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Abstract

Objectives: It remains difficult to characterize the source of pain in knee joints either using 

radiographs or magnetic resonance imaging (MRI). We sought to determine if advanced machine 

learning methods such as deep neural networks could distinguish knees with pain from those 

without it and identify the structural features that are associated with knee pain.

Methods: We constructed a convolutional Siamese network to associate MRI scans obtained on 

subjects from the Osteoarthritis Initiative (OAI) with frequent unilateral knee pain comparing the 

knee with frequent pain to the contralateral knee without pain. The Siamese network architecture 

enabled pairwise learning of information from two-dimensional (2D) sagittal intermediate-

weighted turbo spin echo slices obtained from similar locations on both knees. Class activation 

mapping (CAM) was utilized to create saliency maps, which highlighted the regions most 

associated with knee pain. The MRI scans and the CAMs of each subject were reviewed by an 

expert radiologist to identify the presence of abnormalities within the model-predicted regions of 

high association.

Results: Using 10-fold cross validation, our model achieved an area under curve (AUC) value of 

0.808. When individuals whose knee WOMAC pain scores were not discordant were excluded, 

model performance increased to 0.853. The radiologist review revealed that about 86% of the 

cases that were predicted correctly had effusion-synovitis within the regions that were most 

associated with pain.

Conclusions: This study demonstrates a proof of principle that deep learning can be applied to 

assess knee pain from MRI scans.
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INTRODUCTION

Osteoarthritis (OA) is the most common musculoskeletal disease and one of the leading 

causes of disability globally [1]. The most incapacitating manifestation of OA is pain, and 

painful OA is most common in the knee [2]. Severe OA-induced pain often leads to 

disability. Currently, there is no effective cure for advanced stage knee OA other than total 

joint replacement surgery. The occurrence of pain in knee joints with OA can be correlated 

with a variety of structural findings such as bone marrow lesions (BMLs), cartilage damage, 

synovitis, and effusion [3–7], as well as neuropathic mechanisms such as central 

sensitization and hyperalgesia [8–10]. Also, the frequency and severity of pain are self-

reported and usually defined subjectively [8; 11].

Consequently, the correlation between pain and radiographic findings is weak and there has 

been little success in correlating OA-induced pain with a specific type and location of 

structural damage. One review found that the proportion of subjects with knee pain who 

have radiographic OA ranged from 15 to 76% [12]. Identifying the source and location of 
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OA-induced pain could greatly benefit the design of targeted, individualized treatments to 

reduce symptoms and to limit disability [11]. Further, for those with knee pain as part of a 

widespread pain diathesis, determining the absence of pain-inducing knee pathology might 

aid in diagnosis.

MRI scans are capable of providing more detailed structural information about the knee joint 

than radiographs [13]. A systematic review of MRI measures found that knee pain may arise 

from BMLs, effusion and synovitis; however, the correlation between pain and MRI findings 

was inconsistent and moderate at best [14–16]. Further, since MRI findings associated with 

pain are often present in multiple locations in the knee and since many knees without pain 

also have MRI findings, the lesions associated with knee pain are hard to localize and 

identify. This limits treatment approaches that seek to target localized areas of the knee 

including surgeries such as unicondylar replacements and cryoneuroablation procedures, and 

hampers the development of targeted treatment strategies. Furthermore, rehabilitation 

strategies that focus on lessening the load to painful regions of the knee are limited. Hence, 

there is a need to develop a method to objectively and accurately associate MRI scans with 

knee pain. The first step of such an approach is to identify MRI findings that discriminate 

painful from nonpainful knees and then to determine the knee regions that are the likely 

sources of pain. In this paper, we pursue the first step, using deep learning to discriminate 

between painful and nonpainful knees. We begin to address the second step by identifying 

lesions identified in the first step as potential sources of pain.

Deep learning algorithms such as convolutional neural networks (CNN) can extract visual 

features, and one can utilize them for applications related to disease classification, 

segmentation and object detection [17; 18]. CNN model training is associated with learning 

a series of image filters through numerous layers of feed-forward neural networks. The 

filters are then projected on the original input image, and the image features that are most 

correlated with the outcome are extracted through the training process. Deep learning 

frameworks are increasingly being applied on MRI scans of different organ systems [19–23]. 

