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Abstract

Monitoring the health of a pregnancy is of utmost importance to both the fetus and the mother.
The diagnosis of pregnancy complications typically occurs after the manifestation of symptoms,
and limited preventative measures or effective treatments are available. Traditionally, pregnancy
health is evaluated by analyzing maternal serum hormone levels, genetic testing, ultrasonographic
imaging, and monitoring maternal symptoms. However, researchers have reported a difference
in extracellular vesicle (EV) quantity and cargo between healthy and at-risk pregnancies. Thus,
placental EVs (PEVs) may help to understand normal and aberrant placental development,
monitor pregnancy health in terms of developing placental pathologies, and assess the impact of
environmental influences, such as infection, on pregnancy. The diagnostic potential of PEVs could
allow for earlier detection of pregnancy complications via noninvasive sampling and frequent
monitoring. Understanding how PEVs serve as a means of communication with maternal cells
and recognizing their potential utility as a readout of placental health have sparked a growing
interest in basic and translational research. However, to date, PEV research with animal models
lags behind human studies. The strength of animal pregnancy models is that they can be used to
assess placental pathologies in conjunction with isolation of PEVs from fluid samples at different
time points throughout gestation. Assessing PEV cargo in animals within normal and complicated
pregnancies will accelerate the translation of PEV analysis into the clinic for potential use in
prognostics. We propose that appropriate animal models of human pregnancy complications must
be established in the PEV field.

© The Author(s) 2020. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved.
For permissions, please e-mail: journals.permissions@oup.com 27
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Summary Sentence

Experimental animal models will be essential for defining the opportunity that placental extracel-
lular vesicles may provide for monitoring placental health and function and understanding the

pathophysiology of adverse pregnancy outcomes.

Key words: extracellular vesicle, exosome, placenta, animal models, adverse pregnancy outcomes.

Introduction

Placental complications arise in approximately 15% of pregnancies,
and due to pregnancy and childbirth, maternal deaths occur in
approximately 275,000 cases worldwide annually [1]. In 2010,
preterm birth (PTB) was the most common cause of infant mortality
and morbidity affecting approximately 15 million babies; South-
eastern Asia, South Asia, and sub-Saharan Africa had the highest
rates [2]. PTB causes approximately 1 million neonatal deaths each
year across the world [3], with surviving infants displaying elevated
risks of cardiovascular and respiratory diseases, neurological deficits,
and developmental disabilities [4]. Fetal growth restriction (FGR)
is the second most common pregnancy complication (impacts ~8%
of pregnancies) [5]. FGR increases the risks of intrauterine demise,
neonatal morbidity, cognitive delay, and adult onset disease later in
life [6, 7]. Women with pre-gestational diabetes (pre-GD) (having
type 1 or type 2 diabetes before becoming pregnant) also have
a greater risk of exacerbated symptoms during pregnancy, such
as diabetic ketoacidosis, myocardial infarctions, retinopathy, and
nephropathy, as well as obstetric complications including preeclamp-
sia (PE), uteroplacental insufficiency, preterm labor, shoulder dysto-
cia, and stillbirth [8-11]. Pregnancy complications not only cause
emotional stress and trauma on the parents but also create an
extreme financial burden for the family and the healthcare system.
The annual financial costs are estimated to be $26.2 billion for
PTB, $2.18 billion for PE, and $1.8 billion for pregnancy-acquired
diabetes (gestational diabetes mellitus; GDM) in the United States
[12-14]. Earlier detection of complications, preventative strategies
or therapeutics, and placenta-targeted treatments are imperative to
improving the in utero environment of the fetus to benefit the long-
term health of both the mother and the child.

Diagnosis of a pregnancy complication relies on close monitoring
of maternal and fetal health. Obstetricians monitor maternal health
by measuring blood pressure, checking vital organs (e.g., renal func-
tion), and monitoring fetal health by measuring uterine growth via
fundal height and fetal growth directly with ultrasound. Clinicians
can also complete a biophysical profile and use Doppler velocimetry
to monitor fetal blood flow within the umbilical cord and fetal
middle cerebral artery [15]. Although the placenta is essential in
pregnancy, no minimally invasive techniques to directly monitor
placental health are available. If biomarkers of abnormal placenta-
tion could be identified before the pathophysiological complication
manifests itself, they may reveal the underlying mechanism(s) that
contributes to the insult and provide a targeted approach to develop
therapies/treatments.

Pregnancy complications that arise due to a malfunctioning or
maldeveloped placenta include PE, early/recurrent pregnancy loss
(EPL/RPL), PTB, FGR/intrauterine growth restriction (IUGR), and
pre-GD/GDM (Table 1, Supplemental Table 1) [16]. An overview
of complications is provided in Table 1 and includes the frequency
of the complication within the population, the diagnostic measure
to identify the pregnancy complication, and the known patho-
physiology for the condition. While GDM is not thought to be a

placental disease per se, it may impact fetal well-being as structural
and functional alterations can occur in the placenta [17-19]. In
addition, maternal infection with vertically transmitted pathogens
also gives rise to adverse pregnancy outcomes and may impact pla-
cental function or fetal development [20, 21]. Among the implicated
pathogens, the TORCHZ group is of particular neonatal concern
and consists of the following: Toxoplasma gondii, Other (Listeria
monocytogenes, Treponema pallidum, varicella zoster virus, human
immunodeficiency virus, enteroviruses and parvovirus B19), Rubella
virus, Cytomegalovirus, Herpes simplex virus, and Zika virus [20,
22]. Thus, it is necessary to monitor placental health during and after
maternal infection to determine if vertical transmission has occurred
and to assess the risk of developing an adverse pregnancy outcome
following infection.

