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Abstract

A better understanding of genetic influences on early white matter development could significantly advance our
understanding of neurological and psychiatric conditions characterized by altered integrity of axonal pathways. We
conducted a genome-wide association study (GWAS) of diffusion tensor imaging (DTI) phenotypes in 471 neonates. We used
a hierarchical functional principal regression model (HFPRM) to perform joint analysis of 44 fiber bundles. HFPRM revealed
a latent measure of white matter microstructure that explained approximately 50% of variation in our tractography-based
measures and accounted for a large proportion of heritable variation in each individual bundle. An intronic SNP in PSMF1
on chromosome 20 exceeded the conventional GWAS threshold of 5 x 10−8 (p = 4.61 x 10−8). Additional loci nearing
genome-wide significance were located near genes with known roles in axon growth and guidance, fasciculation, and
myelination.
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Introduction
Within the human brain, structurally segregated and func-
tionally specialized regions communicate with each-other
via a dense network of axonal pathways (Hagmann et al.
2008). Damage to these pathways, in the form of white matter
lesions, has long been recognized to produce functional deficits
or disconnection syndromes (Wernicke 1874; Dejerine 1892;

Liepmann and Maas 1907; Aralasmak et al. 2006). More recently,
diffusion tensor imaging (DTI) has been used to reconstruct
the trajectories of fiber systems in three dimensional space
and to assess the microstructural integrity of axonal pathways
using measures such as fractional anisotropy (FA). Individual
differences in FA have been linked to information processing
speed and intelligence (Penke et al. 2010; Tamnes et al. 2010;
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Penke et al. 2012; Ritchie et al. 2015) and to the presence of
psychiatric conditions including schizophrenia (Yao et al. 2013;
Tamnes and Agartz 2016), autism (Ameis and Catani 2015), and
attention deficit hyperactivity disorder (ADHD) (Chen et al.
2016a). Altered integrity of axonal pathways is also evident
in many different neurological disorders including dyslexia
(Norton et al. 2015), Angelman Syndrome (Peters et al. 2011),
Rhett syndrome (Mahmood et al. 2010), and, unsurprisingly, var-
ious congenital disorders of axon guidance (Engle 2010; Poretti
et al. 2013). Consequently, a better understanding of the factors
influencing individual variation in white matter microstructure
could have important implication for understanding variation
in intelligence as well as the etiology of many psychiatric and
neurological disorders.

The prenatal and early postnatal period represents the foun-
dational period in the establishment of human brain connec-
tivity (Stiles and Jernigan 2010). First, each growing axon must
travel to its correct synaptic target while ignoring many inap-
propriate neuronal partners. This process relies on a variety of
guidance molecules, both attractive and repellant, as well as a
properly functioning growth cone (Kandel 2013). Extracellular
matrix components may also play a role in axonal elongation
and serve as guidance cues that distinguish afferent from effer-
ent pathways (Pearlman and Sheppard 1996). During this phase,
axons may adhere to (fasciculate) with other axons taking the
same route, forming white matter bundles. This process relies
on a variety of cell and substrate adhesion molecules such as
NCAM1 (Van Vactor 1998) and is associated with increases in
FA (Qiu et al. 2015). Several fiber bundles, including the corpus
callosum (CC), fornix, and hemispheric stalk (containing all the
projection fibers of the developing internal capsule) are present
as early as 12 weeks gestational age (Vasung et al. 2010) and
can be detected via DTI by 19 weeks of age (Huang et al. 2006).
Between 20 and 23 weeks gestation, thalamocortical fibers reach
the subplate zone (Kostovic and Goldman-Rakic 1983; Krm-
potic-Nemanic et al. 1983; Kostovic and Rakic 1984, 1990), where
they ‘wait’ for a prolonged period before growing into the cortical
plate during gestational weeks 24 through 32 (Kostovic and
Goldman-Rakic 1983). Callosal afferents and long corticocortical
pathways reach the subplate somewhat later and grow into the
cortical plate between 33 and 35 week gestation (Kostovic and
Jovanov-Milosevic 2006). By birth, major commissural bundles
(genu, body and splenium of the CC), projection bundles (corti-
cofugal and corticothalamic tracts), limbic bundles (fornix and
cingulate) and associative bundles (uncinate, arcuate, superior
and inferior longitudinal fascicles) can be detected and tracked
with DTI (Dubois et al. 2014). The next phase in white matter
development, which begins prenatally and continues into the
postnatal period, involves the proliferation and maturation of
glial cells (Back et al. 2001; Sigaard et al. 2016). It has been
argued that this process is relatively isotropic and hence should
not change FA (Dubois et al. 2008). However, a study in peri-
natal rabbits suggests that developmental expansion of imma-
ture oligodendrocytes is associated with increasing FA (Droby-
shevsky et al. 2005). Finally, the postnatal period witnesses both
extensive axonal pruning and myelination (the ensheathment
of axons in myelin protein by oligodendrocytes) (Yakovlev and
Lecours 1967; Kinney et al. 1988; Lamantia and Rakic 1990; Galea
and Darian-Smith 1995). Maturation of white matter during this
phase is accompanied by increasing FA (Qiu et al. 2015).

All these processes involve the precise spatiotemporal regu-
lation of gene expression. It is thus reasonable to suppose that
genetic variation may influence individual differences in white

Figure 1. Flow chart showing data loss across the course of the study.

matter development. Indeed, genetic mutations can produce
a range of axonal guidance disorders including corpus callo-
sum agenesis or dysgenesis, L1 syndrome, Kallmann syndrome,
and Joubert syndrome (JS) (Engle 2010; Nugent et al. 2012). In
addition, twin studies indicate significant genetic influences on
whole brain FA (h2 between 0.24 and 0.88) and average FA within
individual white matter tracts (h2 between 0 and 1.00) in infancy,
childhood, and adulthood (Pfefferbaum et al. 2001; Brouwer et al.
2010; Chiang et al. 2011; Brouwer et al. 2012; Kanchibhotla et al.
2014; Kochunov et al. 2014; Budisavljevic et al. 2015; Kochunov
et al. 2015; Lee et al. 2015; Budisavljevic et al. 2016; Vuoksimaa
et al. 2017).