Recently, deep neural networks were applied on knee MRIs for segmenting different 

components of the knee [24–29], and for detection of ligament and meniscal tears [30].

The purpose of this study was first, to investigate the performance of a deep learning 

framework to differentiate painful knees from nonpainful ones and second, to identify the 

structural lesions that are most relevant to knee pain using MRI scans of both knees of 

individuals enrolled in the Osteoarthritis Initiative (OAI). Unilateral frequent knee pain was 

defined when an individual had pain, aching or stiffness for more than half of the days in a 

month in one knee and no pain in the contralateral knee. We used sagittal intermediate-

weighted turbo spin echo (SAG-IW-TSE) sequence images that capture structural regions 

thought to be critical in generating knee pain, BMLs, synovitis, effusion and cartilage loss 

[4; 31–36], to train a convolutional Siamese network. We subsequently leveraged class 

activation mapping (CAM) to identify regions that were most associated with knee pain. An 

expert radiologist then independently reviewed the MRI scans and identified possible 

presence of knee abnormalities, which were then mapped with CAM-based findings.
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METHODS

Detailed descriptions of the methods can be found in the supplement. Below we provided a 

brief summary.

Informed consent

Written informed consent was not required for this study because de-identified data is 

publicly available (Osteoarthritis Initiative: https://oai.nih.gov).

Study selection

We selected cases that had unilateral frequent knee pain who have undergone SAG-IW-TSE 

imaging from the baseline OAI dataset (n=4,796; Table 1) [37; 38]. A total of 1,505 subjects 

from them passed initial quality check (see below), and were used for construction of the 

deep learning model (Model A). Additionally, we excluded subjects with similar Western 

Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain scores between the 

left and right knee to construct another model. For this case, we selected a subset of subjects 

who had a WOMAC pain score difference greater than 2 between the knees. In total, 721 

subjects met the criteria and 710 subjects were used for model construction after quality 

check (Model B).

Image registration and quality check

We selected MRI slices with the most complete view of posterior cruciate ligament and 

indexed it as the center slice (Red colored box in Figure 1A), and indexed other slices 

relative to the center slice for each knee. We then performed Euclidean transformation to 

align the slice with respect to a previously selected template (Figure 1B). Images were then 

cropped and resized to 224×224 pixels, followed by selection of 11 adjacent slices on the 

lateral side of the center slice, 11 on the medial side of the center slice and the center slice 

for model training from each knee. We manually reviewed and discarded cases with missing 

data, abnormal misalignment within a slice, presence of a foreign object, and cases with sub-

regions of high contrast (Figure 1C).

Neural network architecture

We developed a Siamese neural network architecture [39], such that a pair of MRI slices 

from the two knees, each extracted from a relatively similar location within each knee were 

learned together (Figure 2A). A series of convolutional operations, batch normalization, 

nonlinear activation, max pooling and average pooling were applied to predict knee pain, by 

solving a binary classification problem.

Class activation mapping

Class activation maps (CAMs) have the ability to localize the discriminative image regions 

from CNN models trained for classification without any prior locational knowledge [40]. To 

achieve this, we extracted the final feature maps of the left and right knee of the subject (fL,n 

and fR,n in Figure 2A, respectively), and multiplied them by weights of their respective 

fully-connected layer (FCn in Figure 2A), thus indicating the importance of each feature 
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stored in the extracted maps. For each subject, we identified a CAM with the most pain-

relevant regions by selecting the CAM with highest average value from the 23 CAMs 

generated from all the MRI slices.

Radiologist review

The dataset of 710 subjects (unilateral knee pain, between knee WOMAC pain difference ≥ 

3) was divided into training, validation and testing sets in a 70:15:15 ratio (Table 2). A 

musculoskeletal radiologist with extensive experience in knee MRI interpretation reviewed 

CAMs of MRI of the last 15%, and identified the presence of abnormalities using the MRI 

scan. The radiologist then reviewed the model-derived CAMs and identified the specific 

lesion that was co-localized with the highlighted region in the CAM.

Model performance and statistical analysis

We performed 10-fold cross-validation on both models (Model A & B), and computed the 

area under curve (AUC) of the receiver operating characteristic (ROC) curves (Table 2). 