PEVs may provide an excellent tool with which to monitor pla-
cental health and function in human patients. Isolation from fluids
is minimally invasive, repeated sampling is feasible, and the ability to
monitor the same patient over time provides valuable information as
to how the placenta matures, develops, and responds to insult. Most
importantly, PEVs contain placenta-specific proteins, which may be
used to selectively isolate them from more complex samples, such as
blood [23,24]. However, the roles of PEVs in cellular communication
and maternal physiology are not well understood. PEVs are present
in maternal blood as early as 6 weeks of gestation [25], and their
presence early on makes them attractive molecular packages that
may contain a readout of placental health from the early stages of
placental development through delivery of the newborn.

The purposes of this review are to (1) introduce EVs, or more
specifically PEVs, as a molecular readout of placental health, (2)
provide an overview of current information known about human
PEVs, (3) discuss animal models used to study pregnancy complica-
tions, and (4) discuss future expansion of animal model PEV research
to address critical challenges in human PEV research. Although
extensive information from human EVs has been obtained from
cell cultures and maternal blood sampling, there is a limited under-
standing of in vivo PEV function in humans and animal pregnancy
models. Implementing animal pregnancy models will extend our
understanding of trophoblast physiology during pregnancy compli-
cations, define PEV cargo and function, and explore the diagnostic
and therapeutic potential of PEVs. In vivo studies in experimental
pregnancy models are essential to make PEV research translational
to a human clinical setting. Due to the breadth of topics this review
covers, we apologize for any publications not discussed and refer to
more specific reviews wherever possible.

What are extracellular vesicles?

The three main subtypes of extracellular vesicles (EVs) are exo-
somes (small, 60-80 nm in diameter [26] and large 90-120 nm
[26]), microvesicles approximately 100-1000 nm [27], and apoptotic
bodies approximately <5 pm [27]. These are distinguished not only
by size but also by their route of cellular release (Figure 1) [27-31].
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Figure 1 also shows EV release and highlights some unique cargo
among the different subtypes. These naming conventions have been
greatly debated since it is now well understood that there is overlap
in the size and cargo across EV classes [32-34]. The size criteria
do not consider the mechanism(s) by which the EV is derived or
secreted from the cell. For instance, an EV population isolated based
on EV size may encompass both large exosomes and microvesicles;
however, these vesicles may differ in their cargo, composition, and
biological role. The lipid content may be a more definitive crite-
rion to classify vesicles, as Ouyang et al. [35] demonstrated that
phospholipid composition varies between EV classes. Standardized
nomenclature across studies regarding the vesicle of interest would
greatly strengthen this field of research, as inconsistent nomenclature
makes it difficult to compare data across studies. When referencing
the work of others in this review, we have used the terminology stated
in that publication.

A range of isolation techniques have been used to isolate exo-
somes, including differential ultracentrifugation, size exclusion chro-
matography, and polyethylene glycol precipitation [33, 36-42]. A
major goal of these techniques is to obtain a homogenous population
of EVs (i.e., only exosomes), but this remains a challenge given
the overlap in size across EV subtypes. It is therefore difficult to
compare data across studies, as sample types and isolation techniques
vary greatly, especially if the EV populations being analyzed are
not homogenous. While there is great scientific interest in exosomes
due to their potentially bioactive cargo and ability to be taken
up by target cells, recipient cells can also take up microvesicles
[43]. Moreover, the quantity of both exosomes and microvesicles
present in maternal blood increases throughout gestation [44]. Given
the current limitations in isolating a homogeneous population of
an EV subtype, it may be more appropriate to globally assess all
PEVs to develop diagnostic tools for pregnancy complications. Once
techniques are developed to isolate vesicles of a specific EV class, the
approach to evaluating PEVs can be modified to assess specific EV
subtypes.

EV formation, cargo packaging, and function

Exosomes form within an endosome that is also referred to as a
multivesicular body (MVB). As depicted in Figure 1, MVBs can
either fuse with the lysosome or the plasma membrane for cellular
release. Exosomal surface proteins, such as the tetraspanins, are
widely conserved across mammals, as shown in Table 2. Microvesi-
cles form on the cell’s surface where they bleb off from the plasma
membrane, and therefore, phosphatidylserine is commonly a com-
ponent within their membranes [27]. Apoptotic bodies form when
a cell undergoes apoptosis, where the cell’s organelles organize into
these noninflammatory packages [27]. Microvesicles and apoptotic
bodies commonly contain heat shock protein 96 (GP96), actinin-4,
and mitofilin [34]. Although there is evidence for conservation of
mammalian EV surface markers across EV subtypes, packaging of
cargo still remains poorly understood. For more details on packaging
of EV cargo and EV secretion pathways, the reader is directed to the
following reviews [27, 29, 42, 45-47].

Biologically active nucleic acids, proteins, carbohydrates, and
lipids can be packaged into EVs and secreted as a means of intercellu-
lar communication [28-30, 48-56]. Extensive research supports the
concept that EVs have roles in diverse biological processes including
the immune response [57, 58], inflammation [28-30, 59], and trans-
mission of viral infection [28, 48-51, 60]. For example, researchers
have shown that EV uptake by recipient cells induces cytokine release

[61], inhibits protein translation [53, 62], influences cell proliferation
and migration [63], and protects cells from oxidative stress [64].
Additional information on the impact of EVs on recipient cells and
EV tropism and therapeutic potential can be found in the following
papers [65-70].

PEVs: sample sources, interactions with immune
cells, and clinical potential

To highlight the potential information available from EV analysis,
scientists have used the terms “circulating biopsy” [71], “fingerprint”
[72], and “liquid biopsies” [72, 73]. EVs have received great attention
as it has been shown that EV cargo may be altered under diseased
and infection states [62, 64, 74], and they can be isolated from
minimally invasive fluid samples. PEVs have been detected as early
as 6 weeks of gestation [25] (see Table 3 for an overview of the
outcomes from human PEV research); however, trophoblasts secrete
chorionic gonadotropin into maternal blood shortly after embryo
implantation, suggesting that PEVs may encounter maternal cells just
as soon.

