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Abstract

There have been many improvements and advancements in the application of neural networks in the mining industry. In this
study, two advanced deep learning neural networks called recurrent neural network (RNN) and autoregressive integrated moving
average (ARIMA) were implemented in the simulation and prediction of limestone price variation. The RNN uses long short-
term memory layers (LSTM), dropout regularization, activation functions, mean square error (MSE), and the Adam optimizer to
simulate the predictions. The LSTM stores previous data over time and uses it in simulating future prices based on defined
parameters and algorithms. The ARIMA model is a statistical method that captures different time series based on the level, trend,
and seasonality of the data. The auto ARIMA function searches for the best parameters that fit the model. Different layers and
parameters are added to the model to simulate the price prediction. The performance of both network models is remarkable in
terms of trend variability and factors affecting limestone price. The ARIMA model has an accuracy of 95.7% while RNN has an
accuracy of 91.8%. This shows that the ARIMA model outperforms the RNN model. In addition, the time required to train the
ARIMA is than that of the RNN. Predicting limestone prices may help both investors and industries in making economical and
technical decisions, for example, when to invest, buy, sell, increase, and decrease production.

Keywords Limestone - Recurrent neural network - Long short-term memory - Autoregressive integrated moving average - Price -
Predict

1 Introduction around the surface of the earth. Limestone is found in many
parts of the world. China alone produces about 62% of the
world’s limestone, followed by Europe, the USA, and Japan

[30]. Previous studies forecast that the consumption of lime-

Limestone plays a vital role in the world. Limestone is a spe-
cial type of sedimentary rock. It makes up about 10% of the

earth’s sedimentary rocks. According to research, about 25%
of the world’s population derives their water from limestone
and about 50% of oil and gas reserves are trapped in limestone
rocks [38]. Limestone is mainly formed by the deposition of
sediments and biomineralization. It is commonly found
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stone will grow by 2% annually. Limestone is used as a raw
material in the production of cement, tiles, lime steel produc-
tion, the treatment of waste, and other products (Hakan [25,
27]). Limestone can also be used in the agricultural sector and
in the treatment of glass [23]. Limestone serves as a raw ma-
terial for many other downstream industries [13]. The demand
for limestone is expected to increase by 6% in the construction
industry and to find an application in water treatment [36].
According to the World Water Report in 2018, the consump-
tion of water increased by 1% every year due to the increase of
economic development and growth in population [26].
Despite the fact that the price of limestone is relatively low
compared to other mining products such as gold, silver, and
diamonds, its price in the world market undervalues its true
economic importance.

There are many factors which affect the production and the
prices of limestone. Edward and Samuel suggested that the
four main factors affecting limestone production are the
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location (proximity to good market, infrastructures such as
roads, energy, and delivery), the grade of the limestone, the
closeness to the surface, and a cheaper labor force [23].

Most scholars argue that one of the main factors affecting
the prices of limestone is competition. Competition is defined
by a number of factors such as the market, cheap labor, qual-
ity, accessibility, energy, and even the location of the mine
[51]. Competition may occur at any stage during production
or at the market level (production rate, selling price, and de-
mand and supply). Jessica et al. suggested that one of the main
causes of competition is oversupply by the entry of new sup-
pliers which causes competitiveness in the stock market [32].

One important factor that can directly influence the prices
of limestone is the energy used during mining and processing.
Energy has a positive correlation with limestone prices. An
increase in energy prices will lead to an increase in the prices
of limestone and vice versa. According to National Stone,
Sand and Gravel Association (NSSGA), and the Natural
Stone Council (NSC), major energies used in mining and pro-
cessing of limestone are electricity, coal, gasoline, natural gas,
liquid fuel, and renewable energy [24, 49]. According to the
U.S. Energy Administration, liquid fuel accounts for 29.4%,
coal 25.2%, natural gas 22.9%, electricity 15.1%, and renew-
able energy 7.4% of industrial energy consumption in the
world [50].