To further delineate how genetic variation impacts white
matter microstructure in early infancy, we conducted a genome-
wide association study (GWAS) of DTI phenotypes in a unique
cohort of infants who received high-resolution magnetic reso-
nance imaging (MRI) scans of the brain around 5 weeks of age.

Materials and Methods
Subjects

Mothers were recruited from outpatient obstetrics and gyne-
cology clinics at University of North Carolina hospitals and
represent a subset of 1330 infants enrolled in the Early Brain
Development Study (EBDS) based at the University of North Car-
olina at Chapel Hill (Gilmore et al. 2007; Knickmeyer et al. 2008;
Gilmore et al. 2010; Knickmeyer et al. 2017). We acquired DTI
scans from 857 children around five weeks of age with 663 pass-
ing neuroimaging quality control (77% success). We acquired
buccal samples from 852 infants with 756 passing genotyping
quality control (89% success rate). In total, 471 infants (259 male,
212 female) between 35.0 and 57.3 days of age had both high
quality genetic data and high quality DTI images, encompassing
259 singletons or unpaired twins, 11 sibling pairs, and 95 twin
pairs (51 same-sex DZ pairs, 12 opposite-sex DZ pairs, and 32
MZ pairs). See Table 1 for additional demographic information.
See Figure 1 for a flow chart of data loss.

Image acquisition and analysis

Diffusion tensor images were acquired using a single shot echo
planar spin echo sequence following two protocols. Under the
first protocol (N = 260), 5 repetitions of 7 diffusion weighted
images (in total 35) were generated: 1 without diffusion gradient
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Table 1 Descriptive statistics for demographic and medical history variables

Continuous Variables Mean SD Min Max

Age at MRI (days post conception) 293.4 16.6 245 401
Gestational Age at Birth (weeks) 37 3 27 42
Birthweight (grams) 2751.7 731.4 790 4820
5 Minute Apgar Score 8.6 0.8 3 10
Maternal Age (years) 29.4 5.8 16 47
Paternal Age (years) 32.0 6.7 18 64
Maternal Education (years) 15.1 3.2 8 25
Paternal Education (years) 15.0 3.3 2 26

Categorical Variables No. Percent

Gestation Number Twin 262 56
Gender Male 259 55
NICU Stay > 24 Hours Yes 92 20
Caesarian Section Yes 253 54
Maternal Ethnicity White

Black
Asian
Native American

349
114
6
2

74
24
1

>1
Paternal Ethnicity White

Black
Asian
Native American
Missing

327
121
12
6
5

69
26
3
1
1

Maternal Psychiatric1 History Yes 176 37
Paternal Psychiatric1 History Yes 58 12
Income2 High

Middle
Low
Missing

134
134
178
25

29
29
38
5

Maternal Smoking Yes 56 12

1Maternal psychiatric history and paternal psychiatric history were treated as binary variables with a positive if mothers reported a diagnosis in any of the following
DSM-V categories, or if maternity and pediatric medical records indicated such a diagnosis: schizophrenia spectrum and other psychotic disorders, bipolar and
related disorders, depressive disorders, anxiety disorders, obsessive–compulsive and related disorders, attention-deficit hyperactivity disorders, Tourette’s syndrome,
or autism-spectrum disorders. 2low income: at or below 200% of federal poverty level (FPL), middle income: between 200 and 400% of FPL, high income: above 400%
of FPL.

(b = 0) and 6 with b = 1000 s/mm2 in unique directional diffusion
gradients (TR = 5200 ms, TE = 73 ms, slice thickness = 2 mm, in-
plane resolution = 2 mm x 2 mm). Under the second protocol
(N = 211), a total of 49 images were acquired, 7 without diffu-
sion gradients (b = 0) and 42 with b = 1000 s/mm2 in unique
directional diffusion gradients (TR = 7680 ms, TE = 82 ms, slice
thickness = 2 mm, in-plane resolution = 2 mm × 2 mm). 436 chil-
dren were scanned on a 3 T Siemens Allegra head-only scanner
(260 with protocol 1 and 176 with protocol 2). 35 children were
scanned on a 3 T Siemens TIM Trio scanner (all with protocol 2).

Automated quality control was performed with DTIPrep
(Oguz et al. 2014). This includes controlling for correct image
dimensions and gradient directions, detecting slice-wise
intensity change and excessive motion artifacts, and correcting
for motion and eddy current effects. Diffusion images with
large motion artifacts and missing or corrupted sections were
excluded from analysis. Additional expert-guided QC was
performed with 3DSlicer (Verde et al. 2013). Next, automatic
brain masking was performed with manual corrections if
necessary. See Figure 2 for an example DTI image after brain
masking and a slice of the neonate DTI atlas.

Functional fiber profile analysis was performed using a
neonate specific adaptation of the UNC-Utah NA-MIC DTI
pipeline (Verde et al. 2014). This includes (1) mapping of resulting

Figure 2. Example slices from an individual subject image and the neonate DTI
atlas. Panel A. Sample axial slice from an individual subject. B. Axial slice from
the neonate DTI atlas.

images into a neonate DTI atlas space, (2) mapping atlas fibers
into individual subject space, and (3) extracting FA profiles
using DTIAtlasFiberAnalyzer (Goodlett et al. 2009). The neonate
DTI atlas consists of the unbiased symmetric diffeomorphic
transformed average of 144 neonatal DTI images upon which
47 fiber tracts of interest are defined. See Jha et al. (2016) for
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additional details. Individual FA profiles along each tract were
correlated with atlas profiles to determine how well the fibers
mapped into atlas space. Three tracts (the temporoparietal
segment of the left arcuate, the segment of the right cingulum
that originates in the posterior cingulate gyrus and terminates in
the hippocampus, and the right corticofugal tract that connects
to premotor cortex) were excluded from further analysis as more
than 25% of the FA fiber profiles had correlation values below
0.7.

