The Journal of Neuroscience, January 6, 2021 - 41(1):167-178 - 167

Behavioral/Cognitive

A Gradient of Sharpening Effects by Perceptual Prior across
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Prior knowledge profoundly influences perceptual processing. Previous studies have revealed consistent suppression of pre-
dicted stimulus information in sensory areas, but how prior knowledge modulates processing higher up in the cortical hierar-
chy remains poorly understood. In addition, the mechanism leading to suppression of predicted sensory information remains
unclear, and studies thus far have revealed a mixed pattern of results in support of either the “sharpening” or “dampening”
model. Here, using 7T fMRI in humans (both sexes), we observed that prior knowledge acquired from fast, one-shot percep-
tual learning sharpens neural representation throughout the ventral visual stream, generating suppressed sensory responses.
In contrast, the frontoparietal and default mode networks exhibit similar sharpening of content-specific neural representa-
tion, but in the context of unchanged and enhanced activity magnitudes, respectively: a pattern we refer to as “selective
enhancement.” Together, these results reveal a heretofore unknown macroscopic gradient of prior knowledge’s sharpening

effect on neural representations across the cortical hierarchy.
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ignificance Statement

knowledge informs perception.

&

A fundamental question in neuroscience is how prior knowledge shapes perceptual processing. Perception is constantly
informed by internal priors in the brain acquired from past experiences, but the neural mechanisms underlying this process
are poorly understood. To date, research on this question has focused on early visual regions, reporting a consistent downreg-
ulation when predicted stimuli are encountered. Here, using a dramatic one-shot perceptual learning paradigm, we observed
that prior knowledge results in sharper neural representations across the cortical hierarchy of the human brain through a gra-
dient of mechanisms. In visual regions, neural responses tuned away from internal predictions are suppressed. In frontoparie-
tal regions, neural activity consistent with priors is selectively enhanced. These results deepen our understanding of how prior
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Introduction

Prior knowledge strongly shapes perception. For instance, we per-
ceive a patch that is brighter at the top as concave because of our
lifetime experience with light coming from above (Ramachandran,
1988). Internal priors are thought to interact with bottom-up inputs
in an iterative interplay that leads to perception (Friston, 2005; Yuille
and Kersten, 2006; Albright, 2012). Although significant effort
has been devoted to characterizing the neural correlates of such

Received July 30, 2020; revised Nov. 6, 2020; accepted Nov. 6, 2020.

Author contributions: C.G.-G. and B.J.H. designed research; C.G.-G. performed research; C.G.-G. and B.J.H.
wrote the paper.

This work was supported by National Science Foundation BCS-1926780 to B.J.H. C.G.-G. was supported by
European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant
Agreement 835767. B.J.H. was also supported by an Irma T. Hirschl Career Scientist Award.

The authors declare no competing financial interests.

Correspondence should be addressed to Biyu J. He at biyu.jade.he@gmail.com.

https://doi.org/10.1523/JNEUR0SCI.2023-20.2020
Copyright © 2021 the authors

interactions in early sensory areas, how priors impact perceptually
relevant neural processing in higher-order regions remains
unclear. Earlier studies have shown that prior knowledge
obtained from task cues elicits enhanced activity in posterior pa-
rietal cortex, medial, and lateral PFC as well as enhanced connec-
tivity between PFC and visual areas, pointing to frontoparietal
regions as potential sources of predictions guiding perception
(Summerfield et al., 2006; Eger et al., 2007; Esterman and Yantis,
2010; Rahnev et al, 2011) and top-down templates influencing
information processing (Desimone and Duncan, 1995; Buschman
and Kastner, 2015). However, how exactly neural representations in
frontoparietal areas are altered by prior knowledge remains poorly
understood. Recent studies showed that frontoparietal areas contain
content-specific neural activity patterns that are strongly modulated
by the availability of prior knowledge (Gonzélez-Garcia et al., 2018;
Flounders et al., 2019), but the relative contribution of neural popu-
lations tuned toward or away from prior knowledge remains
unknown. Answering this question would help explain how prior
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knowledge is encoded in neural populations and how it might be
propagated across large-scale brain networks to inform perceptual
processing.

At the same time, current models suggest that top-down pre-
dictions generated in higher-order cortical regions interact with
sensory processing in lower-order regions to guide perception
(Bar et al,, 2006; Yuille and Kersten, 2006; Albright, 2012). A
common observation is that perceptual expectations reduce ac-
tivity in visual regions (Murray et al., 2002; de Lange et al., 2018),
which supports a “predictive coding” account of how such top-
down generative models facilitate perception (Mumford, 1992;
Friston, 2005). This downregulation, or “expectation suppres-
sion,” of sensory cortical activity for expected input can be
explained by two alternative accounts (de Lange et al., 2018).
Under the first account, expectation suppression arises as a con-
sequence of filtering out the expected neural responses that are
redundant with high-level predictions (Murray et al, 2004;
Friston, 2005); thus, prior knowledge dampens activity in neural
populations tuned toward the predicted stimulus (Fig. 14; “damp-
ening” model). Alternatively, expectation suppression could result
from sharpening of neural representation such that neural activity
tuned away from (hence inconsistent with) the expected features
are suppressed, resulting in a sharper neural representation (Fig.
1B; “sharpening” model) (Lee and Mumford, 2003). We note that
both models refer to changes in population neural responses while
being agnostic about the underlying tuning curves of individual
neurons.