Another factor that may influence the limestone market is
the demand by construction industries. Limestone is used by
the construction industries to build houses, roads, railways,
dams, and other infrastructures. According to the Institute of
Civil Engineering (ICE), the construction industry is expected
to reach about $8 trillion globally. An increase in the construc-
tion industry will lead to an increase in the demand for lime-
stone. Limestone is also used as a raw material in the produc-
tion of cement. An increase in the prices of limestone will lead
to an increase in the prices of cement and vice versa.

Gold is used as a store for wealth which can indirectly
influence limestone prices. Gold can influence market prices
in terms of inflation, uncertainty, and interest rates. For exam-
ple, when inflation increases, the demand for gold increases as
the real value of currencies decreases; investors tend to buy
more gold to preserve their wealth rather than investing in
other products such as limestone [55]. Unlike inflation, inter-
est rates have a negative relationship with gold. An increase in
interest rates will lead to a decrease in the prices of gold. An
increase in interest rates is usually caused by a growing econ-
omy where investors tend to invest in different sectors as the
demand and supply of other products increases. A growing
economy will therefore lead to a boom in agricultural and
construction industries which uses limestone as a raw materi-
al. A decrease in interest rates leads to an increase in gold
prices since investors tend to safe haven their wealth in the
form of gold to prevent them from currency devaluation and a
decrease in demand and supply of other goods and services.
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Interest rates can also be influenced by the stock market. For
example, if interest rates increase, producers will increase their
production to benefit from the increase in interest rates and
vice versa [16].

The prediction of limestone prices may depend on the sup-
ply and demand of limestone (uses and production per indus-
try), the energy used during its production, the grade (high-
grade limestone is more expensive than low-grade limestone),
the interest rates, and location. The location of the mine can
affect both the cost of production and the cost of selling. The
cost of production can be cheaper in some areas than others as
such leads to a low cost of limestone ([37]; Batavia, 3 Factors
Influencing the Cost of Crushed Limestone, [5-10]; Dixon,
Milling Practice of the Kirkland Gold Mines, [21]). In this
study, six factors affecting the limestone market were selected
to simulate and predict future limestone price trends. The six
factors are cement, gold, coal, energy, interest rates, and lime-
stone prices. Data from the different factors influencing lime-
stone price variations were collected for a period of 6 years.

There are many articles about predictions in the mining
industries due to their importance and value to society.
Some of which are predicting the prices of valuable ore,
predicting mining operations such as the strength of rocks,
blasting, rock/ore, and composition. A valid prediction of
ore prices may help both investors and the manufacturing
industries. Investors can know when to buy and sell their
shares while manufacturing industries can know how to reg-
ulate their production to meet up with the demand. In the same
way, predictions in mining operations can provide a safe
ground for certain operations. For example, predicting the
strength of rock can help engineers to design and conduct safe
operations such as slope angle design, blasting parameters,
and rock support.

It is much easier to predict the price of gold than limestone.
Gold has once been used as a monetary standard, “The
Classical Gold Standard,” where all currencies were linked
to a specified amount of gold [56]. In 2011, the Malaysians
used the gold over paper currency because it had a more stable
monetary value [29]. Gold has been used as a medium of
exchange throughout history [34]. Gold is used in supporting
transactions [45]. This makes the prediction of gold prices
easier to predict. Changes in gold prices can cause a change
in other product prices which already have an equivalency,
especially in the stock market. On the other hand, very little
research has been conducted on predicting the prices of lime-
stone. There are a few articles which have implemented neural
networks in limestone operations. Some of these include the
prediction of blast patterns in limestone quarries [48], predic-
tion of oil recovery efficiency in limestone cores [11], and the
prediction of compressive strength of limestone [3].