Genome-wide genotyping.

Genotyping of single nucleotide polymorphisms (SNPs) was
carried out using Affymetrix Axiom Genome-Wide LAT and
Exome arrays. We excluded samples with low DishQC as
described at https://biobank.ctsu.ox.ac.uk/crystal/docs/axiom_
geno_analguide.pdf (<0.82 for LAT array and < 0.79 for Exome
array), low call rates (<95%), outliers for homozygosity, sex or
zygosity from genotypes inconsistent with reported phenotypes,
excessive relatedness (subjects with ≥6 related subjects, where
relatedness is defined as proportion of identity by descent
(IBD) > 0.125), and unexpected relatedness (IBD > 0.4 for subjects
that were not known siblings). We also evaluated the sample
for ancestry outliers, but none were detected. We removed
individual SNPs that deviated from Hardy–Weinberg equilibrium
(PHWE < 1x10−8), had low call rate (<95%), high Mendelian error
rate (>0.1, based on 5 parent–child trios), high deviation of
allele frequency compared to European American and African
American subsets from the 1000 Genomes (1000G) Project
(Abecasis et al. 2010; Abecasis et al. 2012) (either P < 1x10−5 and
frequency difference > 0.07, or frequency difference > 0.15), and
that did not match 1000G EUR/AFR founders. Population strat-
ification was assessed using PCA (Price et al. 2006). Individuals
of European ancestry constituted 59% of the sample. Remaining
subjects were primarily of African ancestry. Imputation was
performed with MACH-Admix (Liu et al. 2013) using 1000G
reference panel (phase1_release_v3.20101123) (Abecasis et al.
2010; Abecasis et al. 2012). To evaluate the quality of imputed
SNPs, we computed mean R2 for varying MAF categories and
R2 cutoffs from 0.3 to 0.8 as described in Wright et al. (2014)
and Xia et al. (2017). For each MAF category, we selected an R2

cutoff which produced an average R2 > 0.8 for the category. SNPs
below this cutoff were excluded as were SNPs with minor allele
frequency < 0.01.

Statistical Methods

Image analysis produced FA measures along 44 fiber tracts.
To reduce the heterogeneity in variance scales over the whole
brain (Jolliffe and Cadima 2016), FA measures in each tract were
rescaled by dividing by the total standard deviation. To reduce
the dimension of the outcomes, functional principal component
analysis (Hall et al. 2006) was applied to each fiber tract and the
first five functional principal components (fPCs) were extracted
as these accounted for more than 70% of total variation. The
first factor was used as the outcome in subsequent twin-based
heritability analyses and GWAS (Zhang et al. 2017).

We first adopted the ACE model to calculate the heritability
for individual tracts and the first tractography factor. For each
tract curve, the heritabilities at all sampled points were calcu-
lated and an average value was reported. We also calculated
the proportion of genetic variance after subtracting the common
factor to the total variance for individual tracts as a comparison.

In the genome-wide association analysis, to control for pop-
ulation stratification, the first three genotypic principal com-
ponents were included as covariates as was scanner type and
DTI protocol. Additional covariates were selected via adaptive
lasso from a comprehensive set of demographic and clinical
variables (Ahn et al. 2012). These included gestational age at
birth and age at MRI. To account for subject correlation within
twin pairs, an ACE model was applied as described in Xia et al.
(2017). Likelihood ratio statistics were calculated to test the
significance of genetic associations. Variants with p-values less
than 5 x 10−8 were considered as genome-wide significant. We
also report genetic markers above the conventional suggestive
threshold, i.e., SNPs with p-values less than 5 x 10−6. The phe-
notypic variance explained by each variant was calculated as
h2 = β’2var(X)/(β’2var(X) + σa

2+ σ c
2+ σ e

2), where β’ is the SNP
effect size adjusted for the overestimation caused by winner’s
curse (Ghosh et al. 2008) through an approximate conditional
likelihood approach; var(X) is the variance of the genotype,
and σa

2, σ c
2 and σ e

2 are the variance explained by shared
genetic effect, shared environment effect and random effect
respectively. Linkage disequilibrium (LD)-pruning was then per-
formed (using a 50 kbp moving window at a step of 5 kbp
with r2 threshold of 0.5) to extract one representative variant
at each locus. LD-independent SNPs with p-values less than
5 x 10−6 were annotated using GTEx (Consortium et al. 2017),
HaploReg (Ward and Kellis 2012), and RegulomeDB (Boyle et al.
2012). The nearest protein coding gene for each SNP (± 500 kb)
was annotated using GeneCards® (http://www.genecards.org/),
Online Mendelian Inheritance in Man (http://www.omim.org),
the NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/), and
Mouse Genome Informatics (http://www.informatics.jax.org).

To examine potential confounding by population stratifica-
tion, we calculated fixation index (FST) for all LD-independent
variants passing the suggestive threshold. In addition, we calcu-
lated the frequencies of the effect alleles for different popula-
tions in the neonate samples using both self-reported ethnicity
and genetic ancestry, and crosschecked our data with allele
frequencies from the 1000 Genomes Project (1000G) (phase I,
version 3) (Auton et al. 2015).

Sensitivity analyses were performed to examine the robust-
ness of the GWAS findings. Specifically, we calculated the effect
of the top SNPs in the following subsamples: individuals with
European ancestry (based on PCA, N = 277), individuals with
non-European ancestry (based on PCA, N = 194), female subjects
(N = 212), male subjects (N = 259), individuals born with gesta-
tional age later than 32 weeks (N = 432), a subsample excluding
children who spent time in neonatal intensive care (N = 345),
a subsample excluding subjects with confirmed diagnosis of
maternal schizophrenia or bipolar disorder (N = 443), and a sub-
sample of unrelated individuals (N = 365). We also performed a
sensitivity analysis with reduced covariates by only including
age at MRI, scanner type, DTI direction, and the first three
genetic principal components in the model. To further check the
validity of our findings, we also performed a permutation test for
the most significant SNP in our GWAS analysis. The empirical
p-value is reported.

