
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Environment International 146 (2021) 106316

Available online 7 December 2020
0160-4120/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Long-term exposure to air-pollution and COVID-19 mortality in England: A 
hierarchical spatial analysis 

Garyfallos Konstantinoudis *, Tullia Padellini , James Bennett , Bethan Davies , Majid Ezzati , 
Marta Blangiardo 
MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK   

A R T I C L E  I N F O   

Handling Editor: Hanna Boogaard  

Keywords: 
COVID-19 
Mortality 
Nitrogen dioxide 
Particular matter 
Air-pollution 
Bayesian spatial models 

A B S T R A C T   

Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, 
due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, 
and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to 
NO2 and PM2.5 on COVID-19 mortality in England using high geographical resolution. In this nationwide cross- 
sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super 
Output Area level (n = 32,844 small areas). We retrieved averaged NO2 and PM2.5 concentration during 
2014–2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of 
air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% 
credible interval: − 0.2%, 1.2%) and 1.4% (95% CrI: − 2.1%, 5.1%) increase in COVID-19 mortality risk for every 
1 μg/m3 increase in NO2 and PM2.5 respectively, after adjusting for confounding and spatial autocorrelation. This 
corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative 
risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the 
spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long- 
term NO2 exposure on COVID-19 mortality, while the effect of PM2.5 remains more uncertain.   

1. Introduction 

As of 30th of June 2020, COVID-19 has caused more than 500,000 
deaths globally, with an estimated case fatality of 1–4% (Hauser et al. 
2020). The UK is one of the countries most affected, with an estimated 
57,300 more deaths in England and Wales than it would be expected 
from mid-February to end of May 2020 had the pandemic not taken 
place (Kontis et al. 2020). Established risk factors of COVID-19 mortality 
include age, sex and ethnicity (Wu et al. 2020). Previous studies have 
observed a correlation between pre-existing conditions such as stroke, 
hypertension and diabetes (Williamson et al. 2020; Yang et al. 2020). 
Long-term exposure to air-pollution has been hypothesised to worsen 
COVID-19 prognosis: either directly, as it can suppress early immune 
responses to the infection (E. Conticini et al. 2020), or indirectly, as it 
can increase the risk of stroke, hypertension and other pre-existing 
conditions (Giorgini et al. 2016; Scheers et al. 2015). 

Previous studies suggested an effect of long-term exposure to air- 
pollution on COVID-19 mortality (Cole et al. 2020; Liang et al. 2020; 

Travaglio et al. 2020; Wu et al. 2020), however several methodological 
shortcomings limit their interpretability. They were based on data 
aggregated on large spatial units and thus suffer from ecological fallacy 
(grouped levels association do not reflect individual ones) (Wakefield 
2008). Air pollution is characterised by high spatial variability, making 
the availability of mortality data at the same high spatial resolution 
crucial (Villeneuve and Goldberg 2020). In addition, a coarse 
geographical resolution might lead to inadequate adjustment for con
founders, when these are available at higher resolution (Villeneuve and 
Goldberg 2020). Most previous studies assessed cumulative deaths until 
mid or end of April and thus the generalisability of their results is limited 
to the early stages of the epidemic (Liang et al. 2020; Travaglio et al. 
2020; Wu et al. 2020). One study had data available up to June 5, 2020 
(Cole et al. 2020) and another up to June 12, 2020 (Statistics 2020), 
capturing a proportion COVID-19 deaths attributable to the first wave. 

In this nationwide study in England, we investigated the effect of 
long-term exposure to air pollution on COVID-19 mortality during the 
entire first wave of the epidemic, after accounting for confounding and 
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spatial autocorrelation. We focused on exposure to NO2 and PM2.5 (at
mospheric particulate matter that has a diameter of less than 2.5 µm). 
We downscaled the LTLA geographical information to the Lower Layer 
Super Output Area (LSOA) to alleviate the effect of ecological bias and 
exploit the variability of the exposure at high geographical resolution. 