The predictions of mining products have gained popularity
over the years and have led to the evolution of techniques and
methods used in making the predictions. Previous studies
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show that there are many factors such as variables, parameters,
indicators, programming languages, software, and network
models which can greatly influence the results of price predic-
tion. There are many different types of neural networks that
have been implemented in predicting prices and other opera-
tions. For example, artificial neural network (ANN),
convolutional neural network (CNN), autoencoders (AE),
Boltzmann machine (BM), extreme learning machine
(ELM), and autoregressive integrated moving average
(ARIMA) have been used for price predictions in the mining
industry. The concept behind deep learning is that these net-
works try to mimic the human brain. The CNN is associated
with the occipital lobe, the ANN is the temporal lobe, and the
RNN is the frontal lobe which is the largest part of the brain
and is also responsible for long short-term memory. This is a
very important factor in predicting prices as the network re-
members previous values and can compute future values
based on the previous value accuracy [1]. Some research has
implemented both ANN and ARIMA in price predictions
[18]. Kuma et al. achieved 93% accuracy using EML and
made a contrast between EML and feed-forward neural net-
work (FFNN) with and without backpropagation [17]. Ismail
et al. implemented multiple linear regression (MLR) in the
price prediction of gold price-based economic factors and on
eight variables which resulted in 96.92% accuracy [31].
Neural networks have also been implemented on different
limestone operations such as predicting cement price [53]
and predicting geological properties of limestone [4].

In this study, RNN and ARIMA were used to simulate and
predict future prices of limestone.

ARIMA is one of the most complex network models in
predictions, but if well modeled, it can produce very good
results. The ARIMA model is flexible and based on a number
of parameters that can be tuned automatically to obtain better
results. The ARIMA model addresses the problem in terms of
stationarity, seasonality, regression, and moving average [14].
It combines a set of complex parameters such as
autoregression (AR), integrated (I), and moving average
(MA). The AR takes into consideration the differences be-
tween the lag observations (p). A lag is essentially a fixed
amount of passing time. The lag observations are created by
shifting the time series (prices of limestone) in steps. The new
values created by this shift in steps are called the lag time
series and can be used to create autocorrelation by comparing
it to the original prices of limestone. The I parameter is re-
sponsible for the data type (stationary and non-stationary),
ensuring all data types are stationary. The MA calculates the
average error between lag observations (g) [46]. The ARIMA
model is denoted as p, d, and g, which are the fundamental
parameters of the network. The parameters p, d, and g can also
be referred to as non-seasonal data types of the ARIMA mod-
el. Non-seasonal data has no regular pattern of change over a
certain period of time while seasonal data has regular pattern

change over a certain period of time. The easiest way to model
seasonal prediction is to calculate the parameters by plotting
the data against time and measure the linearity by using the
autocorrelation function. The ARIMA model identifies the
differences in trend, seasonality, lag size, coefficient of regres-
sion, and error difference. Contrary to other ARIMA models
which uses a specific data or data that has been created to
demonstrate a particular parameter or hypothesis, the model
implemented in this study was adapted to produce good re-
sults with a real-life data. Most ARIMA models focus on
finding the 3 ARIMA parameters (p, d, and g), integrated
(I), and moving average (MA) models; the model implement-
ed in this study goes way beyond that. For example, this mod-
el shows the conversion of non-stationary data to a stationary
data, the use of multiple differencing and decomposition to
stabilize the data, calculation of error using symmetric mean
absolute percentage error, diagnosing using standardized re-
siduals, correlogram, histograms, and autocorrelation plots as
described in Section 3.3 below.