Enrichment tests of prenatally expressed genes in brain
tissues were conducted using two genome-wide gene expres-
sion datasets, the microarray-based BrainCloud dorsolateral
prefrontal cortex transcriptome (Colantuoni et al. 2011) and
the RNA sequencing-based Brainspan transcriptome of 15 brain
regions (Kang et al. 2011). Specifically, each LD-pruned SNP was
mapped to its nearest gene within a 2Mbp distance. A log2

https://biobank.ctsu.ox.ac.uk/crystal/docs/axiom_geno_analguide.pdf
https://biobank.ctsu.ox.ac.uk/crystal/docs/axiom_geno_analguide.pdf
http://www.genecards.org/
http://www.omim.org
https://www.ebi.ac.uk/gwas/
http://www.informatics.jax.org
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fold change equal to or greater than 0.5 in prenatal tissues
compared to postnatal tissues was considered as elevated
prenatal expression. The proportions of genes with elevated
prenatal expression were calculated among all genes and
among genes corresponding to variants passing a given p-value
threshold. Then a two-sample z-test was performed to evaluate
if genes selected by GWAS showed enrichment for prenatal
expression. Various p-value cut-offs were adopted to flexibly
incorporate signals at multiple levels. For all LD-independent
variants with p-values smaller than 5 x 10−6, we also examined
development gene expression patterns for the nearest protein-
coding gene (± 500kbp) using Brainspan and BrainCloud data,
and evaluated tissue-specific gene and protein expression using
data from FANTOM (Lizio et al. 2015) and the human proteome
map (Kim et al. 2014).

Gene-set-enrichment analysis (GSEA) was conducted using
MAGMA (de Leeuw et al. 2015). Gene-level p-values were first
calculated based on GWAS results and pathway analysis was
then performed. We focused on candidate pathways involved in
white matter development as represented in the Gene Ontology
database of Biological Processes (Ashburner et al. 2000; The Gene
Ontology Consortium 2017). This included axon ensheathment
in the central nervous system, axonal fasciculation, oligoden-
drocyte development, negative and positive regulation of oligo-
dendrocyte differentiation, regulation of oligodendrocyte differ-
entiation, oligodendrocyte differentiation, negative and positive
regulation of axon extension, axon extension, myelin assembly,
positive regulation of myelination, regulation of myelination,
negative regulation of axon guidance, regulation of axon guid-
ance, negative and positive regulation of axonogenesis, cen-
tral nervous system axonogenesis, regulation of axonogenesis,
central nervous system projection neuron axonogenesis, and
central nervous system development. We used version v4.0 for
pathway and ontology data (accessed on 1/30/2015).

We also used functional analysis of diffusion tensor tract
statistics (FADTTS) (Zhu et al. 2011) to test for associations
between our top loci and FA within and along the individual fiber
tracts. FADTTS provides a global test statistic for each tract as
well as local test statistics along each fiber tract. Test statistics
and local p-values were merged onto the corresponding fiber
locations for visualization.

Finally, to explore the effect of rare genetic copy number
variations (CNVs), we ran a genome-wide burden analysis. We
applied PennCNV and Partek Genomics Suite to perform CNV
calling from signal intensity files of the Affymetrix Axiom Geno-
type array (Szatkiewicz et al. 2013). CNV detected in both Pen-
nCNV and Partek were considered as candidate calls. CNVs with
probe coverage < 15, length < 100 kb or PennCNV confidence
score < 100 were removed from the analysis. To further iden-
tify rare CNVs, we excluded calls that have more than 50%
overlap with common CNVs (frequency > 1% in EUR population)
or within regions of known rearrangement (chr14:105573485–
107 197 774 and chr22:22473003–23 188 329). The ACE model was
then applied to test the association between CNV burden (num-
ber of CNV-affected genes per subject) and the DTI tractography
factor, with the same set of covariates as in the GWAS. We also
identified subjects with rare CNVs that overlapped with known
neuropsychiatric CNVs and examined their DTI factors.

Results
The first tractography factor is highly heritable (heritability
equals 0.547, p = 5.10 x 10−7) and explains approximately 47.74%

of phenotypic variation across all tracts (Fig. 3, Panel A.).
The first tractography factor also explains a large portion of
variance within the majority of tracts (Fig. 3, Panel B.). Tracts
in which the common factor explains less than 20% of the
variance include the right inferior longitudinal fasciculus,
right corticofugal motor tracts, and the segment of the corpus
callosum connecting the left and right motor cortex. The first
tractography factor also accounts for a large proportion of
heritable variation in each tract as can be seen in Figure 4.

Table 2 displays all LD-independent SNPs with p-values less
than 5 x 10−6. Manhattan plots and quantile-quantile plots are
displayed in Figure 5. Lambda is 1.039 and Lambda-1000 is 1.083.
Locus zoom plots are displayed in Supplementary Figure 1 with
four histone marker tracts: H3K27me3, H3K4me3, H3K36me3
and H3K27ac. H3K27me3 indicates genes that may be repressed
by Polycomb group proteins (Kharchenko et al. 2011). H3K4me3
indicates promoter and transcription start site (TSS)-proximal
regions (Kharchenko et al. 2011). H3K36me3 enrichment is
primarily found over exonic regions of transcribed genes
(Kharchenko et al. 2011), and H3K27ac indicates enhancers
(Pradeepa 2017).