Descriptive statistics are presented as the mean along with the standard deviation. Unpaired 

Student’s t-test was used to compare the mean value of two different groups, and Fisher’s 

exact test was used to examine the non-random association between two groups of 

categorical variables. A p-value < 0.01 was considered statistically significant.

RESULTS

Among the 1,505 subjects from the baseline OAI (Model A in Table 1), the mean age was 

60.7±9.1 years and the mean BMI was 28.7±4.7 kg/m2. About 56.9% of the selected 

subjects were women. When cases with WOMAC score difference <3 were excluded 

(Model B in Table 1), the sub-group demographic characteristics remained relatively similar 

with respect to the overall group (Mean age: 60.9±9.2 years; Mean BMI: 29.2±4.8 kg/m2 

and Percentage women: 60.1). For cases that were reviewed by the radiologist (Table 1), 

stratified sampling based on age, BMI and gender helped us to generate a sub-group with 

demographic characteristics that were similar to the ones considered for models A & B.

The CAMs generated by extracting the features learned from the final convolutional layer of 

the neural network allowed us to examine the regions that were highly associated with knee 

pain. Previously, researchers who proposed CAMs used model architectures that had an in-

plane resolution of 14×14 pixels (Figure 3A) [40]. We generated CAMs with higher 

resolution containing 28×28 pixels, which resulted in qualitatively improved identification 

of the regions associated with pain (Figure 3B). For comparison, we performed binary 

thresholding of the CAM-segmented areas for both cases. When a threshold of 0.5 was used 

on the CAMs, we found that only 6.0±2.4% of the overall image area was segmented from 

the CAMs generated by our model. In comparison, 22.3±9.4% of the image area was 

segmented when the same threshold was used on the CAMs generated by the model that was 

previously published [40].

After the radiologist review, the location and the type of lesions that were co-localized with 

the highlighted region in the CAMs of subjects were identified (Figures 3C–H). These 

lesions included effusion, synovitis, BML, Hoffa fat pad lesion, cartilage loss, and meniscal 
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damage. The effusion on the selected intermediate-weighted MRI scans included effusion 

and synovitis, and therefore, we combined effusion/synovitis into a single category, as used 

in MRI Osteoarthritis Knee Score (MOAKS). Out of the 107 cases reviewed by the 

radiologist (Figure 3I), effusion/synovitis was found to be the most relevant structural 

abnormality related to frequent knee pain in 95 (88.8%) subjects. BML was found to be the 

most relevant abnormality for 5 (5.6%) subjects. Hoffa fat pad abnormalities were found for 

4 (3.7%) subjects, cartilage loss was found for 2 (1.9%) subjects, and meniscal damage was 

found for 1 subject.

For the model trained with 1,505 subjects with unilateral knee pain (Model A), we observed 

an AUC of 0.808 on the test data (Figure 4A). For the case with 710 subjects with unilateral 

knee pain and with a difference in WOMAC pain score larger than 2 (Model B), the model 

achieved an AUC of 0.853 on the test data (Figure 4B). In comparison, models trained 

without image registration achieved AUCs of 0.769 and 0.812 on Model A and Model B, 

respectively.

Sub-group analysis further revealed that model performance varied with KL-grade, BMI, 

age and gender (Figure 4C). An interesting finding from our study is that our model could 

differentiate painful from nonpainful knees even when the OA disease stages were similar 

between the two knees (i.e. Difference in KL-grade = 0, AUC=0.701 for Model A and 

AUC=0.758 for Model B, Figure 4C). When there was a difference in radiographic OA 

between the knees (i.e. KL-grade difference ≠ 0), the model performance increased by about 

26% for Model A and about 21% for Model B (Figure 4C). Our study also revealed that 

when the KL-grade of the painful knee was 0, the model resulted in a modest performance 

(AUC=0.622 for Model A and AUC=0.594 for Model B, Figure 4C). When the KL-grade 

was > 0, the model was able to better distinguish between the painful knee from the non-

painful knee (Performance increased by 27% for Model A and about 35% for Model B, 

Figure 4C). It is also worthwhile to note that the WOMAC pain score of the painful knee 

was significantly lower for KL=0 cases than the KL>0 cases (3.10 vs 4.20, p≪0.01). The 

models also had higher values of AUC for subjects who were older, male and had higher 

BMI (Figure 4C). Specifically, we observed that subjects age 60 and older had a higher 

average KL-grade in the painful knee than the subjects who were younger than 60 years 

(1.71 vs 1.24; p<0.01). Also, males had higher averaged KL-grade in the painful knee than 

females (1.62 vs 1.37; p<0.01). Subjects with BMI greater than 30 also had higher averaged 

KL-grade in the painful knee than the subjects with lower BMI than 30 (1.8 vs 1.31; 

p≪0.01).

