Also, cur-
rent research demonstrates that the host 5-HT is synthesized in the 
gut via microbial-derived metabolites; these findings add further 
weight to the concept of a gut microbiota-gut-brain axis and its in-
fluence on GI homeostasis.111

Connecting the dots between the gut microbiota, brain, and 
metabolic control of insulin secretion, Perry and colleagues19 ex-
plored a pathway involving the “rest-and-digest” and “feed-and-
breed” processes. In this study, rats fed a high-fat diet had greater 
production and turnover of the SCFA, acetate, compared to normal 
control diet (NCD) rats. They found that by exposing stomachs of 
NCD rats with acetate, glucose-stimulated insulin secretion (GSIS) 
was increased, indicating a relationship between microbiota-derived 
acetate and insulin secretion.19 The vagus nerve largely controls 
parasympathetic activity through motor inputs that are sent to vari-
ous organs and is able to control heart rate, regulate GI movement, 
aid in the digestion of food, and enhance insulin secretion. Perry 
et al19 demonstrated this by using parasympathetic blockers, atro-
pine or methylatropine, or surgically severing portions of the vagus 
nerve connecting the gut, to prevent acetate from increasing GSIS. 
This indicates that the beneficial effects of acetate-inducing GSIS 
is controlled through the vagus nerve and parasympathetic nervous 
system. To elucidate the role of microbiota acetate turnover in this 
study, Perry et al19 performed FMT from NCD or high-fat diet 
donor rats into recipients on the opposite diet. Results showed that 
acetate levels and GSIS levels from the donor groups were trans-
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ferred to recipient groups, implying that changes in the microbiota 
regulate acetate turnover, and therefore GSIS. These powerful find-
ings confirmed the gut microbiota-gut-brain axis influences meta-
bolic homeostasis (Fig. 2).

Strong pre-clinical data highlights that the gut microbiota is 
important for bi-directional interactions of the gut-brain axis in 
health and in disease. Therefore, gut microbial dysbiosis has patho-
physiological effects on gut-brain bi-directional interactions leading 
to GI dysmotility and metabolic disorders. An emerging area that 
should be further explored is how the gut-brain axis is affected by 
the gut microbiota and their derived metabolites leading to meta-
bolic benefits.

Gut Microbiota Mediated Immune Dysregu-
lation in Gastrointestinal Dysmotility and 
Metabolic Disease 	

The most important function of the GI tract is to take in food 
particles, digest these to smaller molecules, absorb nutrients, and 
excrete the undigested byproducts. The GI tract also harnesses the 
benefits of commensal microbiota, which play a part in regulating 
the host metabolism and directing proper immunity.112 Like proper 
heart function, the functions of the GI tract, such as gut motility, are 
necessary for life. Current literature suggests proper gut motility is 
dependent on the interacting forces between the microbiome and 

ENS with the help of immune cells, like the tissue-resident muscu-
laris macrophages (MMs).113 MMs are in close proximity to the 
myenteric plexus of GI smooth muscle.114 One study explored the 
functional role of MMs under normal physiological conditions and 
homeostatic crosstalk between ENS neurons and MMs.114 Muller 
et al115 showed that MMs are a unvarying subset of CX3CR1+ 
CD11cloMHCIIhi cells, dependent on the secretion of colony 
stimulatory factor 1 receptor (CSF-1R), a cytokine receptor. In-
traperitoneal injection with a low-dose of anti-CSF-1R antibody  
specifically depleted 80% of MMs, leaving stromal cells and other 
GI resident macrophage populations unharmed. By depleting this 
specific subset of macrophages, gastric emptying was accelerated 
and colonic emptying was reduced in mice. Further, in vitro experi-
ments demonstrated the homeostatic role of MMs in regulating 
peristalsis showing signs of deregulated and hyperreactive contrac-
tions of the muscularis externa. In addition to the distinctive role of 
MMs to establish the molecular mechanisms contributing to these 
effects, researchers analyzed the nonimmune MM transcripts and 
found novel expression of bone morphogenetic protein 2 (BMP2) 
that is known to stimulate the BMP receptors I and II (BMPRI 
and BMPRII). Neuronal and smooth muscle development relies 
on BMP receptors indicating BMP2 may be a candidate for MM-
mediated control of peristalsis. It is well established that the intesti-
nal microbiota possess the ability to instruct mucosal immune cells 
and therefore influence the composition of the gut microbiota.112 
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Studies have also shown that GF mice and mice treated with an-
tibiotics experience GI dysmotility.115 However, how is it possible 
for the intestinal microbiota to influence MM function, given the 
distance between the intestinal lumen and MMs? To answer this 
question, Muller et al115 treated mice with antibiotics and found 
decreased expression of BMP2, CSF-1, and decreased numbers 
of MMs, alluding to reliance on the microbiome. Notably, treated 
mice also developed delayed GI transit. These findings advance 
our understanding of communication that occurs during inflam-
mation between the nervous system and immune system and shows 
the significance of bi-directional neuroimmune communication for 
maintaining proper human body functions.116 An important compo-
nent of this study was also in the identification of BMP2 as an addi-
tional neurotrophic factor produced by macrophages, in addition to 
BDNF.117 From this we can deduce that the intestinal microbiota is 
an essential component in the neuroimmune crosstalk and MMs act 
as intermediaries between the ENS and the gut microbiota (Fig. 2).