An intronic SNP in PSMF1 on chromosome 20 exceeded the
conventional GWAS threshold of 5 x 10−8. Additional loci nearing
genome-wide significance were located within 500 kb of genes
with known roles in neurite outgrowth, fasciculation, and axonal
pathfinding (Supplementary Table 1). Many loci were located in
regulatory regions as indicated by specific histone modifications
(See Supplementary Table 2 and Supplementary Fig. 1). Most of
the SNPs in Table 2 alter regulatory motifs, though only one is
considered likely to disrupt binding by RegulomeDB: the intronic
SNP in NFATC1. An intronic SNP in TENM2 achieved a score in
RegulomeDB of 3a (TF binding + any motif + DNase peak) and is
notable in that the altered motif is for NFATc1 (Nuclear factor of
activated T-cells, cytoplasmic 1), the protein product of NFATC1.
NFATc1 targets are involved in axon growth, synaptic plasticity,
neuronal survival, and myelination (Kipanyula et al. 2016; Vihma
et al. 2016). Several SNPs were either known eQTLs or in high
LD with known eQTLs, though most of these were not in brain.
Exceptions include rs79045984, which is an eQTL for RCN2 in
the putamen, and rs78070351, which is an eQTL for CEP250 in
the cerebellum (Supplementary Table 2). LD-independent SNPs
with p-values less than 5 x 10−6 account for 0.01%–2.13% of the
phenotypic variance in the tract common factor.

FST values larger than 0.05, indicating potential confound-
ing by ancestry, were observed for rs78070351, rs7366960 and
rs28627209. While FST values were below 0.05 for other top hits,
we note that the minor allele frequency for rs79045984 was very
low in individuals of European ancestry, and the minor allele
frequency for rs72830077 was very low in individuals of non-
European ancestry (Supplementary Table 3). We were unable to
run relevant sensitivity analyses in those groups.

Effect sizes and significance in primary analyses were highly
similar to effect sizes in sensitivity analyses (Supplementary
Table 4) with a few exceptions. In individuals of European ances-
try, rs17004715 was not associated with the DTI tract factor and
rs79045984 showed no association in individuals who did not
receive neonatal intensive care.

Permutation testing yielded an empirical p-value of 7.40 x
10−8 for rs6077860’s association with the tract factor. The empiri-
cal P-value confirms that the asymptotic P-values are accurately
estimated.

When we consider the spatiotemporal expression pattern
of the nearest protein-coding genes for LD-independent SNPs

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa266#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa266#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa266#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa266#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa266#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa266#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa266#supplementary-data


938 Cerebral Cortex, 2021, Vol. 31, No. 2

Figure 3. Factor analysis of diffusion tensor imaging data shows that the first tractography factor explains a substantial amount of variation across and within tracts.
Panel A. Scree plot of the quantitative tractography factor analysis with the percent of variation explained by the first factor. Panel B. Percent of variation explained by
the first factor in each individual tract. An explanation of these abbreviations can be found in Supplementary Table 6.

Table 2 LD-independent SNPs with p-values smaller than 5 x 10−6

Best SNP Chr A11 A2 MAF Effect size p-value Variance
explained (%)

Function Class Closest protein
coding gene
(± 500 kb)

rs6077860+ 20 A C 0.21 1.27 4.61E-08 2.13 Intronic PSMF1
rs1446965+ 1 A G 0.11 -1.73 7.60E-08 1.95 Downstream APCS
rs72830077+ 5 G A 0.02 4.01 3.32E-07 1.17 Intronic TENM2
rs6777575 3 G T 0.34 1.29 5.21E-07 0.92 Intronic MAP3K13
rs151087896 11 T TTTC 0.23 1.57 1.08E-06 0.33 Intergenic B3GAT1
rs78070351 20 G A 0.08 -1.72 1.78E-06 0.05 Intronic UQCC1
rs28627209 18 G A 0.10 -1.82 2.26E-06 0.03 Intronic NFATC1
rs2216360 3 C T 0.19 1.26 3.32E-06 0.02 Intronic MECOM
rs17004715+ 21 G A 0.04 2.69 3.34E-06 0.02 Intronic; Splice

region variant
ITGB2

rs7366960 1 A T 0.42 1.19 3.84E-06 0.02 Downstream SLC27A3
rs114172604 6 A G 0.03 2.64 3.94E-06 0.02 In

LOC105377975
(lncRNA)

MAN1A1

rs11876680 18 C A 0.08 -1.71 4.39E-06 0.02 Intronic SETBP1
rs79045984+ 15 G A 0.02 -3.68 4.61E-06 0.02 Intronic SCAPER
rs2002371 1 T C 0.27 -1.07 4.62E-06 0.01 Intronic CNIH3
rs16978169 18 C T 0.08 -1.70 4.74E-06 0.02 Intronic SETBP1

Note: We define LD-independent SNPs as those with low LD (r2 < 0.1) to a more significantly associated SNP within a 500 kb window. +directly genotyped (all others
are imputed); 1A1 is referred to as the effect allele.

with p-values less than 5 x 10−6, B3GAT1, TENM2, SCAPER, and
PSMF1 all show strong protein expression in fetal brain tissue
compared to non-brain tissue. SCAPER, SETBP1, B3GAT1, and
MAP3K13 show strong gene expression in fetal brain tissue com-
pared to non-brain tissue. Four genes, PSMF1, SCAPER, SLC27A3,
and SETBP1 show elevated prenatal expression across all brain
regions examined. UQCC1, MAN1A1, and NFATC1 show a strong
increase in expression from prenatal to postnatal life. CNIH3,

MAP3K13, B3GAT1, ITGB2, MECOM, and APCS show elevated pre-
natal expression in a subset of brain regions (Fig. 6). Tests for
enrichment of prenatally expressed genes suggest significantly
elevated expression at multiple thresholds in cerebellar cortex,
but not in other brain regions (Fig. 7).