DISCUSSION

We developed a deep learning approach to distinguish painful knees from nonpainful 

contralateral ones, and we were able to do so with high accuracy. Further, an expert 

radiologist reviewing the knee areas that were identified as painful suggested that these were 

primarily regions of synovitis or effusion, which are known sources of knee pain in OA. 

Several studies have examined the association between radiographic features in the knee and 

knee pain within individual subjects and across multiple cohorts [15; 41–43]. While some 

studies relied on x-ray imaging, others relied on more sophisticated modalities such as MRI 
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scans [44]. For some cases, associations between imaging features and unilateral pain were 

observed by comparing the knee with pain with the contralateral knee without pain in the 

same individual [45].

The Siamese network using both knees for the same individual to study unilateral pain 

effectively allowed one knee to serve as a control to the other knee with pain. Essentially, 

this dual-knee paradigm to assess knee pain is an attractive choice because the effect of 

common confounding factors such as age, gender and BMI, on the outcome of interest no 

longer applies in such scenarios. Also, unlike manual extraction of image-based or 

radiographic features which were then associated with knee pain, we investigated the 

feasibility of using deep learning to correlate structural regions from MRI scans of both 

knees with unilateral knee pain.

By combining information from a series of 2D slices, our model synthesized needed 

information from multiple locations to predict knee pain. This strategy resulted in a model 

that achieved high AUC (0.808), as evaluated using 10-fold cross validation. Model 

performance improved by about 5.6% when subjects with similar WOMAC pain score 

between the two knees were excluded (AUC=0.853). This improvement suggests that the 

Siamese network can identify the image features that are associated with a strong pain 

signature arising from one knee. This also implies that a set of image features that are 

common between the knees was also learned, but were not considered by the model to play a 

role in predicting knee pain. When compared to a machine learning approach using postero-

anterior and lateral knee x-rays to predict knee pain, our model generated a significantly 

higher AUC in predicting unilateral knee pain [46]. We do however acknowledge that the 

training and testing datasets used for this study were different than the dataset presently 

used, and therefore a head-to-head comparison between the results is not feasible.

Our model’s improved performance when the difference in KL-grade was non-zero (Figure 

4C), underscores the notion that prevalence and severity of knee pain is greatly influenced 

by the presence of pre-radiographic OA (KL=1) or radiographic OA (KL>1). This may 

imply that pain symptoms and potential structural abnormalities are perhaps less severe than 

the knees with frequent knee pain with pre-radiographic or radiographic OA. Indeed, 

previous studies have reported that knees of KL-grade 4 were 73–151 times more likely to 

have pain than knees of KL-grade 0 [44].

For the present study, we trained two identical neural networks in the ‘Siamese’ sense to 

generate a model that led to prediction of knee pain with high accuracy. In principle, pre-

trained neural networks (i.e. VGGNet, AlexNet, etc.) can be used as part of the Siamese 

architecture. To evaluate this aspect, we generated another Siamese architecture using the 

network proposed by Zhou et. al. [40], for pairwise learning with the data split that was used 

for the radiologist review (Table 2). Interestingly, the AUC value on the test data for this 

case was 0.856. We also trained another Siamese architecture using a modified version of the 

AlexNet [40], as the neural network for pairwise learning. For this case, the AUC value on 

the test data was 0.863. In comparison, our proposed de novo Siamese network resulted in 

an AUC value of 0.862 on the test data. Results from these models imply that our proposed 

Siamese network achieved performance values that were similar to Siamese architectures 
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based on pre-trained networks. However, the major difference is that our proposed network 

had high spatial resolution in the CAMs that allowed us to associate the results of CAMs 

with specific anatomical regions, and consequently to identify lesions that were highly 

correlated with knee pain.

While our deep learning model demonstrates promising results for predicting knee pain 

using MRI scans, there is room for improvement in model performance. Other network 

architectures can be explored such as deep autoencoders [47]. In a recent examination of x-

rays and their prediction of knee pain, limiting the pain outcome to subjects who repeatedly 

reported knee pain increased the accuracy of x-ray prediction [46]. Alternate definitions of 

pain or tenderness could facilitate development of models with higher performance. 