The cellular and molecular bases of pregnancy complications are
difficult to address within the complexities of an in vivo pregnancy
setting, owing to variability in genetics, lifestyle influences, physiol-
ogy, and differing environmental exposure. Researchers examining
human PEVs have focused extensively on characterizing EVs isolated
from placental cell cultures (e.g., primary cells and immortalized
trophoblast cell lines), placental explants, the perfusate of intact pla-
centas, and maternal peripheral blood. PEVs isolated from placental
cell cultures and explants can interact with maternal immune cells
[59, 75-77], suggesting that PEVs may modulate maternal immune
responses during pregnancy.

Current in vivo and in vitro sources for isolating PEVs
In vitro placental cell cultures provide a means to isolate an enriched
PEV population. Stable cell lines can be expanded quickly to generate
a homogenous cell population, allowing investigators to define a cell
type-specific readout or secretory profile in response to an experi-
mental manipulation (e.g., genetic mutation, infection, hypoxia, drug
treatment). However, because some trophoblast cell lines are derived
from spontaneously arising tumors or have been immortalized by
molecular tools, their gene and protein expression profiles differ
from each other and with primary trophoblast cultures [78, 79].

Primary cells provide a more accurate representation of in vivo
trophoblasts and can be isolated from gestationally age-matched
healthy and maldeveloped placentas for direct comparison. The abil-
ity to obtain trophoblasts from first and second trimester placentas,
however, may be limited due to constraints surrounding human
samples. Until recently, primary term villous cytotrophoblast cells
were used only for short-term experiments as they do not proliferate
and spontaneously syncytialize [80]. Recent optimization of primate
trophoblast cell culture conditions now supports long-term cell
proliferation and culture of trophoblast stem (TS) cells derived from
primary placental cells or embryos that can be directed toward cell
type-specific differentiation [81-84].

Placental explant cultures contain all cell types within the pla-
centa (placental macrophages, cytotrophoblasts, and syncytiotro-
phoblasts) and therefore provide a more complete system compared
to primary cell cultures. Limitations of this culture system include a
limited duration of tissue viability [85, 86] and difficulty obtaining
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Figure 1. Schematic diagram of human placental villous structure and PEV biogenesis. Placental structure with increasing magnification (organ level, tissue
level, cellular level) is depicted at the left, along with apoptotic body, microvesicle, and exosome biogenesis in a trophoblast cell. A key for molecular elements
is at the upper left. Top right: Apoptotic bodies form when a cell is undergoing apoptosis, as depicted by the breakdown of the nucleus and packaging of DNA
and organelles. Middle right: Microvesicles are formed via pinching off of the plasma membrane, entrapping molecular cargo. Bottom right: Exosomes are
assembled within the secretory pathway. Secretory vesicles (SV) are released by the golgi body and can fuse with endosomes (END). Endosomes can also fuse
together or fuse with the lysosome (LYS) for cargo degradation. Late stage endosomes are also referred to as MVBs if they contain intraluminal vesicles (depicted
as small light yellow vesicles inside the MVB). All of these vesicles are then released into the maternal bloodstream. Some cargo and membrane proteins specific
to the different EV classes are depicted. Lipid composition is depicted in a simplified, grouped manner on the border of the vesicles (green, phosphatidylserine;
blue, phosphatidylcholine; purple, phosphatidylethanolamine), with the percent of each lipid content indicated adjacent to the membrane region. The gray
membrane of the vesicles represents other lipids that have been identified including sphingomyelin, phosphatidylglycerol, phosphatidylinositol, phosphatidic
acid, bis-monoacylglycerophosphate, cardiolipin, lysophosphatidylcholine, and lysophosphatidylethanolamine [35].

placentas from early pregnancies. It also is well accepted that preg-
nancy complications often stem from errors in early placentation.
Therefore, it cannot be known if a complication would have arisen
later in gestation when a placenta sample is obtained early in
pregnancy. In addition, the large volume of medium used to culture
explants can dilute the EV sample [86]. Alternative approaches
include obtaining EVs by mechanical scraping the placental villi [61,
87] or perfusing fully intact term placentas [85]. Notably, vaginally
delivered term placentas may be confounded by the process of labor.

Overall, in vitro models are useful because they can allow for the
rapid generation of PEV-enriched samples, be used to validate anti-
bodies, and provide physiological readout in response to trophoblast
insult (i.e., exposure to toxins, hypoxia, or pathogens). These in vitro
models also predominantly contain EVs secreted by trophoblasts,
whereas maternal blood contains the totality of EVs released by all

maternal as well as placental cell types. It is likely that the changes
in plasma-derived EVs in pregnancy reflect the maternal adaptation
to pregnancy by all maternal organ systems and not specifically
placental development. While EVs from nonplacental sources during
pregnancy may provide novel biological information, they do not
specifically provide direct feedback about placental health per se.
Previous studies have demonstrated that the source (bodily flu-
ids, culture media, tissue homogenization) and sample preparation
method influence EV function [87, 88]. Therefore, when establishing
a PEV model or interpreting the study results, it is important to
consider the origin of the PEV population being analyzed.

PEVs isolated from adverse human pregnancies
The analysis of human PEVs isolated from in vitro sources and
maternal blood has revealed alterations in PEV cargo between
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Table 2. Summary of known EV markers and placenta-specific markers across species.

Species General EV markers Placental markers References
Human CD9 PLAP [27, 34, 202-208]
CD63 PP13
CD81 Syncytin-1 and -2
syntenin-1 PAPP-A
EHD4 HLA-G
ADAM10 PSG-1
ESCRT proteins C19MC
NHP CD63 PP13 [168,209-214]
CD81 Syncytin-1 and -2
Flotillin-2 PAPP-A
Mamu-AG
C19MC
Guinea pig PLAP [215, 216]
Env-cavl
Rabbit CD9 PLAP [215,217,218]
CDé63 Syncytin-ory1
CD81
HSP101
Mouse CD9 Syncytin-A and -B [89,215,219-222]
Alix PLAP
CD63
CD81
Rat CD63 PLAP* [215,223-226]
TSG101
Sheep CD63 Syn-Rum1 [227-229]
HSP70
Cattle CD9 PLAP [103,229-231]
CDé63 Syn-Rum1
Pig CD63 [232]

CD, cluster of differentiation; EHD4, EH domain containing protein 4; ADAM10, a disintegrin and metalloproteinase domain-containing protein 10; ESCRT, endosomal-sorting complexes

required for transport.
* Also expressed in other tissues.

healthy and unhealthy placentas. The isolation methods vary
greatly across studies, thus limiting the ability to identify consensus
biomarkers associated with an abnormal placental condition. A
summary of the findings from studies that have evaluated EV cargo
in human and animal pregnancy models in relation to a pregnancy
complication is provided in Table 3, and here, we focus on the
highlights of quantity and cargo of EVs associated with human
pregnancy complications.