Thus far, studies investigating the effect of prior knowledge
on visual cortical representations have yielded mixed results,
with some supporting the “dampening” model (Meyer and
Olson, 2011; Kumar et al., 2017; Schwiedrzik and Freiwald, 2017;
Richter et al,, 2018) and others supporting the “sharpening”
model (Kok et al., 2012; Bell et al., 2016). These previous studies
typically used clear images and induced prior knowledge using
either top-down instructions or statistical learning. We reasoned
that, in real life, the impact of prior knowledge on perceptual
processing is particularly pronounced when stimulus input is
weak or ambiguous, such as detecting a camouflaged or hidden
predator. In addition, in real life, the prior knowledge that guides
perception typically derives from relevant past experiences. For
instance, a previous sight of a predator in clear view will help
guide future detection of the same type of predators hidden or
camouflaged. In such cases, animals and humans do not have the
benefit of top-down instruction or the luxury of repeated associa-
tive learning.

Here, we combined high-field (7 Tesla) fMRI with a dramatic
visual phenomenon to assess the impact of prior knowledge
obtained from past experiences on the neural processing of am-
biguous stimuli across the cortical hierarchy. Specifically, we
used Mooney images, black-and-white degraded images that
are difficult to recognize at first. However, once participants are
exposed to their unambiguous version (a process called “disam-
biguation”), recognition of the same Mooney images becomes
effortless and can last for long periods of time (Ludmer et al.,
2011; Albright, 2012). Thus, these images provide a robust,
well-controlled experimental paradigm to investigate prior
knowledge’s influence on perceptual processing in an ecologi-
cally relevant manner (e.g., anyone who has taken psychology
101 recognizes the Dalmatian dog picture instantly). Previous
studies using Mooney images have revealed an increased simi-
larity in the neural representation between post-disambiguation
Mooney images and their unambiguous counterparts in regions
along the ventral visual stream (Hsieh et al., 2010; Van Loon et
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al., 2016) as well as the frontoparietal network (FPN) and
default mode network (DMN) (Gonzélez-Garcia et al., 2018).
However, these correlational approaches are agnostic regarding
the specific tuning properties of neural populations before and
after disambiguation, since positive correlations could reflect
both dampening and sharpening of responses.

To anticipate the findings, we found that prior knowledge
induces a sharper neural representation throughout the cortical
hierarchy, with overall suppressive effects in the sensory end of
the hierarchy, overall enhancing effects in the DMN end of the
hierarchy, and little net effect on activation magnitudes in the in-
termediate FPN (Fig. 1B-D). These results reveal a macroscopic
gradient of prior knowledge’s effect on neural representations,
strengthen the evidence for a sharpening account of prior knowl-
edge’s effect in sensory areas, and point to a new mechanistic
model for explaining neural sources of prior knowledge: selective
enhancement.

Materials and Methods

Subjects

Twenty-three healthy volunteers participated in the study. All participants
were right-handed and neurologically healthy, with normal or corrected-
to-normal vision. The experiment was approved by the Institutional
Review Board of the National Institute of Neurologic Disorders and
Stroke. All subjects provided written informed consent. Four subjects
were excluded because of excessive movements in the scanner, leaving 19
subjects for the analyses reported herein (age range=19-32 years; mean
age =24.6 years; 11 females). The dataset analyzed herein was previously
published by Gonzélez-Garcia et al. (2018).

Visual stimuli

Thirty-three Mooney and grayscale images were generated from
grayscale photographs of real-world man-made objects and animals
selected from the Caltech (http://www.vision.caltech.edu/Image_
Datasets/Caltech101/Caltech101.html) and Pascal VOC (http://host.
robots.ox.ac.uk/pascal/VOC/voc2012/index.html) databases. First,
grayscale images were constructed by cropping grayscale photo-
graphs with a single man-made object or animal in a natural setting
to 500 x 500 pixels and applying a box filter. Mooney images were
subsequently generated by thresholding the grayscale image. Threshold
level and filter size were initially set at the median intensity of each image
and 10 x 10 pixels, respectively. Each parameter was then titrated so that
the Mooney image was difficult to recognize without first seeing the corre-
sponding grayscale image. An independent subject group (N=6) was
used to select the 33 images used in this study from an initial set of 252
images (for details, see Chang et al., 2016). Images were projected onto a
screen located at the back of the scanner and subtended ~11.9 x 11.9
degrees of visual angle.

Experimental design

Each trial started with a red fixation cross presented in the center of the
screen for 2 s, and then a Mooney image or a grayscale image presented
for 4 s. The fixation cross was visible during image presentation, and
subjects were instructed to maintain fixation throughout. A 2 s blank pe-
riod appeared next, followed by a brighter fixation cross (lasting 2 s) that
prompted participants to respond (Fig. 1A). Participants were instructed
to respond to the question “Can you recognize and name the object in
the image?” with an fMRI-compatible button box using their right
thumb. Trials were grouped into blocks. Each block contained 15 trials:
three grayscale images followed by six Mooney images and a shuffled
repetition of the same six Mooney images. Three of the Mooney images
had been presented in the previous run and corresponded to the gray-
scale images in the same block (these are post-disambiguation Mooney
images). The other three Mooney images were novel and did not match
the grayscale images (pre-disambiguation); their corresponding gray-
scale images would be presented in the following run. Each fMRI run
included three blocks of the same images; within each block, image order
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in an example subject.

was shuffled but maintained the same block structure (grayscale followed
by Mooney images). After each run, a verbal test was conducted between
fMRI runs. During the verbal test, the six Mooney images from the pre-
vious run were presented one by one for 4 s each, and participants were
instructed to verbally report the identity of the image. Each participant
completed 12 runs. In order for all Mooney images to be presented pre-
and post-disambiguation, the first and last runs were “half runs.” The
first run contained only three novel Mooney images (pre-disambigua-
tion). The last run consisted of three grayscale images and their corre-
sponding post-disambiguation Mooney images. The total duration of
the task was ~90 min. The order of Mooney images presentation was
randomized across participants.