In GSEA, the gene set related to central nervous system
neuron axonogenesis showed a nominally significant associa-
tion with the tract factor (p-value =0.0402), but no gene sets

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa266#supplementary-data
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Figure 4. A latent measure of white matter microstructure accounts for a substantial proportion of heritable variation in individual tracts. Outer circle represents
average heritability of each white matter tract. Inner circle represents proportion of genetic variation of each tract after subtracting the first tractography factor to the

total variation. An explanation of these abbreviations can be found in Supplementary Table 6.

Figure 5. Common genetic variation associated with neonatal white matter microstructure. Green dots represent loci within +/− 500 kb of loci exceeding the
“suggestive” association threshold (p-values less than 5 x 10–6). Red dots represent loci within +/− 500 kb of loci exceeding the conventional GWAS association
threshold (p-values less than 5 x 10–8).

achieved significance after multiple comparison adjustments
(Supplementary Table 5).

FADTTS analysis revealed that most of the variants listed
in Table 2 have small global p-values in multiple tracts (Fig. 8).

However, some specific tracts, including the right and left optic
tract, the left and right medial lemniscus, and the superior por-
tions of the left and right cingulum showed relatively weak asso-
ciations with these variants. In addition, some variants appear to

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa266#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa266#supplementary-data
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Figure 6. Spatiotemporal expression patterns for genes in close proximity to LD-independent SNPs with p-values smaller than 5 x 10−6. Figures include the closest

protein coding gene (±500 kb) for each SNP. Panel A. Gene expression data in fetal tissues from FANTOM (Lizio M et al. 2015). Blue is low; red is high. Panel B. Protein
expression data in fetal tissues from human proteome map (Kim MS et al. 2014). Blue is low; red is high. Panel C. Developmental gene expression patterns in human
brain. Red represents elevated prenatal expression, blue indicates elevated postnatal expression. Developmental gene expression data is from Brainspan (Kang HJ et al.

2011).
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Figure 7. Enrichment of prenatally expressed genes is restricted to the cerebellum. After LD-pruning, each single-nucleotide polymorphism (SNP) was assigned to
the nearest gene within 2 megabases. Elevated prenatal expression was defined as a fetal/postnatal log2 fold-change threshold of 0.5. Analyses were performed

using both the RNA sequencing-based Brainspan transcriptome of 15 different brain regions and microarray-based ‘BrainCloud’ dorsolateral prefrontal cortex (DLPFC)
transcriptome. To calculate values for “common_tissue”, we estimated the effect size of elevated expression in all brain tissues included in Brainspan while adjusting
for tissue type. The estimated effect size is then used to do the sign test. Panel A. −log10 P-values. Panel B. percentage of genes with elevated prenatal expression.

exert stronger effects in only a subset of tracts. In particular, the
intronic SNP in CNIH3 shows stronger associations with various
components of the arcuate fasciculus compared to other fiber
tracts.

Examination of local p-values along each individual fiber
tract showed that in most cases significance is observed along
the majority of the arc length and the effect size retains the
same directionality. However, there did appear to be a general
pattern such that the central portions of the corpus callosum
showed weak or nonexistent associations compared to the lat-
eral portions (Fig. 9, Panels A. and C.). In addition, within the
various corticofugal and corticothalamic tracts, there was a
general pattern in which stronger associations were observed in
the superior sections and weak or nonexistent asociations were
observed in the inferior sections (Fig. 9, Panels B. and C.).

CNV burden score was not significantly associated with
the DTI factor (p = 0.8216). One individual carried a rare
CNV affecting NDE1 that had 79.4% percent overlap with a
known neuropsychiatric CNV (16p13.11 microdeletions). A
scatter plot of the DTI factor suggested that this individual’s
phenotype was within the normal range among all subjects
(Supplementary Fig. 2).

Discussion
The prenatal and early postnatal period witnesses several key
events in human white matter development including axono-
genesis, fasciculation, proliferation and maturation of glial cells,
and the advent of myelination and axon elimination. Genetic
mutations can disrupt these processes, resulting in a variety
of neurological disorders. However, the role of common genetic
variation in shaping white matter development remains poorly
understood. In order to address this gap, we carried out the
first GWAS of infant white matter microstructure, assessed
via DTI. One of the challenges in carrying out a genome-wide
association study of DTI phenotypes is the high-dimensionality
of the data, which includes multiple fiber bundles with het-
erogeneous geometric structures and variation patterns. We
addressed this challenge by applying a hierarchical functional
principal regression model (Zhang et al. 2017) in order to create
a tractography-based factor that captured shared variation in
FA across 44 white matter bundles. This latent measure of
white matter microstructure explained a substantial amount

of variance across and within individual tracts. This may seem
surprising as fiber tracts are structurally, functionally, and devel-
opmentally diverse. However, our results are similar to previous
work in infants using tract average FA and more limited sets of
fibers (Lee et al. 2017; Telford et al. 2017). We hypothesize that
this latent factor is the end result of white matter maturational
processes that occurred in utero including axon formation, axon
guidance, and fasciculation. However, it is also possible that the
latent factor captures maturational processes occurring around
one month of age including proliferation and maturation of glial
cells, axonal pruning, and myelination.

Notably, this latent measure accounts for a large proportion
of heritable variation in each individual bundle. This suggests
that genetic influences on white matter microstructure, mea-
sured during early infancy, primarily operate on a global scale,
rather than being tract-specific. Subsequent analyses primarily
focused on identifying genes and molecular pathways contribut-
ing to variation shared across tracts, rather than features that
might be unique to specific tracts.