Elevated PEV levels offer potential as a way to distinguish
complicated from healthy pregnancies. Increased quantities of EVs
in maternal blood have been associated with various pregnancy
complications as summarized in Table 3 [56, 89-93]. However, there
are two concerns with these reports. First, it is unclear whether
the research findings are specific to one complication or if they
are applicable across pregnancy complications. If it is the latter,
elevated EVs would be a general reflection of abnormal placental
development and/or function. To determine the diagnostic value of

EVs, a comprehensive analysis of EVs isolated from healthy pregnant
women and women with a range of pregnancy complications is
needed. Second, the techniques used to isolate and quantify (different
instruments and/or different setting for the same instrument) EV
samples vary widely, which dramatically hinders interstudy compar-
isons. Until standardized isolation and sample analysis techniques
are implemented, variation in EV quantity will continue to be an
uncertain indicator of a pregnancy’s health status.

Although human PEV cargo is not well characterized, EVs may
contain evidence of placental infection and may serve as means
of modulating immune responses. For instance, EVs isolated from
trophoblast-conditioned media protected nonplacental cells from
viral infection [94-96]. Viral proteins and genomes also have been
detected within exosomes and infection was found to alter exosome
cargo [60, 97]. As such, clinicians could examine PEVs to learn if
a pathogen has breached the maternal-fetal interface as they could
directly monitor placental response and health status.
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PEVs interact with immune cells during pregnancy
Maternal immune systems inappropriately adapted to pregnancy are
associated with pregnancy complications and pregnancy loss [98].
PEVs contain a range of immunoregulatory molecules [99, 100]
and interact with maternal immune cells in vitro, which suggests
that PEVs may be involved in maternal immune adaptation in
pregnancy. EVs are involved in the recruitment of monocytes and
macrophages as well as in cytokine and chemokine regulation [76].
Syncytiotrophoblast-derived EVs from healthy placentas suppress
and/or promote immunological pathways [77]. Thus, understanding
the interaction between the maternal immune system, the fetopla-
cental unit, and EVs is important. In addition, EVs from pregnant
women impact immune cells differently than EVs from nonpregnant
women [59, 75]. The dynamic complexities between PEVs and
the immune system in a healthy and diseased state support the
importance of in vivo models.

Differences in EV tropism for immune cells appear to depend
on the source of the EV sample, that is, peripheral blood versus
placental tissue. Germain et al. [87] observed strong binding of
syncytiotrophoblast microvesicles from term placentas to monocytes
in first trimester blood with decreased binding throughout gestation,
as determined by enzyme-linked immunosorbent assay (ELISA).
However, microvesicles from third trimester human placentas bound
preferentially to monocytes and B-cells versus T and NK cells as
assessed by Image Stream technology [61]. In contrast, microvesicles
isolated from third trimester blood bound to T cells and not B or
NK cells via fluorescence-activated cell sorting [59]. These studies
co-incubated peripheral blood mononuclear cells (PBMCs) with EV
samples in vitro. Since the methodologies used to isolate these EVs
impacted tropism and downstream function, in vivo experiments will
be important to study the interplay between PEVs and the immune
system. EVs obtained from mechanical scraping of term placental
villi did not stimulate PBMCs, whereas EV samples obtained from
placental perfusate were more stimulatory [61, 87]. Notably, these
EVs were obtained from term placentas and represent the end point
of pregnancy. Pap et al. [59] found that 50% of microvesicles positive
for human leukocyte antigen G (HLA-G) were also positive for Fas
ligand (FasL). The authors hypothesized that these two molecules
present on the EV surface are involved in maternal immune tolerance

[59].

Surveying PEV markers and cargo to identify
pregnancy complications

Classic EV markers, such as tetraspanins and ESCRT proteins [27],
have been routinely identified in human and animal EVs, as listed in
Table 2. As an adjunct to monitoring maternal systemic physiological
changes (e.g., blood pressure or proteinuria), clinicians could directly
monitor placental health and development by surveying PEVs. The
application of PEVs as a prognostic molecular tool, however, is
hindered by the current lack of validated placental biomarkers asso-
ciated with a pregnancy complication in humans or animals. Further-
more, there are few validated placenta-specific EV surface markers to
isolate PEVs. The most widely used placenta-specific marker for PEV
isolation is placenta alkaline phosphatase (PLAP) [23, 24, 87, 101].
A PLAP ELISA has been used to quantify PEVs from human [25, 90,
102] and bovine samples [103]; however, validation and information
regarding cross-reactivity of this antibody are lacking. Despite its
use by several labs, there are challenges with specificity as other
alkaline phosphatases have been detected in various healthy tissues
that can be recognized by PLAP antibodies [104-106]. Validating

these PLAP antibodies and making other in-house antibodies, such
as NDOG2 and ED822 [74, 87, 107], commercially available will
increase reproducibility across studies. HLA-G, another placenta-
specific protein, has also been used to isolate and detect PEVs
[24, 59], recognizing that this would be an extravillous trophoblast
marker. Other placenta-specific protein candidates include syncytin-
2, placental protein 13 (PP13), pregnancy-specific glycoprotein 1
(PSG1), and pappalysin-1 (PAPP-A) (Table 2).