Data acquisition and preprocessing
Imaging was performed on a Siemens 7T MRI scanner equipped with a
32-channel head coil (Nova Medical). T1-weighted anatomic images were
obtained using an MP-RAGE sequence (sagittal orientation, 1 x1 x 1
mm resolution). Additionally, a proton-density (PD) sequence was used
to obtain PD-weighted images also with 1 x 1 x 1 mm resolution, to help
correct for field inhomogeneity in the MP-RAGE images. Functional
images were obtained using a single-shot EPI sequence (TR =2000ms,
TE=25ms, flip angle=50° 52 oblique slices, slice thickness=2 mm,
spacing=0 mm, in-plane resolution=1.8 x 1.8 mm, FOV =192 mm,
acceleration factor/GRAPPA =3). We note that, because signal-to-noise
ratio decreases with smaller voxel size, to maintain a high signal-to-noise
ratio with whole-brain coverage, we chose a modest spatial resolution.
Respiration and cardiac data were collected using a breathing belt and a
pulse oximeter, respectively.

For anatomic data preprocessing, MP-RAGE and PD images were
first skull-stripped. Then, the PD image was smoothed using a 2 mm

FWHM kernel. Afterwards, the MP-RAGE image was divided by the
smoothed PD image to correct for field inhomogeneity. Functional data
preprocessing started with the removal of physiological (respiration- and
cardiac-related) noise using the RETROICOR method (Glover et al,
2000). The next preprocessing steps were performed using the FSL pack-
age (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). These included the follow-
ing: independent components analysis cleaning to remove components
corresponding to physiological or movement-related noise, >0.007 Hz
high-pass filtering to remove low-frequency drifts, rigid-body transfor-
mation to correct for head motion within and across runs, slice timing
correction to compensate for systematic differences in the time of slice
acquisition, and spatial smoothing with a 3 mm FWHM Gaussian ker-
nel. All analyses were conducted in individual subject’s functional data
space, and results were pooled across subjects.

ROI definition

ROIs (shown in Fig. 1F,G) were defined as follows (for further details,
see Gonzalez-Garcia et al., 2018). A separate retinotopic localizer and a
lateral occipital complex (LOC) functional localizer were performed for
each subject to define bilateral early visual ROIs and LOC, respectively.
The average numbers of voxels across subjects are as follows: right V1
(577 voxels, vx), left V1 (550 vx), right V2 (637 vx), left V2 (564 vx), right
V3 (540 vx), left V3 (477 vx), right V4 (256 vx) and left V4 (198 vx), left
LOC (1195 vx) and right LOC (744 vx).

Left (4176 vx) and right (4572 vx) fusiform gyrus (FG) ROIs were
extracted using the Harvard-Oxford Cortical Structural Atlas (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/Atlases). DMN regions, including bilateral lat-
eral parietal cortices (LatPar; left: 1361 vx; right: 1469 vx), mPFC (1135
vx), and posterior cingulate cortex (2145 vx), were defined using a GLM
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Paradigm and behavioral results. A, Task design, and flow of events at trial, block and fMRI run level. Participants viewed grayscale and Mooney images and were instructed to

respond to the question: Can you recognize and name the object in the image? Thirty-three unique images were used, and each was presented 6 times before and 6 times after disambigua-
tion. B, Percentage of “recognized” answers across all Mooney image presentations before and after disambiguation, which differed significantly (p = 3.4e-13). ¢, Distribution of recognition
rates across 33 Mooney images pre- and post-disambiguation. Dashed boxes represent the cut-offs used to classify an image as recognized or not-recognized. Error bars indicate SEM across

subjects.

of the disambiguation contrast (pre-disambiguation-not-recognized vs
post-disambiguation-recognized). Last, statistical map from searchlight
decoding of the disambiguation effect (i.e., decoding recognition status:
pre-not-recognized vs post-recognized) was used to define the FPN
ROIs: bilateral frontal (left: 13,383 vx; right: 14,427 voxels) and parietal
(left: 3949 vx; right: 3381 vx) cortices.

Additionally, we replicated results from FPN and DMN using ROIs
defined from an independent resting-state dataset (Power et al., 2011).

Statistical analysis

Univariate analysis of ROI activity. A GLM was used to assess
changes in activation magnitude across conditions. At the individual sub-
ject level, a model was constructed, including regressors for each of the 33
images under the three experimental conditions (pre-, post-disambigua-
tion, and grayscale conditions), resulting in a total of 99 regressors. All
regressors were convolved with an HRF. After model estimation, regres-
sors of “pre-disambiguation not-recognized” and “post-disambiguation
recognized” images were selected. To do so, we used subjective recogni-
tion responses: based on the bimodal distribution of recognition responses
(Fig. 2C), an image was defined as not-recognized if the subject responded
“yes” in 2 or fewer of 6 presentations of that image; it was defined as rec-
ognized if the subject responded “yes” in 4 or more of 6 presentations.
Importantly, only images fulfilling both criteria were selected for analyses;

therefore, for each subject, the same set of images was used in the pre- and
post-disambiguation conditions (14 = 3).

For each subject and ROI, we obtained the mean S estimate for the
pre- and post-disambiguation conditions, averaged across voxels and
images. First, B estimates of each condition were compared with base-
line using across-participant two-tailed one-sample ¢ tests. Then, they
were submitted to across-participant paired t tests to compare activity
levels before and after disambiguation. In all cases, results were FDR-
corrected for multiple comparisons across all ROIs.

Image preference analysis. To perform the image preference analysis
(see schematic in Fig. 1E), we used the same S estimates as in the GLM
analysis, ensuring that pre- and post-disambiguation images were
matched for each subject. For each voxel within a given ROI, images
were ranked according to this voxel’s activation level in the grayscale
condition.