Metabolic disorders, as in obesity and T2D, are associated with 
low-grade chronic inflammation in adipose tissue, liver, skeletal 
muscle, pancreas, brain, and intestines.118 Elevated levels of the 
circulating pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 
were found in high fat diet induced obese mice and humans, and 
was found to lead to insulin resistance and T2D.119 In obesity, there 
can be a disproportionate amount of visceral adipose tissue caused 
by the accumulated pro-inflammatory immune cells and reduced 
anti-inflammatory cells, which leads to chronic, low-grade inflam-
mation. Visceral adipose tissue, which is hormonally active, can be 
considered as a major driver of insulin resistance in obese animal 
models and humans.118,120,121 Other organs also develop low-grade 
inflammation, which also contributes to insulin resistance.118,122 Bil-
lions of microbes are constantly interacting with epithelial mucosa 
in the gut, which keeps the intestinal immune system incessantly 
active. Intestinal barrier dysfunction is widely accepted as one of the 
first events in GI dysmotility and metabolic disorders and leads to 
immune cell infiltration and low-grade inflammation of the gut mu-
cosa.118 Mainly, intestinal barrier dysfunction caused by microbial 
dysbiosis plays a critical component in the development of immune 
dysregulation leading to GI and metabolic disease.123 Recently, in 
a study published in Science by Thaiss et al,124 T2D and obesity 
mouse models showed that hyperglycemia led to intestinal barrier 
dysfunction through transcriptional restructuring of glucose trans-
porter 2-dependent intestinal epithelial cells and altered tight junc-
tion and adherence protein integrity. As a consequence of hypergly-
cemia-mediated epithelial barrier disruption, a systemic influx of 
microbial products can enhance allocation of intestinal microbiome 

products leading to enteric infection. However, barrier function 
is restored and the microbiota is contained upon treatment and 
management of hyperglycemia, intestinal epithelial-specific glucose 
transporter 2 deletion, or by inhibition of glucose metabolism.124 
Glycemic control, indicated by glycated hemoglobin levels, was 
shown to correlate with the systemic influx of intestinal microbiome 
products. Collectively, these results provide a mechanistic connec-
tion of the hyperglycemic condition and intestinal barrier dysfunc-
tion with the systemic inflammatory and potentially infectious 
consequences of obesity and T2D. Most importantly, this study 
shows that metabolic syndrome revolves around the gut, supports 
the hypothesis that imbalances in metabolic processes may begin in 
the gut, and highlights intestinal barrier dysfunction, mediated by 
gut microbial dysbiosis, as a core pathophysiology of GI dysmotility 
and metabolic disease (Fig. 2).