Changes in PEV cargo highlight a difference between healthy
and pathological placentas, as shown in Table 3. Cuffe et al. [108]
discussed the presence of two classes of molecules: “passive” and
“bioactive”. Passive molecules are hypothesized to have high predic-
tive potential, whereas bioactive molecules are constitutively secreted
by the placenta [108]. This further supports the use of PEVs to
monitor placental health. PE is perhaps one of the more well-studied
pregnancy complications in which PEV quantities and cargo have
been evaluated [109]. Nair and Salomon’s recent review on human
GDM [110] discussed systemic and placental changes in EVs. Several
studies have focused on RPL and procoagulant microparticles/EVs
secreted by platelets and endothelial cells [111-114]; however, we
were unable to find any reports regarding the association of PEVs
and EPL/RPL. Researchers have observed alterations in PEV cargo
between women experiencing PTB compared to controls; however,
they have not identified a consistent biomarker [115, 116]. For
instance, one study only detected miR-525-5p in EVs from a patho-
logical condition (PTB, PE, or cells grown under hypoxia) [115].
Another study found miR-525-5p to be significantly lower in PTB
EVs compared to controls [116]. To understand the changes in PEV
cargo associated with the cell’s physiological state, it is necessary
to first understand whether EV cargo is selectively packaged. The
survey of PEV cargo upon experimental knockout of lysosomal
enzymes would provide insight into the critical question of cargo
selection that spans all disciplines of the EV field.

The dearth of placenta-specific markers for PEV isolation and
the lack of agreement upon biomarkers of a pregnancy complication
highlight the need for consistent methodologies and nomenclature
in studies that isolate PEVs from these various pregnancy complica-
tions. Identification of biomarkers resulting from aberrant placental
development may allow for earlier diagnosis and intervention or
earlier application of a placental therapy. PEV analysis could also
enable better categorization of adverse pregnancy outcomes via
specific molecular changes in the placenta rather than by less specific
maternal symptoms and fetal measurements.

Animal models of human pregnancy
complications

Most PEV research has been performed using human fluid samples
and in vitro trophoblast cultures, with relatively few studies in
animal models. Due to the complexities of obtaining and working
with human samples and the limitations of vitro systems discussed
thus far, other systems are needed to advance the study of PEVs.
Animal models can provide the rigor and reproducibility that are
difficult to achieve with human samples, due to uncontrolled exter-
nal factors and genetic diversity among clinical patients. Advantages
of collecting PEV data from animal models include access to large
cohorts raised in controlled environments, rigorous sampling (i.e.,
the ability to collect samples early in pregnancy and at precise time
points), control of the factor(s) causing the pregnancy complication
(in some instances), the ability to utilize an animal as its own
control during the same or subsequent pregnancy, the potential for
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Laboratory Animal Models
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Placental Perfusion
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Figure 2. Experimental models of human pregnancy. Laboratory animal models (NHP, guinea pig, rodent, and rabbit), large animal models (pig, sheep, and
cow), and in vitro systems (placental perfusion, tissue/cell culture, and blood) are depicted to represent the experimental models of human pregnancy.

longitudinal studies spanning preconception to the delivery of the
offspring, and the opportunity for transgenerational studies.

Despite the differences in placentation across animal models,
each animal model has strengths and shares similarities to humans
that are useful when disentangling the mechanisms underlying preg-
nancy complications. When selecting an animal model to study
a pregnancy complication, the following considerations should be
addressed: placentation (i.e., depth of invasion, trophoblast cell orga-
nization, immune cell presence), animal husbandry for maintaining
a study cohort (without/or without manipulation of an environ-
mental factor), and the specific questions asked during the study
(i.e., the importance of the fetus being born precocial; monotocous
versus polytocous species). For example, the lack of endometrial tro-
phoblast invasion by the pig placenta and minimal invasion in sheep
has limited their utility in modeling PE. Although the pig placenta
may not ideally model PE, its similarities in fetal development with
humans could be beneficial to study FGR [117]. Furthermore, FGR
studies in sheep and rabbit models provide an opportunity for the
animal to serve as its own control by evaluating the unmanipulated,
opposite uterine horn [5, 118-120]. An overview of placentation
is depicted in Figure 2, and the details regarding pregnancy and
translatability of each animal model discussed in this review are listed
in Table 4 [121-125].

Animal models allow for longitudinal study to identify early
biomarkers prior to or at the onset of a complication, which is not
possible in humans due to the delays in confirming pregnancy and
the need to avoid perturbing early gestation. Identifying changes or

biomarkers at the onset of a complication, even before placentation
is complete, may be important for diagnosing or preventing a fur-
ther adverse outcome. Once biomarkers have been identified in an
animal model, they can then be validated for tissue specificity and
reproducibility within and across species for subsequent translation
to humans. For example, miR-210 is more highly expressed in the
placentas of mice with PE compared to healthy placentas. It is also
expressed in human and ovine placentas [126, 127] with aberrant
regulation in human PE and upregulation of the miRNA in hypoxic
human placentas. Thus, animal models have led to the identification
of a putative biomarker of PE, where upon further refinement of the
timing of aberrant expression and identification of target mRNAs
may reveal the biological processes contributing to the manifestation
of the placental complication.