For each voxel, this image preference ranking based on its activation
level to grayscale images was then applied to the same voxel's B esti-
mates from the pre- and post-disambiguation conditions. Thus, for each
voxel, we obtained a vector containing its 3 estimates for each Mooney
image ranked by how strongly this voxel activated to its (prior-inducing)
matching grayscale image, separately for pre- and post-disambiguation
conditions. Since the images included in the analysis depended on indi-
vidual behavioral performance, the number of images varied across par-
ticipants. To account for the different number of images, these vectors
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were resampled to 10 bins. We then averaged the S estimates across
voxels for each bin in the ranking, separately for pre- and post-condi-
tions. To test whether the preference ranking of grayscale images general-
ized to pre- and post-disambiguation conditions, we fitted a linear
regression to each vector of ranked 3 estimates. This allowed us to obtain
the slope coefficient for each condition. These coefficients were then sub-
jected to an across-participant right-tailed one-sample Wilcoxon test
against 0 to test for the presence of significant positive regression slopes,
which would indicate a generalization of grayscale image preference rank-
ing to the Mooney image condition. Subsequently, we compared the
slopes of pre- and post-disambiguation conditions using two-tailed paired
Wilcoxon tests. In this analysis, a larger slope coefficient in the pre- than
post-disambiguation condition indicates a dampening mechanism (Fig.
1A), whereas the opposite scenario (a steeper slope for post- than pre-dis-
ambiguation data) indicates a sharpening mechanism (Fig. 1B-D). In all
tests, results were FDR-corrected for multiple comparisons across all ROIs
investigated.

Results

Behavioral results

Nineteen subjects were shown 33 Mooney images containing
animals or manmade objects. Each Mooney image was pre-
sented 6 times before its corresponding grayscale image, and 6
times after. Following each Mooney image presentation, sub-
jects reported whether they could recognize the image using a
button press (“subjective recognition”). Each fMRI run
included three distinct grayscale images, their corresponding
post-disambiguation Mooney images, and three new Mooney
images shown pre-disambiguation (their corresponding gray-
scale images would be shown in the next run), with random-
ized order within each stage such that a grayscale image was
rarely followed immediately by its corresponding Mooney
image (Fig. 2A; for details, see Task paradigm). To verify
whether subjects correctly identified the Mooney images, at
the end of each run, Mooney images presented during that
run were shown again and participants were asked to verbally
report the identity of the image and were allowed to answer
“unknown.” This resulted in a verbal test for each Mooney
image once before disambiguation and once after disambigua-
tion (“verbal identification”). Verbal responses were scored as
correct or incorrect using a predetermined list of acceptable
responses for each image.

Disambiguation by viewing the grayscale images had a sub-
stantial effect on participants’ subjective recognition responses,
with a significantly higher rate of recognition for Mooney images
presented post-disambiguation (86 * 1%; mean * SD across sub-
jects) compared with the same images presented before disambig-
uation (43 * 12%; £(1,15) = 18.6, p=3.4e-13, Cohen’s d =4.2; Fig.
2B). A similar pattern of results was observed using the verbal
identification responses: Mooney images were correctly identified
significantly more often after disambiguation (86 * 0.8%) than
before (34 = 12%; 1,1y = 25.3, p=1.7e-15, Cohen’s d=5.8).

Based on the bimodal distribution of subjective recognition
rates across images (Fig. 2C), we established cut-offs to select
“pre-(disambiguation) not-recognized” images as those recog-
nized 2 or fewer times before disambiguation and “post-(disam-
biguation) recognized” images as those recognized 4 or more
times after disambiguation. Accuracy of verbal identification
responses in these two groups were 8.7 = 5.8%, and 93.6 =
4.5%, respectively. Using these cut-offs, for each participant, we
selected Mooney images that were both not-recognized in the
pre-disambiguation stage and recognized in the post-disambigu-
ation stage for further analyses.
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We defined 20 ROIs (see Fig. 1F,G; see ROI definition) that
cover early visual areas, category-selective visual areas, the FPN
and DMN, all of which show disambiguation-induced increase
in content-specific information (Gonzalez-Garcia et al., 2018) for
further analyses.

Priors suppress and sharpen representations in early and
higher-order visual regions

To examine the impact of prior knowledge acquisition on
neural representations in the ventral visual stream, we first
tested for prior-induced suppression by comparing the over-
all activation magnitudes for pre- and post-disambiguated
images. In all visual ROIs, from early visual regions (V1-V4;
Fig. 3A, black asterisks) to category-selective visual regions
(LOC and FG; Fig. 4A, black asterisks), post-disambiguation
images elicited weaker BOLD responses compared with pre-
disambiguation images (all p <0.0005; g <0.05, FDR-cor-
rected across all 20 ROIs; henceforth “FDR-corrected,” all
Cohen’s d > 0.95). Pre-disambiguation images triggered signifi-
cant activation in all visual ROIs (Figs. 3A, 4A, blue asterisks; all
P <0.03, g <0.05, FDR-corrected, all d > 0.67), whereas post-dis-
ambiguation images triggered significant activation in V1, V2, V3,
and the LOC (Figs. 34, 4A, red asterisks; p < 0.02, ¢ < 0.05, FDR-
corrected, d > 0.67; for the rest of ROIs, corrected p > 0.1). Thus,
the availability of prior knowledge resulted in suppressed neural
responses in visual regions, consistent with previous studies
reporting an expectation suppression effect (Murray et al., 2002;
Meyer and Olson, 2011; Summerfield and de Lange, 2014).
However, these results remain agnostic regarding the specific
mechanism (dampening or sharpening; Fig. 1A,B) underlying
such suppression.