An intronic SNP in the gene PSMF1 exceeded the conven-
tional GWAS threshold of 5 x 10−8 for the tractography-based
factor. Intriguingly, PSMF1 encodes a protein that inhibits activa-
tion of the 26S proteasome, a multicatalytic proteinase complex
that may play a role in developmental axonal pruning and
synaptic plasticity (Hegde and Upadhya 2011). Specifically, the
26S proteasome degrades R subunits of cAMP-dependent protein
kinase (Hegde et al. 1993), transcriptional repressors including
CREB1b (Upadhya et al. 2004), and transcriptional activators
including C/EBP (Yamamoto et al. 1999), as well as the transcrip-
tional corepressor SnoN which promotes axonal growth (Konishi
et al. 2004). Perturbations in the ubiquitin-proteasome pathway
may play a causal role in Angelman syndrome (Hegde and
Upadhya 2011), a neurological disorder associated with abnor-
malities in white matter microstructure (Peters et al. 2011).

Additional loci nearing genome-wide significance were
located in or near genes with known roles in axon growth
and guidance, fasciculation, and myelination including B3GAT1,
TENM2, NFATC1, and MAP3K13. B3GAT1 is a key enzyme for
the biosynthesis of the carbohydrate epitope HNK-1, which
is involved in neurodevelopment and synaptic plasticity
(Kizuka and Oka 2012), including fasciculation and axonal
pathfinding (Becker et al. 2001). HNK-1 is almost entirely absent
in the brains of B3GAT1 knockout mice, which show impaired

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa266#supplementary-data
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Figure 8. LD-independent SNPs with p-values smaller than 5 x 10−6 show significant associations with FA in multiple fiber tracts. We used functional analysis of
diffusion tensor tract statistics (FADTTS) (Zhu H et al. 2011) to test for associations between our top hits and FA within individual fiber tracts. Most variants have
small global p-values across multiple tracts. Associations with the tract factor are often stronger than associations with individual tracts, revealing the power of this
analysis approach. Some tracts, including the right and left optic tract (OTL and OTR), the left and right medial lemniscus (ML and MR), and the superior portions of

the left and right cingulum (CLC and CRC) show relatively weak associations with these variants. Some variants appear to exert stronger effects in only a subset of
tracts. In particular, rs2002371 shows stronger associations with various components of the arcuate fasciculus compared to other fiber tracts. An explanation of these
abbreviations can be found in Supplementary Table 6.

synaptic plasticity and spatial learning (Yamamoto et al.
2002). TENM2 encodes a teneurin, one of a family of large cell
surface glycoproteins that regulate the establishment of proper
connectivity within the nervous system (Tucker et al. 2007;
Young and Leamey 2009). Studies of knockout mice have shown
that TENM2 is required for the establishment of ipsilateral
projections in the mouse visual system (Young et al. 2013).
NFATC1 is a transcription factor with potentially important roles
in the developing nervous system (Kipanyula et al. 2016; Vihma
et al. 2016). Targeted disruption of NFATc1 results in embryonic
lethality (de la Pompa et al. 1998). However, deletion of other
NFAT family members indicates that NFAT signaling is involved
in axon growth (Graef et al. 2003). In addition, inhibition of Nfat
activity disrupts oligodendrocyte differentiation in both rodents
and human iPSC-derived oligodendrocytes (Weider et al. 2018).
MAP3K13 is a member of serine/threonine protein kinase family
that acts as a positive regulator of axon growth in mammalian
neural cultures (Chen et al. 2016b).

GSEA suggested that the latent measure of white matter
structure evaluated in this study might be related to central
nervous system neuron axonogenesis, which showed a nom-
inally significant association with the tract factor. However,
we note that no gene sets achieved significance after multiple
comparison adjustments. We also note that FA does not index
a single biological process. As described in the introduction, FA
is affected by diverse processes including fiber organization,
proliferation of immature oligodendrocytes, and myelination
(Qiu et al. 2015).

Integration of our data with gene expression data from FAN-
TOM (Lizio et al. 2015), protein expression data from the human
proteome map (Kim et al. 2014), and developmental gene expres-
sion data from Brainspan (Kang et al. 2011) and BrainCloud

(Colantuoni et al. 2011) also highlighted potential genes of inter-
est. B3GAT1, TENM2, SCAPER, and PSMF1 all show strong pro-
tein expression in fetal brain tissue compared to non-brain
tissue. SCAPER, SETBP1, B3GAT1, and MAP3K13 show strong gene
expression in fetal brain tissue compared to non-brain tissue.
Four genes, PSMF1, SCAPER, SLC27A3, and SETBP1 show elevated
gene expression during the prenatal period across all brain
regions examined. Many other genes showed elevated prena-
tal expression in a subset of regions including B3GAT1 and
MAP3K13. In contrast to our earlier GWAS of neonatal global
brain tissue volumes (Xia et al. 2017), we did not observe sig-
nificant prenatal expression enrichment for the tractography
factor, except within the cerebellum. However, it should be noted
that both BrainCloud (Colantuoni et al. 2011) and Brainspan
(Kang et al. 2011) contain very little data for the second half of
human gestation. Consequently, they may be better suited to the
study of early neurodevelopmental processes such as neuron
production and migration. It is unlikely they would capture
gene expression changes associated with the formation and
maturation of cerebral pathways, which primarily occurs during
gestational weeks 20–45 (Kostovic and Jovanov-Milosevic 2006).

Although our primary focus in this project was on identifying
genes and molecular pathways contributing to shared variation
across tracts, we also performed secondary analyses investi-
gating relationships between our top loci and FA within and
along individual white matter tracts. In most cases, the loci we
examined showed significant associations with FA in multiple
fiber tracts. However, some specific tracts, including the right
and left optic tract, the left and right medial lemniscus, and
the superior portions of the left and right cingulum showed
relatively weak associations with all the variants we examined.
In addition, we found that some variants exert strong effects

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa266#supplementary-data
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Figure 9. LD-independent SNPs with p-values smaller than 5 x 10−6 show significant associations with FA along multiple fiber tracts. Panel A. Local test statistics
along the segment of the corpus callosum that connects left and right parietal cortex. Left side depicts effect size (Beta); right side depicts –log10 p-values. Circles

represent significant associations. Note the drop in effect size and significance in the central portion of the tract. Panel B. Local test statistics along the corticofugal
tract originating in right parietal cortex. Left side depicts effect size (Beta); right side depicts –log10 p-values. Circles represent significant associations. Note the drop in
effect size and significance in the inferior portions of this tract. Panel C. 3D representations of major fiber tracts within a glass brain: projection tracts (left) commissural
(middle), and association (right) tracts. Color represents –log10 p values for rs6077860, the intronic SNP in PSMF1. Red indicates low (more significant) p-values, blue

represents high p-values.