Animal studies will have an essential role in showing proof of
principle for the potential of a therapeutic intervention or diag-
nostic assay prior to translation into human clinical studies. For
example, pregnant guinea pigs and sheep were used to test an
experimental placental treatment, in which injection of an adenovi-
ral vector overexpressing VEGF reduced FGR [128, 129]. Due to
the positive outcomes in these animal models, this therapy subse-
quently was transitioned into a clinical trial in Europe (EVERREST
project) [130]. Further use of animal models will not only enable
the development of improved diagnostics, but they also can provide
a platform for developing and evaluating the efficacy of placental
therapies [120]. In these animal models, a thorough understanding
of the complication as well as the safety of a therapeutic can be
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Table 4. Continued
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LY

Limitations

Advantages

Gestation length

(days)

Type of placentation

Model

e Minimal trophoblast invasion [260]

o Sites of nutrient and waste exchange are villous

280

o Epitheliochorial (synepitheliochorial)

Cattle

[124]
e Macrophages located at the maternal-fetal interface

o Practical limitations on housing of research animals

o Cotyledonary

and length of gestation
o Different placental cell types and endocrine profile

at low levels during the first two-thirds of pregnancy

and increase substantially by term [261]
o Nonclassical MHC expression towards the end of

o Partially nondeciduate [103, 261, 262]

than humans [255]

pregnancy [263]
o TS cells available [264]

o Large blood samples and surgical manipulations are

feasible

o Fetal nutrition is predominantly acquired through

o Fully sequenced genome [260)]

114

o Epitheliochorial
o Diffuse [262]

Pig

uterine gland secretions

o Placental attachment is superficial and interdigitates

o Passive immunity does not occur until after birth

with the highly folded maternal endometrium

o TS cells available [265]

[250]
o Unlike humans, there is no syncytiotrophoblast cell

o Large blood samples and surgical manipulations are

type [124]
o Practical limitations on housing of research animals

feasible

and length of gestation

appropriately evaluated prior to transition into a clinical trial; how-
ever, there must be a thorough understanding of the etiology of that
pregnancy complication. The guinea pig and macaque, for example,
are both ideal for placenta-targeted therapies as they similarly share
a hemochorial type of placentation, bypassing additional maternal
layers present in livestock species. Thus, a common workflow in
placental research, and other fields, is to identify in rodents, verify
in nonhuman primates (NHPs), and then translate to humans. This
approach can be implemented in the PEV field by broadly utilizing
various experimental animal pregnancy models.

Spontaneous versus induced animal models of
adverse pregnancies

While pregnancy complications can develop spontaneously in animal
models, they are frequently induced. Similar to the selection of
the animal model, there are distinct advantages and limitations for
choosing between a spontaneous or induced model to study adverse
pregnancy outcomes in animals. For the sake of brevity, we have
collated the induction methods of a complication for the various
species that are listed in Table 5.

Spontaneous development of a pregnancy complication in ani-
mals is valuable as it suggests there may be mechanistic overlap with
humans. Although PE is observed primarily in humans, spontaneous
cases have been documented in mice, rats, rabbits, guinea pigs, and
monkeys [122, 131, 132]. Here, we briefly describe a few examples
that support the use of an animal model for various complications.
In general, litter-bearing species can serve as natural models of
FGR and IUGR [5, 117, 133]. For example, spontaneous IUGR
occurs in 15-20% of swine [134]. Likewise, spontaneous pregnancy
loss is common in cattle (~40%) [135-137], pigs (20-45%) [136,
138, 139], and marmoset monkeys (26%) [140]. In a cohort of
guinea pigs, 20% of pregnancies spontaneously developed toxemia,
and the observations from those animals validated their induced
toxemia model [131]. Decreased reproductive efficiency has been
observed in both humans and sheep at high altitudes; however, this
environmental factor would limit the ability to study FGR in sheep
to specific locations and might limit the relevance of such studies to
the general human population. While spontaneous instances of these
pregnancy complications can be used for experimental modeling, by
definition, spontaneous complications are difficult to predict. Events
preceding the adverse outcome cannot be efficiently studied and may
require larger animal cohorts or specific conditions than is practical
for many investigators.

In contrast to the uncertainty in occurrence and timing of a
spontaneous complication, researchers can administer precise insults
or experimental treatments to control the induction of a pregnancy
complication (Table 5). Pregnancy complications may be induced
by drug treatment, diet, surgery, or genetic manipulation. Genetic
manipulation is commonly used in rodent models to induce a
pregnancy complication, where a gene knockin or knockout can aid
in further investigating causative genes underlying the development
of a complication. Information derived from these genetic mutations
then can be translated to other animal models, such as NHPs, that
more closely model human pregnancy. The biological relevance of
the induced complication must be determined on a species and
approach basis. As with any laboratory study, there are limitations
to the comparisons that can be made to natural cases of disease. Data
gleaned from induced models should be compared to data obtained
from spontaneous cases of pregnancy complications whenever
possible.
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Etiology is important when selecting an approach to induce a
pregnancy complication, as the mechanisms impacted may not be
translatable to humans. For example, diet-restricted guinea pigs dis-
played similar symptoms and pathology as those with spontaneous
PE [141]; however, the etiologies appear different. Spontaneous PE
resulted from uteroplacental ischemia induced by aortic compression
caudal to the renal arteries. In contrast, fasting-induced PE led to
ketosis and resulted in less severe symptoms and pathology [131].
Notably, similar symptoms of varying severity were observed in this
study, and it is important to consider the mechanistic differences
underlying the PE symptoms observed as they may relate or differ
from the human pathogenesis of the complication.

Animal models of experimental infections during
pregnancy

Pathogen infection of a host is species restricted, so ensuring that
a pathogen can induce similar pathophysiology in an animal model
of human pregnancy is essential to better understanding the down-
stream implications. Other important considerations for congenital
infection models include the route of infection, maternal symptoms,
fetal/congenital symptoms, and the role the maternal immune system
plays in fighting the infection. Researchers have used in vitro animal
and human placental cell culture systems to identify the cell types
most susceptible to vertically transmitted pathogens and to unravel
the mechanisms behind infection [20]. While in vitro systems have
aided in understanding the cellular mechanisms of vertical transmis-
sion (e.g., receptors that mediate pathogen trophoblast entry), these
mechanisms largely remain elusive. The various animal models that
have been used to model TORCHZ infections during pregnancy are
broadly summarized in Table 6.