Gut Microbial Dysbiosis Connects Gastroin-
testinal Dysmotility With Metabolic Disor-
ders 	

GI dysmotility is commonly diagnosed in patients with meta-
bolic disorders.11,13 Accumulating evidence has shown that gut 
microbial dysbiosis and the resulting intestinal barrier dysfunction 
link these 2 conditions. For example, a recent study showed how 
duodenal microbial dysbiosis is linked with enteropathy and intes-
tinal barrier dysfunction in the environmental enteric dysfunction 
(EED) condition.125 EED is a subclinical syndrome characterized 
by intestinal villous blunting, reduced absorptive capacity, and in-
creased intestinal inflammation.125,126 Furthermore, there have been 
several metabolic consequences, such as malnutrition and stunting, 
in patients with EED. However, findings from this study raise ad-
ditional questions: is environmental enteropathy caused by a form 
of bacterial overgrowth in the small intestine? If so, how does SIBO 
alter GI motility? In response to these questions, we reviewed an ar-
ticle published on tropical sprue (TS), a type of malabsorption syn-
drome that has clinical and histological features similar to EED.67 
This study demonstrated that there was increased intestinal bacterial 
colonization in patients with TS. Furthermore, there is a vicious 
cycle of SIBO and small intestinal stasis due to the ileal brake in-
duced by unabsorbed fat passing through the ileum.127 SIBO also 
deconjugates BAs, which further caused fat malabsorption and may 
even change gut motility. Malabsorption of fat induces ileal brake 
by liberating gut hormones such as peptide YY and neurotensin.67 
Therefore, orocecal transit time was found to be longer in patients 
with TS than in controls. 
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Further evidence supporting intestinal barrier dysfunction as a 
pathogenic mechanism for metabolic disorders is illuminated by 2 
recent studies. One study demonstrated that hyperglycemia drives 
intestinal barrier dysfunction and increases the risk for enteric infec-
tion.124 In contrast, a second study showed loss of the gut barrier 
integrity triggers activation of islet-reactive T cells and autoimmune 
diabetes.128 While it is currently unclear whether intestinal barrier 
dysfunction or metabolic disorder comes first, it is clear that there 
is a direct connection between these 2 conditions. Interestingly, re-
search over the past few decades has indicated that intestinal barrier 
dysfunction is a major pathophysiological mechanism for the devel-
opment of GI dysmotility and functional bowel disorders.129 Fur-
ther studies provided evidence for this connection by demonstrating 
that the development of IBS follows acute infective gastroenteritis, 
a condition known as post-infectious IBS.130 Taken together, the 
aforementioned studies indicated that intestinal barrier dysfunction 
is associated with gut microbial dysbiosis and is likely a key patho-
physiological mechanism that links metabolic disorders with GI 
dysmotility.

Furthermore, we reviewed some proof of concept studies that 
provide a direct connection between metabolic and GI motility 
disorders through microbial dysbiosis. Landmark studies have 
demonstrated that altering the gut microbiota during stages of criti-
cal developmental has lasting metabolic consequences.131,132 A large 
retrospective cohort study reported that prescription for antibiotics 
within the first 2 years of life is associated with the development of 
early childhood obesity.133 Also, antibiotic-induced depletion of the 
gut microbiota has been shown to induce changes in 5-HT biosyn-
thesis and to delay GI motility.134 Moreover, studies have demon-
strated that gut microbial alterations, especially alterations leading 
to increased abundance of methanogens, leads to the development 
of slow transit constipation.135 These state-of-the-art studies clearly 
indicate that intestinal barrier dysfunction, brought about by gut 
microbial dysbiosis, is a central pathogenic mechanism for meta-
bolic as well as GI motility disorders. 

Treatment Options for Gut Microbial Dys-
biosis 	

Current management options for gut microbial dysbiosis in-
clude antibiotics, FMT, as well as diet and probiotic interventions 
(Fig. 3). 