To adjudicate between these alternative models, we per-
formed an image preference analysis (Richter et al., 2018) (for a
schematic of the analysis, see Fig. 1E; for details, see Image pref-
erence analysis). As a first step, for each ROI and participant, we
extracted BOLD activation magnitudes (8 values per voxel) cor-
responding to each Mooney image under the two experimental
conditions (pre- and post-disambiguation), as well as during the
presentation of their matching unambiguous, grayscale coun-
terparts. For each voxel within the ROI, images were ranked
according to its activation level in the grayscale condition from
the “least preferred” to the “most preferred.” This step allowed
us to characterize voxel tuning preference based on the unam-
biguous images inducing prior knowledge. We then asked
whether the expectation suppression effect observed above was
driven by voxels tuned toward or away from the predicted fea-
tures, which would support the dampening and sharpening
account, respectively.

Thus, for each voxel, we obtained a vector containing the 8
estimates for each Mooney image, ranked from the least to the
most preferred image based on its matching grayscale image,
separately for pre- and post-disambiguation conditions. To
account for the different numbers of images across participants,
we resampled these vectors to 10 bins. After averaging across
voxels within each ROI, we fitted a linear regression to test
whether the image-preference ranking based on grayscale images
can explain activation magnitudes to Mooney images in the pre-
and post-disambiguation stage. A positive slope here would indi-
cate that the neural code organizing voxel-tuning preference of
grayscale images generalized to pre- or post-disambiguation
Mooney images. This was the case for both pre- and post-condi-
tions in all visual ROIs (V1-V4, LOC, EG, all p <0.03; g <0.05,
FDR-corrected, all effect sizes > 0.60; except the right V4 in the
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subjected to a right-tailed Wilcoxon sign-rank test against 0 for each condition (pre- and post-disambiguation) and to a two-tailed Wilcoxon sign-rank test between conditions. Lines indicate
the across-subject mean regression line fit to the pre-disambiguation (blue) and post-disambiguation (red) images, respectively. Error bars indicate SEM corresponding to the paired test
(Morey, 2008). Blue and red asterisks indicate significant positive slopes for the pre- and post-disambiguation data, respectively. Black asterisks indicate a significant difference in slope coeffi-
cients between pre- and post-disambiguation conditions. All presented results in Figures 3-6 are FDR-corrected across all 20 ROIs.

pre-disambiguation stage [p=0.28]; see Figs. 3B, 4B, blue and
red asterisks). This result suggests that the neural representa-
tion of a Mooney image in visual areas has significant overlap
with that of its matching grayscale image, regardless of
whether the Mooney image is presented before or after disam-
biguation, and recognized or not. The significant finding for
pre-disambiguation (and not-recognized) Mooney images is
likely because of shared physical features between a Mooney
image and its original nondegraded grayscale image, such as
edges and shapes.

Next, to ascertain the neural mechanism driving the observed
prior-induced suppression, we compared the steepness of pre-
and post-disambiguation slopes. A steeper slope in the
pre-disambiguation condition would indicate a dampening
mechanism, whereby the amount of suppression scales

positively with image preference (thus, neural activity coding
the predicted features is primarily suppressed) (Fig. 1A). In
contrast, a steeper slope in the post-disambiguation condi-
tion would indicate a sharpening mechanism, in which neu-
ral activity tuned away from (hence inconsistent with) the
predicted features is primarily suppressed (Fig. 1B). In all vis-
ual ROIs (V1-V4, LOC, FG), we found significantly larger
slope coefficients in the post-disambiguation condition (all
p<0.003; q<0.05, FDR-corrected, all effect sizes>0.83;
Figs. 3B, 4B, black asterisks), suggesting that disambiguation
sharpens neural representations across the ventral visual
stream (Fig. 1B). This pattern of results contrasts with a previ-
ous observation of dampening throughout the human ventral
visual stream by using statistical learning to induce prior
knowledge (Richter et al., 2018).
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Prior-induced selective enhancement and sharpening in the
FPN

The results above reveal a clear pattern of prior-induced effects
in the sensory representation of Mooney images. We then tested
whether a similar modulation took place in regions higher up in
the cortical hierarchy: the FPN and DMN, two networks that
recent studies have shown to contain content-specific activity in
prior-guided visual perception (Gonzalez-Garcia et al., 2018;
Flounders et al., 2019).

Results in the FPN revealed a distinct picture from the ven-
tral visual stream. First, none of the ROIs showed significant
activation in the pre-disambiguation period (all p>0.13)
Moreover, only the right parietal cortex showed a significant
post-disambiguation activation (p=0.006; q < 0.05, FDR-cor-
rected, d=0.76) and a significant difference in the overall BOLD
magnitude between pre- and post-disambiguation Mooney
images (p =0.026; g < 0.05, FDR-corrected, d = 0.58), whereas no
activation magnitude difference was found in the remaining

FPN regions (all p > 0.31; Fig. 5A). The increased activation in
the right parietal region after disambiguation is in contrast to
prior-induced activity suppression in visual regions.

Despite a largely absent effect in the overall magnitude, image
preference analysis revealed a robust pattern of results in all of
the FPN regions and a potential hemispheric asymmetry (Fig.
5B). Left parietal and left frontal regions of the FPN showed a
similar pattern to visual areas, with significantly positive slopes
for both pre- and post-disambiguation Mooney images (all
p<0.031; g <0.05, FDR-corrected, all effect sizes > 0.49), and
significantly larger slope coefficients for post- than pre-disambig-
uation images (all p <0.001, all effect sizes > 0.89). By contrast,
in the right parietal and right frontal regions of the FPN, only
post-disambiguation slopes were significant (all p <7.16e-5, all
effect sizes > 0.98), not pre-disambiguation slopes (all p > 0.16),
and again with significant differences between them (p=0.003,
effect size=0.77, and p=0.0015, effect size =0.83, respectively).
However, no significant differences were found between pre-
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Figure 6.

disambiguation slopes in left and right hemisphere ROIs (all
p>0.12). The same analysis repeated on FPN ROIs defined
from an independent resting-state dataset (Power et al., 2011)
reproduced all of the results.