2. Methods 

2.1. Study population 

We included all COVID-19 deaths as reported to Public Health En
gland (PHE) by June 30, 2020. These include deaths that had a labo
ratory confirmed report of COVID-19 (including at post-mortem) 
(EpiCell 2020), as well as suspected COVID-19 deaths, defined as deaths 
without a positive test but with mention of COVID-19 in the death 
certificate. These definitions were consistent during the study period 
and over the study region. The main outcome of this study was labora
tory confirmed deaths. We selected COVID-19 deaths up to June the 
30th to ensure we captured COVID-19 deaths attributable to the first 
wave of epidemic that in England and Wales was over by the end of May, 
when all-cause mortality was no longer elevated (Kontis et al. 2020). 
Individual data on age, sex, ethnicity, lower tier local authority (LTLA) 
of the residential address and type of residence type (i.e. nursing homes, 
prisons, medical facilities etc.) were available. Population at risk in 
England was available through Office for National Statistics (ONS). In
formation at the LSOA level about age and sex was available for 2018, 
whereas about ethnicity for 2011 (the most recent years available at 
time of analysis). 

2.2. Downscaling 

There were 317 LTLAs in England in 2019 (Supplemental Material 
Fig. S1). Such a coarse geographical unit is not expected to capture the 
strong localised spatial patterns of air-pollution. We thus downscaled 
the LTLA geographical information to the LSOA level. LSOAs are high 
resolution geographical units in England (32,844 units in 2011, see 
Supplemental Material Fig. S2). The median population per LSOA in 
2018 was 1617, varying from 591 to 14,696 (min to max) (Supplemental 
Material Fig. S3), and the median area per LSOA was 0.4km2, varying 
from 0.0002km2 to 68.4km2(min to max). The LTLA boundaries are 
revised every year, whereas the LSOA ones at census. Let l̃m denote that 
the l-th LSOA belongs to the m-th LTLA, nijkm the number of deaths in the 

m-th LTLA and Pijkl the population in the i-th age group (1<, 1–4, 5–9, …, 
85–90, >90), j-the sex (male or female), k-th ethnic group (White, 
Mixed, Asian, Black, Other) and l-th LSOA. We sampled nijkm individual 
deaths at the l-th LSOA level from a Multinomial distribution with 
probabilities: 

πijkl = Pijkl

/
∑

l̃m

Pijkl,

and repeated the procedure 100 times. 

2.3. Exposure 

We considered exposure to NO2 and PM2.5 as indicators of air 
pollution. We selected these pollutants because: 1) they reflect different 
sources of air-pollution (NO2 reflects traffic related air-pollution, 
whereas PM2.5 is a combination of traffic and non-traffic sources), 2) 
they were considered in previous studies (Cole et al. 2020; Liang et al. 
2020; Travaglio et al. 2020; Wu et al. 2020), and 3) they are responsible 
for the highest number of years of life lost compared to other pollutants 
in Europe (Ortiz 2019). We retrieved NO2 and PM2.5 concentration in 
England from the Pollution Climate Mapping (PCM; https://uk-air.defr 
a.gov.uk/). The PCM produces annual estimates during 2001–2018 for 
NO2 and 2002–2018 for PM2.5 at 1x1km resolution for the UK. The PCM 
model is calibrated using monitoring stations across the nation and has 
high predictive accuracy, R2 = 0.88 for NO2 and R2 = 0.63 for PM2.5 
(Brookes 2017). We defined long-term exposure to these compounds as 
the mean of the past 5 years for which data was available at the time of 
analysis, i.e. 2014–2018. An alternative is calculating the median, 
however the distribution of the air-pollutants using any of these metrics 
is almost identical, (Supplemental Material Fig. S4). We weighted the 
exposure using a combination of population estimates available from the 
fourth version of Gridded Population of the World collection at 1x1km 
grid as of 2020 (Center for International Earth Science Information 
Network - CIESIN - Columbia University 2018) and from ONS at LSOA 
level as of 2018. Let Xgl be the pollutant and Pgl the population in the 
intersection of the g-th grid cell and l-th LSOA. Assuming the Xg is 
constant (i.e. Xgl = Xg for all intersections) in the g-th grid cell, we define 
the population weighted version Xlof Xgl as: 

Xl =

∑
glPglXg

∑
glPgl

.