Antibiotics
Minimally absorbed antibiotics neomycin and rifaximin led to 

improved colonic motility as evidenced in clinical trials in patients 
with IBS.136,137 In addition, several studies have shown that expo-
sure to a combination of antibiotics for approximately 4-8 weeks 
in obesity mouse models or high-fat diet fed mice substantially 
improves metabolic parameters including: increased glucose toler-
ance, reduction in fat mass, and lowered hepatic steatosis in hepatic 
and systemic inflammation; these changes are also associated with 
changes in gut microbiota composition, gut barrier dysfunction, 
and metabolic endotoxemia.4,138 However, we desperately need well-
designed human clinical trials to test if the efficacy of these interven-
tion techniques are applicable to humans and may lead to manipu-
lation of the gut microbiota contributing to hampered metabolism 
and the manifestation of metabolic disorders. The most studied 
treatment for patients with SIBO is rifaximin, a non-systemic an-
tibiotic.139 A systematic review and meta-analysis (26 studies) of 
rifaximin reported that SIBO was improved or resolved in 70.8% 
of patients.140 However, systemic antibiotics, such as norfloxacin, 
have also been reported to also eradicate SIBO.52 A meta-analysis 
(10 prospective clinical studies) of non-systemic antibiotics found 
more normal hydrogen-breath tests in patients with SIBO that had 
been treated with an antibiotic compared to patients that received a 
placebo (51.1% vs 9.8%, respectively).141

Fecal Microbiota Transplantation
FMT is also thought to be beneficial in treating microbial dys-

biosis as it could restore “healthy” microbes in diseased patients.142 
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However, whether FMT as a treatment for IBS is a panacea or 
placebo, is still debatable. A double-blind randomized controlled 
trial including 165 patients with IBS showed that after FMT, IBS 
symptom severity significantly improved when compared to a pla-
cebo control group, although there were no outstanding changes 
in the degree of overall dysbiosis.143 In a recent metanalysis, data 
pooled from 5 different randomized controlled trials found no sig-
nificant improvements in IBS symptoms of patients who received 
FMT versus placebo.144 However, larger and more rigorous trials 
are needed; studies included in this meta-analysis were small and 
included potential for a high-risk of bias.145 Interestingly, FMT 
eliminated SIBO in 71% of patients with chronic intestinal pseudo-
obstruction.146 Another study demonstrated the effect of a lean 
donor (allogenic) versus own (autologous) FMT to recipients with 
metabolic syndromes.147 Changes in blood plasma metabolites, such 
as gamma-aminobutyric acid, indicate metabolic responses respon-
sible for the observed improved insulin sensitivity in the allogenic 
FMT group. However, this improvement is dependent on the fact 
that the patient had decreased fecal microbial diversity at the start 
of the study. Further, changes in intestinal microbiota composition 
is associated with the beneficial effects on glucose metabolism seen 
in patients in the allogenic group and may be predicted from fecal 
microbiota composition before treatment.147

Probiotics
Probiotics, live microorganisms, are believed to have favorable 

effects on the gut microbiota.148 However, there have only been a 
few clinical studies examining this option, and they lack consistency. 
Recently, a meta-analysis found that improved clearance of SIBO 
was associated with probiotic use.149 Probiotics have also been 
shown to confer health benefits in patients with IBS although the 
mechanism responsible for improved symptomology has yet to be 
elucidated.150 Another study found that probiotics from fermented 
camel milk significantly restored blood glucose and lipid levels back 
to healthy levels in the db/db T2D mouse model.151 In addition, 
researchers found that insulin secretion was improved in probiotic 
treated diabetic mice due to upregulation of GPR43/41, which 
improved glucose-triggered glucagon-like peptide-1 secretion.151 
Taken together, the studies presented show promise for probiotic 
treatment in GI motility disorders as well as metabolic disease.

Dietary Intervention
“You and your microbiome are what you eat.”152,153 Our gut 

microbiome is largely influenced by our diet because it modulates 
the richness of specific colonizers and their individual and collective 

functions. Microbial community changes facilitated by diet could 
have a detrimental effect for host health due to the essential role that 
the microbiome plays in regulating host physiology.154 A superlative 
option for a low-risk treatment intended to modulate the micro-
biome would be to change the patients’ diet. Therefore, utilizing 
diet and diet-based studies to change microbial communities could 
present novel therapeutic strategies for conditions in which the gut 
microbiota and its associated metabolic products have been shown 
to harm the host or be key in disease pathogenesis. An exciting 
question arises of whether the presence of the individual’s specific 
microbiome fingerprint can actually influence dietary preferences 
of the host, and therefore influencing positive feedback loops. In a 
study in which patients with obesity were assigned several different 
control diets, researchers found that the fecal microbiota profiles 
associated more by individual than by diet.155 On the contrary, in 
response to the dietary changes, marked changes were found in 
the relative abundance of dominant microbial phylotypes.155 Wu et 
al156 reported a correlation between long-term dietary habits and 2 
enterotypes that were defined in 96 adults. High fiber intake con-
ferred a “Prevotella-type” community and high protein intake was 
associated with a “Bacteroides-type” community. This implies that 
dietary patterns may influence the enterotypes found in the host. 
Another interesting study found that populations of Italian and Af-
rican children had significant differences in fecal microbiota, which 
can be explained due to different dietary habits.157 In these samples, 
Italian children had higher intakes of starch and proteins compared 
to African populations and showed a higher proportion of Bacteroi-
des spp. and Firmicutes, suggesting that both short-term and long-
term dietary shifts can lead to compositional changes of the gut 
microbiota.