These results suggest selective enhancement of neural popula-
tions coding for features consistent with prior knowledge in the
FPN, resulting in sharper neural representations despite largely
no change in the overall activation magnitudes (Fig. 1C). As will
be seen later, these results also suggest a pattern of results in the
FPN that is intermediate between the ventral visual stream and
the DMN, consistent with the notion that the FPN is functionally
situated between sensory regions and the DMN (Margulies et al.,
2016; Gonzalez-Garcia et al., 2018).

Prior-induced enhancement and sharpening in the DMN
Within the DMN, we found significant deactivation in the pre-dis-
ambiguation period (all p <0.0003; g << 0.05, FDR-corrected, all
d > 1.2; Fig. 6A, blue asterisks). Interestingly, this deactivation com-
pletely disappears in the post-disambiguation period (all p > 0.22;
Fig. 6A), resulting in higher overall magnitudes in all DMN regions
in the post- compared with pre-period (all p < 1.72e-6; g < 0.05,
FDR-corrected, all d > 1.75; Fig. 6A, black asterisk). This overall ac-
tivity magnitude difference in the DMN as a result of Mooney
image disambiguation is consistent with prior observations using a
whole-brain approach (Dolan et al, 1997; Gorlin et al, 2012;
Gonzélez-Garcia et al., 2018).

Analysis of voxel-level image preference in these regions
revealed, first, no positive slope in the pre-disambiguation condi-
tion (all p > 0.13; Fig. 6B, blue lines), suggesting that there is no
shared representation for a pre-disambiguation Mooney image
and its matching grayscale image. Interestingly, slope coefficients
for post-disambiguation images were significantly positive in all
DMN regions (all p < 2.15e-4; g < 0.05, FDR-corrected, all effect
sizes > 0.92; Fig. 6B, red asterisks) and were significantly larger
than pre-disambiguation slopes (all p <0.013; g < 0.05, FDR-
corrected, all effect sizes > 0.65; Fig. 6B, black asterisks). Using
DMN ROIs defined from an independent resting-state dataset
(Power et al., 2011) reproduced all the results.

Together, these results suggest that activity in the DMN is
uninfluenced by physical image features that are shared between

most
Image preference
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a Mooney image and its matching grayscale image, and that the
availability of perceptually relevant prior knowledge globally
enhances neural responses throughout the DMN but more so for
those congruent with prior knowledge. Therefore, prior knowl-
edge results in both enhanced neural activity and a sharper neu-
ral representation in the DMN (Fig. 1D).

Disambiguation impacts image preference rankings above
and beyond the effect of repetition

Given that our paradigm relies on displaying Mooney images
before and after disambiguation, an alternative explanation of
our voxel-level image preference results is that they do not
reflect disambiguation but rather repetition-suppression effects.
In order to control for the effect of repetition, we repeated the
image preference analysis using B estimates obtained from two
different sets of images. First, the same images used in the pre-
vious analyses (not-recognized pre-disambiguation, and recog-
nized post-disambiguation), or “Disambiguation set.” Second,
images that were recognized both before and after disambigua-
tion (“Repetition set”). For both image sets, the same subset of
images was used for pre- and post-disambiguation conditions,
and the numbers of images included were similar between
image sets (“Disambiguation set™ 14.6 = 3.5; “Repetition set”™
13.5 = 4.7). The comparison between these two sets of images
allowed us to test whether the acquisition of prior knowledge
had an effect on the sharpening of neural responses above and
beyond the effect of repetition.

We conducted a repeated-measures ANOVA with three fac-
tors [Image set (“Disambiguation” vs “Repetition”), Condition
(Pre- vs Post-disambiguation), and Network (Visual, LOC,
FG, FPN, and DMN)] and the slope coefficients from the
image preference analysis as the dependent variable. This
analysis yielded a significant Image set x Condition inter-
action (F(y,14) = 7.25, p=0.018, ni, = 0.34), revealing that
sharpening (difference between Post and Pre slopes) was
stronger in the “Disambiguation set” compared with the
“Repetition set” (Fig. 7). This interaction was not modulated
by the Network factor (F(32.24,1.59) = 0.67, p=0.49, n%, =
0.05). This control analysis thus confirms that, although
repetition has an effect on the sharpening of neural
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sharpening in the Disambiguation set. Error bars indicate SEM.

responses, the impact of disambiguation goes above and
beyond this effect.

Discussion

In summary, we observed a macroscopic gradient of prior
knowledge’s influence on perceptual processing across the
cortical hierarchy. Successful disambiguation suppressed
neural responses throughout the ventral visual stream by
sharpening neural representations (Fig. 1B). In the FPN,
neural responses consistent with prior knowledge were
enhanced, whereas those conflicting with prior knowledge were
reduced, resulting in a sharper neural representation with lit-
tle change in the overall activation magnitudes (Fig. 1C). In
the DMN, when relevant prior knowledge is acquired, stimu-
lus-triggered deactivation is largely abolished, and activity
enhancement is stronger for neural responses that are con-
sistent with prior knowledge (Fig. 1D). Thus, the availability
of perceptually relevant prior knowledge induces sharper neural
representations across the human cortex (from ventral visual
stream to the FPN and DMN), albeit with different mechanisms:
through suppression of irrelevant neural responses in visual areas
and selective enhancement of relevant neural responses in
higher-order frontoparietal cortices.