Table 1 
Data sources used in the analysis.  

Confounders Source Spatial Resolution Temporal 
Resolution 

Type 

Temperature MetOffice 
https://www.metoffice.gov.uk/ 

1 km2 March-June 2018 continuous 

Relative humidity MetOffice 
https://www.metoffice.gov.uk/ 

1 km2 March-June 2018 continuous 

Index of Multiple Deprivation Ministry of Housing, Communities and Local 
Government 
https://www.gov.uk/ 

Lower layer super output area 2019 rank (quintiles) 

Urbanicity Office for National Statistics 
https://www.ons.gov.uk/ 

Lower layer super output area 2011 urban/rural 

Days since 1st reported case Public Health England Lower tier local authority Until 30th June continuous 
Number of positive cases Public Health England Lower tier local authority Until 30th June discrete (counts) 
Population density Office for National Statistics 

https://www.ons.gov.uk/ 
Lower layer super output area 2018 continuous (log 

transformed) 
Number of intensive care unit 

beds 
National Health Service 
https://www.england.nhs.uk/ 

National Health Service trust February 2020 continuous (per 
population) 

Smoking Public Health England 
https://fingertips.phe.org.uk/ 

General practitioner catchment 
area 

2018–2019 continuous (prevalence) 

Obesity Public Health England 
https://fingertips.phe.org.uk/ 

General practitioner catchment 
area 

2018–2019 continuous (prevalence) 

High Risk Occupation Office for National Statistics 
https://www.ons.gov.uk/ 

Middle layer super output area 2011 continuous (prevalence)  
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To calculate Pgl, we first compute wgl = wgl/
∑

glwgl, where wgl is the 
area weight per intersection. Then calculate the population per inter
section: Pgl’ = Pgwgl. We then use the Pl (LSOA populations) and obtain 
Pgl = vglPl, where vgl is the normalised Pgl’, ie vgl = Pgl’/

∑
glPgl’. 

2.4. Confounders 

We considered confounders related with meteorology, socio- 
demographics, disease spread, healthcare provision and health related 
variables (Table 1). As meteorological confounders, we considered 
temperature and relative humidity and calculated the mean for March- 
June 2018 as this is the latest year with data available at 1x1km grid 
retrieved from the MetOffice. We weighted temperature and relative 
humidity using the population weights calculated for the air-pollution 
exposure. As socio-demographical confounders we considered age, 
sex, ethnicity, deprivation, urbanicity, population density and occupa
tion. Information on age (2018), sex (2018), ethnicity (2011), urbanicity 
(2011) and population density (2018) was available at the LSOA level 
from ONS (the most recent years available at time of analysis). To adjust 
for deprivation, we used quintiles of the index of multiple deprivation at 
LSOA level in 2019 (Ministry of Housing, Communities and Local Gov
ernment), excluding the dimension related to air quality. We used esti
mates of occupational exposures to COVID-19, as calculated by ONS, to 
adjust for high risk exposure to COVID-19, defined as those with a score 
higher than 80/100 (corresponding to at least >1 per week exposed to 
someone infected, Supplemental Material Text S1.1 and Table S1). To 
account for disease progression, we used the number of days since the 
1st reported case and the number of positive cases in each LTLA (as of 
30th of June 2020, as retrieved from PHE). Adjustment for the latter 
factors is expected to attenuate geographical differences generated due 
to regional differences about the timing on the pandemic curve. For 
healthcare provision, we used the number of intensive care unit beds per 
population, in February 2020 per NHS trust, as retrieved from NHS. Last, 
as health-related variables, we considered smoking and obesity preva
lence at the GP practice level during 2018–2019, as retrieved from PHE 
(Supplemental Material Text S1.1). 