Dietary intervention has the potential to be a powerful tool in 
helping patients overcome microbial dysbiosis.86 In patients suffer-
ing from conditions as a result of gut dysbiosis, translocated colonic 
bacteria residing in the small bowel ferment carbohydrates causing 
excessive gas, abdominal pain, and bloating. Therefore, with the 
temporary restriction of dietary components, such as diets low in 
fermentable oligosaccharides, disaccharides, monosaccharides, and 
polyols (FODMAP), hence the FODMAP, has been suggested 
to improve symptoms of IBS and of dysbiosis.158 Low FODMAP 
diets have been associated with reduced absolute abundance of bac-
teria, which may have significant beneficial effects in the treatment 
of SIBO or other dysbiosis conditions.159 Moreover, a diet high in 
complex carbohydrates preferentially encourages the growth of less 
pathogenic bacteria than a diet rich in fats or protein.152 Primarily 
vegetarian diets abundant in fiber lead to increased production of 
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SCFAs, which inhibit potentially invasive bacteria from colonizing 
the gut.160 While there is accumulating evidence supporting the role 
of diet on gut microbial composition, more research is needed to ac-
curately deduce the effect of different diets on the gut microbiota.

Conclusions and Further Directions 	

Constant communication between the gut microbiota derived 
metabolites and human body systems regulates physiological as-
pects of health and disease. Current literature demonstrates that 
metabolic syndrome is highly influenced by the gut and supports 
the hypothesis that metabolic disorders may begin there. Metabolic 
disease is a multi-factorial condition that makes it difficult to unravel 
a causative effect of the microbiome on the pathogenesis of this con-
dition. Further, gut microbiota mediated immune dysregulation and 
intestinal barrier dysfunction emerges as a core pathophysiology of 
GI dysmotility and metabolic disease. However, it should be noted 
that these disorders are not mutually inclusive; patients may have 
GI dysmotility without the co-occurrence of metabolic disorders 
and vice versa. 

Evidence has emerged demonstrating a potential position of the 
gut microbiome in GI dysmotility and metabolic disorders (Fig. 4). 
A major challenge in studying the gut microbiota is in translating 
and applying data into physiologically relevant mechanisms. One 
way to go about facing this challenge is to isolate specific bacterial 
strains, or analyze how they are affected by specific macronutrients 
commonly found in humans, and use the information obtained to 
elucidate biomarkers that may be used to find better treatments for 
GI dysmotility and metabolic diseases. These biomarkers may also 
allow for the identification of mechanisms in which the microbial 
metabolites lead to or prevent the development of disease states. 
Also, due to obscure small intestinal microbiome research, more 
attention is needed on the pathogenesis of SIBO in GI dysmotility 

and metabolic diseases. Using next generation sequencing tech-
niques to explore small intestinal microbiomes, together with better 
sampling of the small bowel aspirate, may allow us to prevent cases 
of antibiotic resistance and help better understand the microbial 
pathogenesis of SIBO.

The collaborative work between microbiologists, gastroenter-
ologists, endocrinologists, and epidemiologists along with improve-
ments in the analysis of microbial markers, microbial metabolites, 
and molecular signals will lead to thrilling discoveries in the future. 
The closer we can get to the microbial pathogenesis of the gut mi-
crobial alterations and exploring crosstalk with the host, the more 
effectively we can treat and manage GI dysmotility and related 
metabolic manifestations. The statement from Hippocrates that “all 
disease begins in the gut” is becoming progressively more accepted 
with increasing knowledge of the gut microbiota-gut-brain axis and 
its influence on human health and disease when altered. 
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