Previous studies have shown a consistent downregulation of
activity in regions along the ventral visual stream for expected
stimulus input (Murray et al., 2002; Summerfield and de Lange,
2014; de Lange et al., 2018; but see De Gardelle et al., 2013). Yet,
it remained unknown whether such downregulation of visual ac-
tivity also occurs when priors derived from past viewing experi-
ences guide perception of impoverished sensory input, a scenario
of great relevance to natural vision, because stimuli in the natural
world are often weak or ambiguous (Olshausen and Field, 2005)
and past experiences play an important role in guiding future
perception (Dolan et al., 1997; Hsieh et al., 2010; Gorlin et al.,
2012; Van Loon et al., 2016). We addressed this question using
the dramatic Mooney image effect. Our results reveal a system-
atic downregulation of activity in early and ventral visual regions
following prior acquisition, suggesting a similar “expectation
suppression” effect.
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Two mutually exclusive mechanisms (ie., sharpening and
dampening) have been proposed to account for “expectation
suppression,” and previous studies have produced a mixed pat-
tern of results supporting both accounts (see Introduction).
Here, we observed a pattern of findings consistent with the
sharpening account throughout the ventral visual stream (V1-
V4, LOC, FG). In all visual areas, the magnitude of activity sup-
pression scales with image preference such that voxels whose
responses are inconsistent with prior knowledge are most
strongly suppressed. This result contrasts with previous studies
reporting a dampening pattern of responses in the ventral visual
stream for expected stimuli (Meyer and Olson, 2011; Kumar et
al., 2017; Schwiedrzik and Freiwald, 2017; Richter et al., 2018).
These previous studies investigated neural responses elicited by
high-contrast, clear images, unlike the degraded Mooney images
used here. Interestingly, a recent monkey study reporting “expec-
tation sharpening,” similar to our findings here, also adopted
degraded stimuli (Bell et al., 2016). Thus, together with prior lit-
erature, our results suggest that sharpening is more likely to
occur when stimulus input is weak or ambiguous, when filtering
out irrelevant features and enhancing relevant ones is especially
important for recognition. This interpretation of our results pro-
vides a potential way to reconcile previous disparate findings and
a computational hypothesis about how priors facilitate recogni-
tion via modulating sensory responses.

Across visual areas FPN and DMN, we found that the neural
representation of a post-disambiguation Mooney image has sig-
nificant overlap with that of its matching grayscale image (as evi-
denced by significant post-disambiguation slope coefficients
with images sorted according to grayscale image responses).
However, only visual areas and the left-hemisphere regions of
the FPN showed a significant overlap between pre-disambigua-
tion Mooney images and their matching grayscale images. This
shared neural code between pre-disambiguation Mooney images
and their matching grayscale images likely reflects shared physi-
cal features between a Mooney image and its matching grayscale
image, such as common edges and shapes.

What might be the functional role of the FPN during prior-
guided visual perception? Our study reveals a striking pattern of
findings in the FPN: despite a largely absent effect in the overall
activation magnitudes across FPN regions, voxels tuned toward
prior knowledge are selectively enhanced, while those whose tun-
ing preferences are inconsistent with prior knowledge are selec-
tively inhibited. These results raise the intriguing possibility that
the FPN stores perceptually relevant prior knowledge that is
recruited by bottom-up input triggered by a post-disambiguation
Mooney image, which in turn sends a top-down “template”
(Mumford, 1992; Summerfield et al., 2006) that induces sup-
pression and sharpening of neural representations in the
ventral visual stream. This hypothesis is consistent with a
previous observation that frontal regions of the FPN rise
higher up in the cortical hierarchy after Mooney image dis-
ambiguation (Gonzalez-Garcia et al., 2018) because storage
of prior knowledge is a kind of implicit memory that dissoci-
ates processing from the immediate sensory input (see more
discussion below). In addition, a recent study integrating
MEG and fMRI data revealed that these regions encoded
changes related to the recognition status of Mooney images
before transitioning into content-specific neural processing
(Flounders et al., 2019), suggesting that activation of the
FPN might be the switch that brings prior knowledge into
online perceptual processing. Together, our results suggest
that the FPN might function as a source of prior-induced
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top-down modulations over sensory cortices by storing con-
tent-specific perceptual templates. This interpretation aligns
with proposals in previous studies that used task cues to
induce top-down expectation (Eger et al., 2007; Esterman
and Yantis, 2010; Rahnev et al., 2011), and with the idea that
the FPN sends top-down templates to guide information
processing in lower-level regions (Desimone and Duncan,
1995; Buschman and Kastner, 2015). Importantly, the cur-
rent results not only extend this idea to prior knowledge
derived from past viewing experiences but also provide a
concrete neural mechanism: selective enhancement.

In the DMN, we first replicated previous findings of increased
activity magnitudes after disambiguation (Dolan et al, 1997;
Gorlin et al., 2012), which results from a strong deactivation
driven by pre-disambiguation Mooney images and near-baseline
activity in response to the same Mooney images presented post-
disambiguation. Previous studies have revealed an important
role of the DMN in tasks that require making associations
between relevant information, such as planning about the future
or retrieving information from memories (Bar, 2007, 2009;
Schacter et al, 2007). Thus, our findings suggest that DMN
might represent prior-induced abstract features, such as relevant
conceptual knowledge (Fairhall and Caramazza, 2013), semantic
information (Binder et al., 2009), and/or internally driven mem-
ory processes (Sestieri et al.,, 2011; Shapira-Lichter et al., 2013;
Konishi et al., 2015). According to this view, after disambigua-
tion, the DMN is involved in generating associations to at-
tribute meaning to the ambiguous input. Interestingly, a
recent study showed that DMN deactivations encode the spa-
tial location of visually presented stimuli (Szinte and
Knapen, 2020); thus, an alternative, not mutually exclusive,
possibility is that the DMN encodes stimulus-relevant prior
knowledge in the sensory space.