2.5. Statistical methods 

We specified Bayesian hierarchical Poisson log-linear models to 
investigate the association of COVID-19 deaths and NO2 and PM2.5 
independently. The LSOA specific standardised mortality ratio is known 
to be an unstable estimator with high variance when the number of 
expected deaths is small. To overcome this problem, we used a well- 
established hierarchical framework, specifying spatially structured and 
unstructured random effects, so that the model borrows strength from 
the other areas across the entire study region, as well as from the 
neighbouring ones (Best et al. 2005; Wakefield et al. 2000; Wakefield 
2006). We model these random effects using a re-parametrisation of the 
Besag-York-Molliè conditional autoregressive prior distribution (Besag 
et al. 1991; Simpson et al. 2017). We fitted four models including: 1) 
each pollutant (model 1), 2) each pollutant and the spatial autocorre
lation term (model 2), 3) each pollutant and all confounders (model 3) 
and 4) each pollutant, the spatial autocorrelation term and all con
founders (model 4). All models were adjusted for age, sex and ethnicity 
using indirect standardisation; we used the English population as the 
standard population to calculate the rates. We do not report results from 
the joint analysis including both pollutants since they are highly 
correlated (Supplemental Material Figure S5). 

In order to propagate the uncertainty resulted from the sampling we 
used for the downscaling, we fitted the models over 100 downscaled 
samples and then performed Bayesian model averaging to combine the 
estimates (Gómez-Rubio et al. 2020). We performed a complete case 
analysis since for only 1.1% of the cases information about age, sex and 
ethnicity is missing. We report results as posterior median of % increase 

in mortality risk for every 1 μg/m3 increase in the air-pollutants, 95% 
credible intervals (CrI) and posterior probability that the estimated ef
fect is positive. We also report posterior median of spatial mortality 
relative risks (exponential of the spatial autocorrelation term) and 
posterior probabilities that the spatial relative risks are larger than 1. 

The mathematical formulation of the models and prior specifications 
are given in the Supplemental Material Text S1.2. 

All models were fitted in INLA (Rue et al. 2009). Covariate data and 
code for running the analysis are available at https://github.com/gkonst 
antinoudis/COVID19AirpollutionEn. 

2.6. Sensitivity analyses 

We performed a series of sensitivity analyses. First, we repeated the 
main analyses using data at the LTLA level with all exposures and con
founding weighted by population. Second, we examined if there is a 
differential effect of long-term exposure to air-pollution at the early 
stages of the epidemic, considering the lockdown (23rd of March 2020) 
as a landmark. Third, we assessed the correlation between the latent 
field of the full model (model 4) with that of the model excluding or 
including only covariates indicating disease spread (i.e. number of 
tested positive cases and days since first reported cases). Fourth, we 
categorised pollutants into quintiles to allow more flexible fits. Fifth, we 
repeated the analysis including the suspected cases to the outcome. 
Sixth, we repeated the analysis changing the definition of long-term 
exposure to the mean of the past 3 and 10 years for which data was 
available at the time of analysis, i.e. 2016–2018 and 2009–2018. Sev
enth, we fitted a zero-inflated Poisson model to account for the pro
portion of zeros in the data (36% in the 100 samples – see Supplemental 
Material Fig. S6). 

3. Results 

3.1. Study population 

We identified 38,573 COVID-19 deaths with a laboratory confirmed 
test in England between 2nd March and 30th June (Fig. 1). The age, sex 
and ethnicity distribution of the deaths follows patterns reported pre
viously (Supplemental Material Tables S2-3). 

Fig. 1. Flowchart of the COVID-19 deaths.  
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3.2. Exposure 

Fig. 2 shows the population weighted air-pollutants at LSOA level in 
England. We observe that the localised variation of NO2, for instance due 
to the highways, is adequately captured at the spatial resolution of the 
LSOAs. The mean of NO2 is 16.17 μg/m3 and it varies from 2.99 μg/m3 in 

highly rural areas to 50.69 μg/m3 in the big urban centres (Fig. 2). The 
mean of PM2.5 is 9.84 μg/m3 with a smaller variation, 5.14–14.22 μg/m3 

(Fig. 2). 