Importantly, although postprocessing model results revealed effusion/synovitis to be the 

most common abnormality present within painful knees, we are by no means suggesting a 

causal pain mechanism.

In conclusion, this work demonstrates the use of a convolutional Siamese network that 

simultaneously associated MRI scans of an individual’s knees with unilateral knee pain. 

This framework allowed us to combine multiple 2D MRI slices from both the knees to 

efficiently construct the deep learning model. Our results provide a means by which to 

evaluate early imaging markers of OA and other joint disorders. Further validation of the 

deep learning model across different imaging datasets is necessary to validate this technique 

across the full spectrum of OA.
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LIST OF ABBREVIATIONS

AUC Area Under Curve

BMI Body Mass Index

BML Bone Marrow Lesion

CAM Class Activation Mapping

CNN Convolutional Neural Network

GPU Graphical Processing Unit

KL Kellgren-Lawrence

ML Machine Learning

MOAKS MRI Osteoarthritis Knee Score

MRI Magnetic Resonance Imaging
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OA Osteoarthritis

OAI Osteoarthritis Initiative

ROC Receiver Operating Characteristic

WOMAC Western Ontario and McMaster Universities Osteoarthritis Index
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KEY POINTS

• Our article is the first to leverage a deep learning framework to associate MR 

images of the knee with knee pain.

• We developed a convolutional Siamese network that had the ability to fuse 

information from multiple two-dimensional (2D) MRI slices from the knee 

with pain and the contralateral knee of the same individual without pain to 

predict unilateral knee pain.

• Our model achieved an area under curve (AUC) value of 0.808. When 

individuals who had WOMAC pain scores that were not discordant for knees 

(pain discordance <3) were excluded, model performance increased to 0.853.
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Figure 1: Image processing pipeline.
(A) For each subject’s knee joint, we manually examined all the MRI slices oriented in the 

sagittal view and selected the slice showing the posterior cruciate ligament (PCL) and 

indexed it as the center slice (red colored box). The remaining slices were indexed relative to 

the center slice for each knee. Two-dimensional MRI slices for three different subjects are 

shown. (B) For each 2D MRI slice of the knee for a subject, we performed linear registration 

to align the slice with respect to a template that was already selected after manual 

examination. Later, a region (red colored box) containing the center of the knee joint with 

dimensions 294×294 pixels was cropped for all registered slices and used for model training. 
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Three cases from the baseline OAI dataset are shown. (C) Sample cases not used for model 

training due to the presence of various artifacts.
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Figure 2: Convolutional Siamese network architecture.
(A) After image pre-processing, the indexed MRI slices were fed into the corresponding 

Siamese network model. The outputs from all the 2D models were concatenated for the 

binary prediction task. (B) The 2D MR slices for the left and right knee were fed into the 

network simultaneously. Each neural network that is part of the Siamese architecture 

comprised of 6 convolutional layers. Black arrows represent connection between the images 

and the first layer, connections between the layers and the connection between the layer and 

the output. For layers 1 and 3, each convolutional operation was followed by batch 

normalization, nonlinear activation and max pooling, whereas for layers 2, 4, 5 and 6, each 
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convolutional operation was followed by batch normalization and nonlinear activation. Only 

the first convolutional layer and the two max pooling layers had a stride of 2, whereas the 

other layers had a stride of 1. Consequently, the final convolutional layer had a high in-plane 

resolution with a dimension of 512×28×28. (C). Table presenting the details of the different 

layers within the neural network.
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Figure 3: CAMs on selected subjects within the test data.
(A) Examples of CAMs generated from the fine-tuned VGGNet model, resulting in CAMs 

with an in-plane resolution of 14×14 pixels. (B) Examples of CAMs generated from the 

present model from the same MRI images with an in-plane resolution of 28×28 pixels. Both 

the heat maps and the overlap of the MR image with the heat map are shown. In some cases 

of the test data (C, D), effusion/synovitis was identified as the lesion present within the hot 

spots. Also, in few other cases, (E) bone marrow lesions, (F) Hoffa fat pad abnormality, (G) 
cartilage loss, and (H) meniscus damage, were identified as the lesions present within the 