Is the source of top-down prior knowledge guiding visual proc-
essing located in the FPN or the DMN? Our results suggest that
both networks may be involved. Given that the FPN (especially its
left-hemisphere components) exhibits a pattern of effects
more similar to visual areas, it may encode perceptually rele-
vant prior knowledge more directly in the sensory space
(e.g., this part of the image forms a head). In turn, the FPN
may receive top-down knowledge, in more abstract terms,
from the DMN, such as the conceptual knowledge of an ani-
mal. Importantly, such a large-scale hierarchy view would
accommodate previous findings that have variably proposed
the FPN (Eger et al., 2007; Esterman and Yantis, 2010;
Rahnev et al., 2011) or the DMN (Dolan et al.,, 1997;
Summerfield et al., 2006) as the source of top-down priors.

Importantly, the present findings cannot be accounted for by
a change in recognition status between pre- and post-disambigu-
ation Mooney images. Successful recognition alone is widely
documented to induce increased activation in visual areas and
the FPN in multiple previous studies (Grill-Spector et al., 2000;
Dehaene et al., 2001). By contrast, despite that post-disambigua-
tion images are recognized while pre-disambiguation images are
not, we found that post-disambiguation images are associated
with reduced or unchanged activity in visual areas and the FPN,
respectively. In addition, the effect probed in this study cannot
be attributed to episodic memory. The Mooney image disambig-
uation effect relies on one-shot perceptual learning, where
explicit memories with contextual associations (e.g., where and
when I saw the grayscale picture of a crab) are not required.
Indeed, previous work has shown that this effect still exists even
when grayscale pictures are masked and not consciously recog-
nized (Chang et al., 2016). Moreover, there is little hippocampal
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involvement in the Mooney image disambiguation effect (Ludmer
et al, 2011; Gonzalez-Garcia et al., 2018). Therefore, this effect
likely belongs to cortex-dependent perceptual learning instead of
hippocampal-dependent episodic memory.

Together, our results reveal a large-scale cortical hierarchy of
prior knowledge’s influence on visual perceptual processing.
Visual cortical activity is suppressed most strongly for voxels
whose responses are inconsistent with prior knowledge (Fig. 1B);
by contrast, DMN activity is enhanced and most strongly for
voxels whose responses align with prior knowledge (Fig. 1D).
FPN exhibits a pattern of findings intermediate of visual areas
and the DMN, with both selective enhancement and selective
suppression (Fig. 1C). These results reinforce previous findings
showing a large-scale cortical gradient with the FPN situated
between sensory cortices and the DMN (Margulies et al., 2016;
Gonzdlez-Garcfa et al., 2018). This hierarchical organization
probably entails specific directionality in the interaction between
different brain networks that awaits future investigation. A
detailed characterization of such a cortical hierarchy will also
have important clinical implications, for instance, to better
understand the physiopathological processes involved in illnesses
in which top-down priors might overwhelm bottom-up inputs to
generate an overreliance on prior knowledge in perception
(Teufel et al., 2015; Zarkali et al., 2019).

What are the neural mechanisms underlying the sharpening
effects we observed at the fMRI voxel level? Inferring tuning
properties of individual neurons based on fMRI data is not
straightforward, as different neural mechanisms could underlie
similar fMRI responses (Alink et al., 2018); accordingly, the cur-
rent study remains agnostic regarding the tuning curves of indi-
vidual neurons. Our study builds on previous conceptions of
sharpening at the population level, where prior knowledge pro-
duces more selective responses (de Lange et al., 2018). From this
perspective, sharpening at the population level is compatible
with local neural scaling, whereby neurons tuned away from the
predicted features are suppressed without a change in the width
of the tuning curve (Alink et al., 2018). Whether such local scal-
ing underlies prior-induced sharpening of population responses
across the cortical hierarchy or whether tuning properties of
individual neurons are modulated (as, e.g., in the case of feature-
based attention) (Martinez-Trujillo and Treue, 2004; David et al.,
2008) deserves future investigation.

Another question for future investigation is whether our find-
ings in the FPN and visual areas have shared mechanisms with
object-based attention. Parts of the FPN, such as the intraparietal
sulcus, frontal eye field, and inferior frontal junction, are involved
in the top-down control of object-based attention (Baldauf and
Desimone, 2014; Liu, 2016). According to the biased-competition
model of selective visual attention (Desimone and Duncan, 1995;
Duncan, 1998), neural representation of the attended object’s fea-
tures is enhanced, while that of unattended objects’ features is
reduced. This can result in sharper population responses as
we observed in visual regions. Because in our task, object-
based attention should follow object segmentation and rec-
ognition, not precede it, future studies using techniques with
high temporal resolution to record activities from these regions
(e.g., intracranial electrocorticography) might be able to dis-
entangle these different but interrelated processes. In addition,
although the Mooney image paradigm taps mainly into prior
knowledge, it does not explicitly control for object-based
attention. In this regard, future development of experimental
paradigms that allow a full orthogonalization of prior knowl-
edge and attention in the context of one-shot perceptual
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learning would allow a more precise characterization of each
process.

In conclusion, our results fill in a gap in our knowledge
regarding how fast, one-shot perceptual learning influences
future perceptual processing, strengthen the evidence for the
sharpening account of prior knowledge’s effect on visual cortical
processing, and point to the FPN and DMN as potential sources
of perceptually relevant prior knowledge.
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