3.3. Confounders 

Plots and maps of the confounders can be found in Supplemental 
Material, Fig. S7-17. 

3.4. No2 

We observe a 2.6% (95%CrI: 2.4%, 2.7%) increase in the COVID-19 
mortality risk for every 1 μg/m3 increase in the long-term exposure to 
NO2, based on model 1 (Fig. 3 & Supplemental Material Table S4). There 
is still evidence of an effect, albeit smaller, once we adjust for spatial 
autocorrelation or confounders, with increases in the long-term expo
sure to NO2 of, respectively, 1.3% (95% CrI: 0.8%, 1.8%), 1.8% (95% 
CrI: 1.5%, 2.1%) for every 1 μg/m3. When we adjust for both autocor
relation and confounders the evidence is less strong, with estimates of 
0.5% (95% CrI: − 0.2%, 1.2%) for every 1 μg/m3 (Fig. 3 & Supplemental 
Material Table S4) and posterior probability of a positive effect reaching 
0.93. The spatial relative risk in England varies from 0.24 (95% CrI: 
0.08, 0.69) to 2.09 (95% CrI: 1.30, 3.11) in model 2 and from 0.30 (95% 
CrI: 0.10, 0.84) to 1.87 (95% CrI: 1.18, 2.93) in model 4, implying that 
the confounders explain very little of the observed variation (Fig. 3). The 
variation is more pronounced in the cities and suburban areas (with 
posterior probability higher than 1; Fig. 3). 

3.5. Pm2.5 

We observe a 4.4% (95% CrI: 3.7%, 5.1%) increase in the mortality 
risk for every 1 μg/m3 increase in the long-term exposure to PM2.5, based 
on model 1 (Fig. 3 & Supplemental Material Table S5). When we adjust 
for spatial autocorrelation the effect increases slightly but the credible 
intervals are wider, 5.4% (95% CrI: 2.5%, 8.4%), whereas it is similar 
when we adjust for confounding 4.9% (95% CrI: 3.7%, 6.2%) (Fig. 3 & 
Supplemental Material Table S5). The effect is weak when we account 
for confounders and spatial autocorrelation 1.4% (95% CrI: − 2.1%, 
5.1%) (Fig. 3 & Supplemental Material Table S5). The posterior proba
bility of a positive effect is lower than observed for NO2, and equal to 
0.78. The spatial relative risk follows similar patterns as the one re
ported in the models for NO2, with the posterior median relative risk 
varying from 0.24 (95% CrI: 0.12, 0.46) to 2.26 (95% CrI: 1.32, 3.85) in 
model 2 and from 0.30 (95% CrI: 0.15, 0.57) to 1.90 (95% CrI: 1.14, 

Fig. 2. Population weighted exposure per LSOA.  

Fig. 3. Density strips for the posterior of COVID-19 mortality relative risk with 
1 μg/m3 increase in NO2 (top panel) and PM2.5 (bottom panel) averaged long- 
term exposure. 
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3.17) in model 4 (Supplemental Material, Fig. S18). 

3.6. Sensitivity analyses 

When LTLAs are the main geographical unit for analysis, the results 
are consistent, but higher in magnitude, potentially due to inadequate 
covariate and spatial autocorrelation adjustment due to the coarse 
geographical resolution (Supplemental Material Tables S6-7, Fig. S19- 
20). Restricting the study period to March 23, 2020 (N = 698) also re
sults in similar estimates for both pollutants, however the uncertainty is 
higher (Supplemental Material Tables S8-9, Fig. S21-22). The latent field 
of model 4, with NO2 as the pollutant, is similar to the latent fields of the 
models with and without the disease progression variables, with a cor
relation coefficient of 0.94 and 0.93 respectively (Supplemental Mate
rial Fig. S23). The use of quintiles of the pollutants justifies the linearity 
assumption (Supplemental Material Fig. S24). The results are consistent, 
but the evidence weaker, when suspected COVID-19 deaths are included 
(Supplemental Material Tables S10-11, Fig. S25-26). The results are also 
similar when we used a 3 or a 10-year mean of the air-pollutants con
centration (Supplemental Material Fig. S27). The results are consistent 
when we fitted a zero-inflated Poisson (Supplemental Material 
Tables S12-13 and Fig. S28-29). 