hot spots. The red arrows indicate the locations of the identified structural regions. (I) 
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Radiologist’s assessment on the test cases (n=107). For each case, the MR scan and the 

model-derived heat map of the knee with confirmed pain were reviewed by the radiologist, 

who then identified the presence of any lesions within the regions highlighted by the heat 

map.
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Figure 4: Performance of the convolutional Siamese network model.
(A) Receiver operating characteristic (ROC) curve of Model A trained with 1,505 subjects 

with unilateral frequent knee pain. (B) ROC curve of Model B trained with 710 subjects 

with unilateral frequent knee pain and contralateral knee difference in WOMAC pain ≥ 3. 

(C) Sub-group analysis. Performance of the models as a function of KL-grade, BMI, age, 

and gender. The asterisk (*) is used to indicate that KL-grade was not available on few cases 

for the sub-group analysis.
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Table 1:

Schematic of study selection. (Table 1a): In total, 1,606 subjects with unilateral frequent knee pain were 

selected from the OAI’s baseline study, consisting of 4,796 subjects. After image quality check, 1,505 subjects 

were selected to train the neural network (Model A). Subjects who had the contralateral difference in 

WOMAC pain score (≥ 3) were further selected, leading to 710 subjects which were then used to train another 

neural network (Model B). Stratified sampling was then used to divide the dataset in the ratio of 70:15:15, 

where 70% of the dataset was used for training, 15% for validation, and the remaining cases (n=107) for 

independent testing. The stratified sampling was performed to match for age, gender, and body mass index. 

These cases were then reviewed by the expert radiologist. (Tables 1b-1d): Baseline characteristics of the sub-

group of individuals selected for model training (Models A & B), and for radiologist review.

Number of subjects in OAI baseline dataset Model A (n = 1505)

n = 4796 Parameter Left Knee Pain Right Knee Pain p-value

Cases with unilateral knee pain Subjects n = 734 n = 771

n = 1606 Percent female 57.9 55.9 0.700

Unilateral knee pain cases with selected after quality check (Model 
A)

Age (years) 60.13 ± 9.18 61.24 ± 8.98 0.018

BMI (kg/m2) 28.97 ± 4.88 28.18 ± 4.53 0.015

n = 1505

Unilateral knee pain cases with contralateral WOMAC pain score 
difference (≥3) (Model B)

Model B (n = 710)

Parameter Left Knee Pain Right Knee Pain p-value

n = 107 Subjects n = 350 n = 360

Cases selected for radiologist review Percent female 59.4 60.8 0.854

n = 107 Age (years) 60.62 ± 9.39 61.21 ± 9.01 0.395

BMI (kg/m2) 29.50 ± 4.96 28.94 ± 4.63 0.120

MRI scan type Cases for radiologist review (n = 107)

SAG_IW_TSE_RIGHT, SAG_IW_TSE_LEFT Parameter Left Knee Pain Right Knee Pain p-value

2D MRI slice size Subjects n = 46 n = 61

444×444 pixels Percent female 60.9 59.0 1.000

Age (years) 60.83 ± 9.34 60.67 ± 8.90 0.932

BMI (kg/m2) 29.38 ± 5.30 29.01 ± 4.89 0.711
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Table 2:

Data partitioning and modeling. Model A and Model B were constructed on the 1,505 subjects and 710 

subjects, respectively. Performance of these models was evaluated after 10-fold cross validation. For 

radiologist review, we split the 710 cases in 70:15:15 ratio using stratified sampling. A new model was trained 

using 70% of the data and 15% of the data was used for internal validation. The remaining 15% was used for 

testing and radiologist review.

Model A
(Unilateral knee pain)

10-Fold Cross Validation

Training Validation Testing

n = 1505 90% NA 10%

Model B
(Unilateral knee pain, WOMAC pain difference ≥ 3)

10-Fold Cross Validation

Training Validation Testing

n = 710 90% NA 10%

For radiologist review Stratified Sampling

Training Validation Testing (for review)

n = 710 70% (496) 15% (107) 15% (107)

Percent female 59.2 62.0 60.1

Age (years) 61.0±9.3 60.5±9.0 6.06±9.1

BMI (kg/m2) 29.1±4.7 29.4±5.0 29.2±5.0
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