944 Cerebral Cortex, 2021, Vol. 31, No. 2

in only a subset of tracts. In particular, an intronic SNP in
CNIH3 appeared to be particularly important for development of
various components of the arcuate fasciculus, a complex fiber
bundle involved in language processing (Phillips et al. 2011).
Studies in rodents indicate that CNIH3 regulates the trafficking
and gating properties of AMPA- selective glutamate receptors
(AMPARs) (Herring et al. 2013; Shanks et al. 2014). This is relevant
to the current study as signaling through AMPA receptors on
oligodendrocyte precursors promotes oligodendrocyte survival,
leading to more extensive myelination (Kougioumtzidou et al.
2017).

When we examined local effects within each fiber tract,
we found that loci associated with the global tract factor also
showed significant associations with FA along vast swathes of
the individual fiber tracts. We also noted that central portions of
the corpus callosum and inferior portions of the corticofugal and
corticothalamic tracts showed weak or nonexistent associations
compared to other tract regions. Post-mortem and neuroimaging
studies suggest that myelination occurs in inferior and central
regions before superior and peripheral regions (Yakovlev and
Lecours 1967; Lebel and Deoni 2018). Consequently, we hypoth-
esize that genes involved in myelination may be primary con-
tributors to individual variation in central portions of the corpus
callosum and inferior portions of the corticthalamci and corti-
cofugal tracts at this age, while the global tract factor captures
the effects of genes involved in axonogenesis and fasciculation,
which are detectable in later maturing regions.

Finally, we did not observe a significant effect of CNV burden
on our measures of white matter microstructure. We note that
rare genic CNVs are increased in ASD (Pinto et al. 2010) and
schizophrenia (Stone et al. 2008), and that both conditions are
associated with altered white matter microstructure (Ameis and
Catani 2015; Tamnes and Agartz 2016). In addition, altered white
matter microstucture has been reported in individuals with spe-
cific neurocognitive CNVs including 22q11.2 deletion syndrome
(Villalon-Reina et al. 2013) and 16p11.2 deletions (Berman et al.
2015). It is possible that CNV burden alters postnatal devel-
opmental processes, such as myelination, which are not fully
captured by the neonate tract factor. It is also possible that dif-
ferent CNVs may influence distinct neuroimaging phenotypes,
so no consistent effect emerges for overall CNV burden. This
hypothesis is supported by a study by Stefansson et al. (2014)
in which different neuropsychiatric CNVs affected different cog-
nitive domains. One individual in the current study carried a
rare CNV which overlapped with a known neurocognitive CNV,
specifically a deletion in 16p13.11 impacting the NDE1 gene.
Deletions in this area are associated with intellectual disability
(Ullmann et al. 2007; Hannes et al. 2009; Loureiro et al. 2017),
epilepsy (de Kovel et al. 2010; Heinzen et al. 2010), and possibly
schizophrenia (Need et al. 2009). However, we note that the
16p13.11 deletion may not, in itself, be sufficient to cause a phe-
notype, acting istead as a susceptibility locus for neurocognitive
disease. This individual had a tract factor value in the typical
range as a neonate, but this does not rule out the possibility that
his or her white matter development might deviate postnatally,
or that other neuropsychiatric CNVs might influence neonatal
white matter microstructure.

In conclusion, we have shown that common genetic varia-
tion influences white matter microstructure measured in early
infancy using a GWAS design. Strengths of this study include 1)
focus on a key period in human brain development, 2) use of a
large and richly characterized cohort of human infants, 3) using
a novel approach to address the high-dimensionality of DTI

data, and 4) integration of genomics data with transcriptomic
data to enhance our fundamental understanding of how genetic
factors influence white matter development. The study also had
certain limitations. First, the current analysis is cross-sectional
and does not capture genetic influences on change in white
matter microstructure over time. Second, although we used one
of the largest infant neuroimaging cohorts ever assembled, our
analysis is only powered to capture large genetic effects, not
moderate or small effects. Finally, the current study was not
sufficiently powered to run separate whole genome association
analyses for 44 different white matter tracts. Instead, we used
a hierarchical functional principal regression model (HFPRM)
to identify a latent measure of white matter microstructure
which explains a substantial amount of variation across and
within tracts. In other words, the current analysis primarily
focused on genetic influences that were shared across tracts,
rather than features that might be unique to specific tracts.
We note that there is both systematic and individual varia-
tion in the cytoarchitecture of the human cortex (Rajkowska
and goldman-Rakic 1995; Economo et al. 2008) and that this
variability may have important consequences for white matter
microstructure in corticocortical and corticosubcortical connec-
tions. For example, neuron density in prefrontal cortex gray
matter is strongly related to the density of myelinated axons
in the underlying white matter (Zikopoulos et al. 2018). Future
studies in larger samples should address how common genetic
variation contributes to variation which is tract-specific.

This is the first study of its kind and independent replication
is critical. Nevertheless, the current results suggest this
approach will be fruitful. They also add to a growing body
of research implicating the ubiquitin-proteasome system in
white matter development. Ultimately, a better understanding
of genetic influences on early white matter development could
significantly advance our understanding of disorders of axon
guidance as well as other neurological and psychiatric condi-
tions characterized by altered white matter microstructure, and
open up new treatment possibilities centered on normalizing
adverse developmental trajectories.
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Supplementary material can be found at Cerebral Cortex online.
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