3.7. Post-hoc analysis 

In a post-hoc analysis we investigated if the evidence of an effect of 
NO2 on COVID-19 mortality can be attributed to pre-existing conditions. 
We selected hypertension, chronic obstructive pulmonary disease 
(COPD) and diabetes, because of 1) indications of previous literature 
that they increase the COVID-19 mortality risk (Williamson et al. 2020; 
Yang et al. 2020), 2) previous literature that suggest an effect with long- 
term exposure NO2 (Balti et al. 2014; Cai et al. 2016; Zhang et al. 2018) 
and 3) data availability. We retrieved prevalence data for these pre- 
existing conditions from PHE available at the GP practice level during 
2018–2019 (https://fingertips.phe.org.uk/), Supplemental Material 
Fig. S30-32. The effect of NO2 remains similar, 0.6% (95% CrI: − 0.1%, 
1.3%) with the posterior probability being 0.94 whereas the spatial 
relative risk highlights the same geographical locations, Supplemental 
Material Fig. S33. 

4. Discussion 

4.1. Main findings 

This is the first nationwide study in England investigating the effect 
of long-term exposure to NO2 and PM2.5 during 2014–2018 on COVID- 
19 mortality at LSOA level. The unadjusted models indicate that for 
every 1 μg/m3 increase in the long-term exposure to NO2 and PM2.5 the 
COVID-19 mortality risk increases. After considering the effect of con
founding and spatial autocorrelation there is still some evidence of an 
effect, albeit is less strong, for NO2, while for PM2.5 there is larger un
certainty. The spatial relative risk has strong spatial patterns, identical 
for the different pollutants, potentially highlighting the effect of disease 
spread. 

4.2. Comparison with previous studies focusing on NO2 

Our study is comparable with previous studies in the US, England 
and the Netherlands assessing the long-term effect of NO2 in COVID-19 
mortality. The study in the US focused on deaths reported by April 29, 
2020, using 3122 counties. For the exposure, they calculated the mean 
of daily concentrations during 2010–2016 as modelled by a previously 
described ensemble machine learning model (R2 = 0.79) (Di et al., 
2019a). They reported a 7.1% (95% Confidence Interval: 1.2%, 13.4%) 
increase in mortality per 4.5 ppb (1 ppb = 1.25 μg/m3) increase in NO2 
after adjusting for confounders and spatial autocorrelation(Liang et al. 

2020)(that is approximately 1.3% increase per 1 μg/m3). A study in 
England, with partly overlapping data as in our analysis, also reported a 
significant association between NO2 and COVID-19 mortality (p < 0.05). 
For the analysis they focused on COVID-19 deaths reported in England 
up to April 10, 2020, used 317 LTLAs, and did not account for spatial 
autocorrelation (Travaglio et al. 2020). The study in the Netherlands 
using 335 municipalities, mean exposure during 2015–2019 and COVID- 
19 deaths up to June 5, 2020 reported 0.35 (95% CI: 0.04, 0.66) addi
tional COVID-19 deaths for every 1 μg/m3 increase in NO2 after 
adjusting for confounders and certain spatial controls, such as trans
mission beyond the Dutch national borders (Cole et al. 2020). Since the 
mean number of deaths in their sample is 16.86, the above estimate 
translates to a 2.0% increase in the COVID-19 mortality for every 1 μg/ 
m3 increase in NO2. An ONS report in England using 175 sampling units, 
10-year averaged NO2 exposure (PCM) and COVID-19 deaths up to June 
12, 2020 found a 0.6% (95% CI: − 0.1%, 2.2%) increase in the COVID-19 
mortality for every 1 μg/m3 increase in averaged NO2 exposure (Sta
tistics 2020). 