Current knowledge of PEVs in animal pregnancy
models

This section provides a brief overview of PEV studies that have been
performed using mouse and livestock pregnancy models, with more
details presented in Table 3. Similar to humans [102, 142], the total
number of exosomes and PLAP-positive vesicles isolated from blood
increased throughout bovine gestation (Table 3) [103]. Sequencing
of miRNAs from bovine exosomes revealed unique expression pro-
files across trimesters [103]. The placental miRNA profile also
changes throughout gestation in humans [143] and rhesus macaques
[144]. These data suggest that despite minimal placental invasion
in the cow, placental exosomes similarly circulate in the maternal
bloodstream as observed in humans. Thus, there may be conserva-
tion in marker expression and function of cargo given the similarities
in EV miRNA profiles during gestation.

Data collected from mouse and human studies support that EV
clearance may impact pregnancy health status. Excess vesicles in
= pregnant mice resulted in elevated blood pressure,
proteinuria, and fewer litters, suggesting that EV clearance opposes
the development of PE-like symptoms (Table 3) [89]. Moreover,
elevated levels of PEVs or PEVs from injured murine placentas can
induce PE symptoms when injected into pregnant mice [89]. This

lactadherin™

impact supports and expands upon human data. An in vitro human
trophoblast culture study found that less syncytin-1 and -2 cellular
expression resulted in decreased exosome uptake and, thus, an excess
of released EVs [145]. Interestingly, placentas from women with PE
expressed less syncytin-1 and -2 than controls [145]. Germain et al.
[87] also reported elevated levels of circulating free and fewer bound

syncytiotrophoblast microvesicles in patients with PE than healthy
subjects. The overlap in findings support the use rodent models can
offer in terms of unraveling the impact of EVs.

Observations from rodent pregnancy models have revealed that
PEVs may serve as a means of communication at the maternal-fetal
interface. In mice, fetal and maternal exosomes trafficked across
the maternal—fetal interface and fetal exosomes impacted maternal
cell function [146]. Similarly, PEV trafficking to maternal cells also
has been shown in large animal pregnancy models. A recent study
showed that the binucleate trophoblast cells of the ruminant placenta
also secrete exosome-like vesicles to the maternal uterine epithe-
lium and connective tissue [147]. Similarly, in vitro study showed
that porcine trophectoderm cell lines secreted EVs that influenced
the proliferation of porcine aortic endothelial cells (Table 3). This
supports fetomaternal cross-talk in the pig [148], a phenomenon
similarly observed in sheep [149]. In addition, EVs isolated from
ovine uterine fluid are taken up by embryos/trophectodermal cells
and vice versa [149, 150]. EV uptake by these cells suggests that
maternal-fetal communication occurs very early in pregnancy and
shows the potential to assess embryo-derived PEVs as early as the
pre/peri-implantation stages. Investigation of the earliest stages of
development could reveal how these EVs may be altered in EPL.

While the results of in vitro PEV studies are intriguing, the
prevalence of PEVs in ovine and porcine maternal blood remains
unclear. PEVs are expected to be present in ovine maternal circu-
lation as they have been detected in bovine maternal blood, and
these species share similar placental architecture. Further isolation
of PEVs from all stages of pregnancy, including embryo-derived
EVs, across livestock species will help to understand complications
that arise from errors in the establishment of pregnancy as well as
maldeveloped placentation. Although there are few published animal
PEV studies, the similarities in findings between animal models and
human in vitro data further support the need for additional in vivo
animal studies.

Future perspectives: expansion of PEV research
in animal pregnancy models

The studies discussed in the previous section represent all current, but
limited, publications on PEVs in animal pregnancy models. Studies
with animal models provide an opportunity to improve our under-
standing of the consequences of placental complications through
comprehensive study of PEVs and their cargo. Additional studies in
the animal models discussed above, especially in those with a hemo-
chorial placenta, are needed to identify biomarkers and expand our
knowledge of PEV cargo and function. The development of PEV ani-
mal models is especially important to elucidate the impact EVs have
on the maternal immune system and maternal physiology in healthy
and complicated pregnancies, as this cannot be studied in vitro.
The use of NHPs in PEV research would be particularly valuable
as there are extensive similarities between humans and NHPs as
listed in Table 4. Macaques share a similar hemochorial type of
placentation with extensive remodeling of decidual spiral arteries
by endovascular trophoblasts [121, 123]. Unlike rodent models but
similar to humans, NHPs express miRNAs from the primate-specific
chromosome 19 microRNA cluster (C19MC) (Table 4). miRNAs of
the C19MC are almost exclusively expressed in the placenta and
have been detected within human EVs [35]. The C19MC miRNAs
have roles in placental function and are aberrantly expressed in preg-
nancy complications [151, 152]. Several pregnancy complication
paradigms are already in place with NHPs [121, 153-167]. Applying
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Table 6. Pathogens in animal models that cause APOs.

Pathogen Animal model Observed APO
Brucella Cattle [333] Pregnancy loss
Sheep [333]
Chlamydia Sheep [334] Pregnancy loss
Mice [334, 335]
Guinea pigs [336]
Pigs [337]
Cytomegalovirus Mice [338] Neurological sequelae, pregnancy loss

Guinea pigs [338, 339]
NHP [159, 160]

Hepatitis E virus Rabbit [340, 341]

Pregnancy loss

Mice [342]
NHP [343]

Group B Streptococcus

Pregnancy loss, meningitis, pneumonia,
neurological developmental disabilities

NHP [161-163]
Guinea pigs [254, 344]

Listeria monocytogenes

Pregnancy loss

Rubella Rats [345, 346]

Pregnancy loss, neonatal demise, ocular
abnormalities

Sheep [347, 348]
Mice [349]
NHP [350]

Toxoplasma gondii

Pregnancy loss

Zika virus NHP [164-166]
Mice [351]
Guinea pigs [352]

Pigs [353]

Pregnancy loss, fetal malformations

APOs, adverse pregnancy outcomes.

the study of PEVs to these established models will enable advances
not feasible in human pregnancy research—for example, monitoring
vertical pathogen transmission by PEV analysis with timed infection
studies. Investigators have recently characterized and validated rhe-
sus and cynomolgus macaque TS cell lines that can be differentiated
into syncytiotrophoblasts and extravillous trophoblasts [84, 168].
These cell lines may have tremendous value in terms of identifying
PEV biomarkers of infection and disease.