4.3. Comparison with previous studies focusing on PM2.5 

Our study is comparable with previous studies assessing the long- 
term effect of PM2.5 on COVID-19 mortality. The aforementioned 
study in the US also assessed the effect of PM2.5 on COVID-19 mortality 
(Liang et al. 2020). Their exposure model was previously validated 
having an R2 = 0.89 for the annual estimates (Di et al. 2019b). The 
evidence for PM2.5 was weak, namely 10.8% (95% CI:-1.1%, 24.1%) per 
3.4 μg/m3 increase in PM2.5 concentration (that is approximately 3.2% 
increase per 1 μg/m3) after adjusting for confounding and spatial 
autocorrelation. The ONS report in England found a 1% (95% CI: − 3%, 
6%) increase in the COVID-19 mortality for every 1 μg/m3 increase in 
the 10-year averaged PM2.5 exposure (Statistics 2020). Our study comes 
in contrast with another study in the US that used deaths reported until 
April 22nd, 2020 and counties as the geographical unit (Wu et al. 2020). 
For the exposure, they used previously validated monthly PM2.5 con
centrations (R2 = 0.70) (Van Donkelaar et al. 2019) and averaged them 
during 2000 and 2016. After adjusting for confounding but not for 
spatial autocorrelation, they found an 11% (95% CI: 6%, 17%) increase 
in the COVID-19 death rate for an increase of 1 μg/m3 in PM2.5 con
centration (Wu et al. 2020). Our study comes also in contrast with the 
study in the Netherlands that reported 2.3 (95% CI: 1.3, 3.0) additional 
COVID-19 deaths for an increase of 1 μg/m3 in the averaged long-term 
PM2.5 concentration (Cole et al. 2020). Having a mean number of 
deaths equal to 16.86, the above estimate translates to a 13.6% increase 
in the COVID-19 mortality rate for an increase of 1 μg/m3 in PM2.5 
concentration. 

4.4. Strengths and limitations 

Our study is the first study to examine the association between long- 
term exposure to NO2 and PM2.5 and COVID-19 mortality at very high 
geographical precision. The spatial unit of our analysis is LSOAs, for 
which there are 32,844 in England (~130 000 km2), whereas previous 
studies have used 317 LTLAs or 175 sampling units in England, counties 
in the US (3 122 in an area ~9.8 million km2) and municipalities in the 
Netherlands (334 in an area ~41 500 km2). Such high-resolution allows 
capturing the localised geographical patterns of the pollutants but also 
ensures adequate confounding and spatial autocorrelation adjustment. 
Our study also covers, so far, the largest temporal window of the 
epidemic (capturing COVID-19 deaths attributable to the first wave, 
Supplemental Material Fig. S34), while most previous studies focused on 
the early to mid-stages of the first wave. This ensures better general
isability of the results. In addition, physical distancing and other public 
health interventions were introduced nationwide in England during the 
first epidemic, mitigating any distortion between air-pollution and 
COVID-19 mortality due to potential regional level differences. Our 
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results are also consistent in a sensitivity analysis focusing on the pre- 
lockdown period, in the absence of public health interventions. Based 
on the scientific literature, we adjusted for several variables which 
would act as the confounders of the relationship between air pollution 
and COVID-19 mortality. Nevertheless, since the aetiology and the fac
tors contributing to COVID-19 mortality are not fully understood yet, we 
included a spatial random effect to capture unknown spatial con
founding. The spatial random effect was found to be a crucial compo
nent in the model. Not accounting for spatial autocorrelation, when 
spatial autocorrelation is present, is expected to give rise to narrower 
credible intervals and false positive effects (Lee and Sarran 2015). 

Our study has also some limitations. The downscaling procedure will 
likely inflate the reported credible intervals. However, this naturally 
reflects the uncertainty of the place of residence resulted from the 
downscaling approach. Although we consider small areas, the study is 
still an ecological one and thus the reported effects do not reflect indi
vidual associations (Wakefield 2008). Case fatality might have been a 
more appropriate metric for the analysis, since disease spread is 
accounted for in the denominator. Nevertheless, given the asymptom
atic infections and the fact that number of reported infections is not a 
random sample of the general population, the number of COVID-19 
cases per LTLA is not reliable at this stage. For the same reason, using 
the number of reported cases to adjust for disease progression and 
clustering of cases and deaths might not adequately capture disease 
progression and clustering of cases and deaths. However, part of this 
clustering was captured in the spatial autocorrelation term. We did not 
account for population mobility during 2014–2018 and assumed 

constant residence and thus levels of exposure to air-pollution. While 
this is a limitation, we believe that it would have a minimal impact on 
the results given that 1) the exposure period is relatively short and 2) 
almost 93% of the deaths in our dataset occurred in people 60 years or 
older (Supplemental Material Table S2). This comprises a population 
less likely to have moved during the past 5 years (Burgess and Quinio 
2020). We also could not account for non-residential air-pollution 
exposure. Spatiotemporal variation in the strains of COVID-19 can 
introduce bias (Villeneuve and Goldberg 2020), however at the time of 
publication there was no evidence supporting that strain types can 
confound the relationship between COVID-19 mortality and air- 
pollution. 

4.5. Interpretation 

Compared to the previous studies, our results are the smallest in 
magnitude, likely because of the high geographical precision that allows 
more accurate confounding and spatial autocorrelation adjustment. In 
addition, we report weak evidence of an effect, which could also be due 
to lack of power and individual exposure data. Nevertheless, as for NO2 
we find a high posterior probability of an effect on mortality, we argue 
that a potential explanation might be the mediation effect of pre-existing 
conditions. While in our analysis the inclusion of area-level prevalence 
of hypertension, diabetes and COPD did not change the results, the 
ecological nature of the pre-existing conditions data does not allow us to 
account for the mediation effect at the individual level. Our study fo
cuses on the mortality after contracting SARS-CoV-2, however we 

Fig. 4. Median posterior spatial relative risk (exponential of the spatial autocorrelation term) and posterior probability that the spatial relative risk is larger than 1 
for the models with NO2 and a spatial autocorrelation term and the fully adjusted NO2 model. 
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cannot rule out individual susceptibility to becoming infected as an 
explanation to the uncertainty in the effect estimates (Villeneuve and 
Goldberg 2020). Such susceptibility can reflect immunosuppression, 
leading to later increases in inflammation (Edoardo Conticini et al. 
2020) and thus worse prognosis, or even disease spread, as recent 
studies have suggested that PM2.5 can proliferate COVID-19 trans
mission (Bianconi et al. 2020). 

Our analysis captured strong spatial autocorrelation. The observed 
pattern could reflect residual variation from a potential inadequate co
variate adjustment (including disease spread), spatial variation of pre- 
existing conditions, other unknown spatial confounders or a combina
tion from all above. In a sensitivity analysis, we observed that the factors 
associated with disease transmission left the latent field unchanged 
(Supplemental Material Fig. S21), as did the inclusion of hypertension, 
diabetes and COPD (Supplemental Material Fig. S33). When we 
restricted the analysis to the pre-lockdown period, the latent field for 
both pollutants captured London and Birmingham, i.e. the cities with the 
first outbreaks. Considering the above, and the fact that COVID-19 is an 
infectious disease, we believe that large variation of Fig. 4 is likely due to 
disease spread, which is not adequately captured in the disease pro
gression covariates. 

5. Conclusion 

Overall, this study provides some evidence of an association between 
averaged exposure during 2014–2018 to NO2 and COVID-19 mortality, 
while the role of PM2.5 remains more uncertain. 
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