Guinea pigs may also offer utility in PEV research as they have a
discoid, hemomonochorial, labyrinthine placenta and are relatively
low cost compared to NHPs. Their longer gestation (~68 days)
compared to the mouse and rat (~20 and ~22 days, respectively)
allows for enhanced longitudinal sampling. They also naturally
experience PTB at approximately 7% rate (the human rate is 5-11%)
[169, 170]. Hence, guinea pigs may be a useful model for biomarker
identification as well as drug development as an intermediate model
between rodents and NHPs.

The use of rabbits could be beneficial as they are induced
ovulators [122, 171], which allows for early and precisely timed
pregnancy sample collection. Rabbits, like humans, have a syncytial
trophoblast layer [122], and their genome has been fully sequenced.
Their relatively short gestation (~32 days) allows for short studies
that can assess the impact of pregnancy on the fetus as the offspring
are born precocial [172], a feature more similar to humans than
rodents. A representative example of the rabbit model being used to

understand a pregnancy complication is a study in which injection of
fetal hemoglobin resulted in proteinuria, fetal demise, and increased
apoptosis in the kidneys and placentas [173]. This study helped
elucidate the impact fetal hemoglobin may have on PE in humans
and showed the efficacy of alphal-microglobulin (A1M) as a therapy
to alleviate PE-like symptoms [173].

There are additional advantages and limitations of a model that
are particularly relevant to PEV biomarker identification. Animal
models with smaller litter sizes, such as the macaque or the sheep,
allow for more focused biomarker detection for singleton pregnan-
cies as in humans. In animals with large litters, some fetuses may
normally develop, while others are resorbed. If healthy fetuses are
present, it may be difficult to parse out and identify a biomarker
of the pregnancy complication. Animals that mature more quickly
typically have shorter gestations and allow for transgenerational
study design. Moreover, animal pregnancy models are advantageous
as they provide the ability to survey PEVs in relation to fetal growth
and development over time, as well as in association with offspring
physiology throughout their lifespan in a manageable time frame.

Next steps in establishing animal pregnancy models
for PEV research

A major limitation in the use of PEVs to diagnose pregnancy compli-
cations is the lack of information regarding early, predictive mark-
ers [108], which makes the identification of longitudinal markers
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difficult. As illustrated in Table 2, there is overlap between general
human EV markers and those of the animal models; however, only
a few studies have specifically looked at PEVs in animal models
despite similarity in some placental markers. For PEV research to
be translational, we propose the following goals:

1. Rigorous assessment of placenta-specific markers in longitudinal
in vivo studies, in additional cohorts for repeatability, and across
species to ensure translatability.

2. Validation of antibodies that are subsequently made commer-
cially available for use across labs and species (when applicable).

3. Thorough assessment of the prognostic potential of a biomarker
associated with a pregnancy complication in various animal
models.

4. Development of a database for placenta-specific markers and
biomarkers of pregnancy complications using high-throughput
techniques (i.e., next-generation RNA sequencing, mass spec-
trometry for proteomics, and lipidomics).

5. Preclinical evaluation of a biomarker associated with a human
pregnancy condition in human samples (retrospective and
prospective studies).

Animal models will enable the development of datasets with
predictive markers because researchers will have control over sample
collection and the timing of the insult. Researchers can also use
the established animal models to determine the predictive power
of potential biomarkers that were identified in humans [108]. The
harrows of identifying a single biomarker in humans also support
the need for induced pregnancy complication studies because a
marker consistently identified across species with varied disease
severity has translational potential. Overall, animal models can
greatly strengthen the PEV field in terms of studying and prospec-
tively identifying pregnancy complications.

Current questions and future opportunities in the
PEV field

Having discussed the opportunities in pregnancy complication
research with a range of animal models, there remain questions
in PEV research that are cross-cutting, regardless of the species used,
including research with human clinical samples.

B s PEV cargo selectively packaged?—If so, how?

B How are the presence of PEV membrane proteins and cargos
altered when EVs are derived from a diseased placenta?

B Do the embryo and the placenta use PEVs to communicate to
maternal cells before and during implantation?

B What role(s) do PEVs have in regulating maternal immune
adaptation to pregnancy? Are PEVs essential for the successful
establishment of pregnancy?

B Do PEVs from a maldeveloped placenta cause or contribute to
a pregnancy complication by triggering a maternal physiological
or immune response, or is their presence a manifestation of the
impact of the pregnancy complication on placental function?

PEVs hold the promise of future prognostic and diagnostic devel-
opment as they can provide high “clinical predictive power” [101]
for pregnancy complications. Unraveling the mechanisms of cargo
packaging is crucial to understand how EV cargo of a malfunctioning
placenta may be altered in comparison with those derived from a
healthy placenta. There is currently a debate in the EV literature as to
what “exosomes” are, and whether these truly can be isolated from a

complex EV population [32]. Consistent nomenclature and standard
techniques to isolate EVs would allow comparison among studies.
There are currently three EV databases, EVpedia [174], ExoCarta
[175], and Vesiclepedia [176]; however, a database specifically for
PEV research would enable meta-analysis of results, allow for marker
identification reported across pregnancy complication research, and
enable the field to quickly advance. Since placental development is
continuous and gene expression changes throughout pregnancy, it is
important that investigators develop a database of EV cargo from all
stages of pregnancy. The NIH Human Placenta Project would be an
excellent platform to support such a database.

In conclusion, representative in vitro and in vivo animal models
are necessary to identify biomarkers of pregnancy complications.
A better understanding of PEV biology will allow deeper insights
into placental function and development throughout gestation, help
to identify maldeveloped and/or infected placentas, and potentially
underpin development of placental therapeutics. We propose that
in order to achieve these advances, appropriate animal models of
human pregnancy complications must be established.
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Supplementary data are available at BIOLRE online.
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