The recurrent neural network uses a stochastic gradient de-
scent to train deep learning neural networks [15]. The layers are
connected by neurons through time [39]. In the RNN, the in-
formation travels through time, previous information is used as
input for the next point, and the cost function can be calculated
at each point [42]. There are two main problems associated with
recurrent neural network, the vanishing gradient problem, and
the exploding gradient. These problems can be solved by
implementing long short-term memory (LSTM). The LSTM
structure is made up of the input layers (gray), the hidden layers
(blue), and the output layers (green) (Fig. 1). The LSTM neu-
rons have memories within their pipeline that can store previous
information, update the information, and pass it to the next
layer or cell without losing information [39]. In addition,
LSTM models update complexity per weight and time step
[28]. Despite the complexity of LSTM, its performances far
outweigh its shortcomings when implemented correctly. Cho
et al. proposed a gated recurrent unit variant to solve the
vanishing gradient problem. The GRU uses an updated gate
which consists of the single gate and the forget gate. It also
combines the cell state and hidden state together with other
changes to make the model simpler [19]. Unlike other models,
the RNN in this study was modeled to overcome many prob-
lems faced by most machine learning (ML) methods. Some of
these problems are dimensionality reduction, vanishing gradi-
ent problem (described above), overfitting/underfitting, long
run times, pattern recognition, and hyperparameters optimiza-
tion. More about this is described in Section 3.2 below.

The main objective of this study was to model the price
variation of limestone. With respect to this, two powerful net-
work models (RNN and ARIMA) recommended by most re-
searchers were implemented in the prediction of price varia-
tion. The models were investigated in terms of flexibility,
accuracy, and error minimization based on the dataset used.

@ Springer



916

Mining, Metallurgy & Exploration (2021) 38:913-926

3

o=

P
Input

Layer

LSTM Layer 4

Dense Layer
Output Layer

Fig. 1 LSTM structure showing input layers, hidden layers, and output layers

2 Data Preprocessing

The data used in this study is the historical data of limestone
prices for a period of 6 years from January 2014 to April 2020.
The data was downloaded from Yahoo Finance, Eoddata,
Marketwatch, Indexmundi, and Statista. The preprocessing
of the data is an important step in ML. The data may greatly
affect the results of a network model, especially when dealing
with real-world problems. Some of the problems that real-
world data can have are missing values, outliers, types, for-
mats, and seasonality. Outliers are data that are in an abnormal
position (random position) with the rest of the dataset. It can
easily be identified by visualizing a scatter plot of the dataset
as shown in Fig. 2. In Fig. 2, the x-axis is represented in the
graph as y(¢) while the y-axis is represented as y(z+5). The y(?)
is the original value of limestone recorded at time y(f) while
the y(#+5) is the value of limestone recorded at time y(#+5) that
is shifted by five of the time series. In this case, the difference
between lagl and lag5 is not much which means that the daily
prices between each day are not much. Also, the data shows an
identifiable pattern of linear correlation. The data is cleaned by
filling in missing values by calculating the mean of the inter-
val. The data is normalized to avoid unbiased situations Eq.
(1). Normalizing input data in the range of (0,1) gives the data
equal weight or importance. The advantage of using normal-
ization over standardization is that it has smaller standard de-
viations which can help to suppress the effect of outliers [20].
It is also recommended to use normalization, especially when
using the activation function in the output layer of the recur-
rent neural network.

X—min(x)

KXnorm = ——F—~———"—~
¢ max (x)—min(x)

(1)

3 Correlation of Factors Affecting Limestone
Prices

Correlation analysis is conducted on factors affecting the price
of limestone (price of cement, gold, coal, energy, and interest

@ Springer

rates). Correlation is a statistical measure of the relationship
strength between two or more variables. The correlation coef-
ficient (CC) of the data is calculated using the CORREL func-
tion in Microsoft Office Excel. The correlation results are
recorded in Table 1. CC of — 1 indicates a negative correlation,
CC of + 1 indicates a positive correlation, and a CC of near 0
indicates no correlation. From the correlation results, it can be
seen that the correlation coefficient of a different factor against
themselves shows a perfect positive correlation of 1. The cor-
relation coefficient between gold and limestone is 0.59, which
also shows a positive correlation. An increase in the prices of
gold will also lead to an increase in the prices of limestone and
vice versa. The prices of the gold increase due to uncertainty
during inflation and investors tend to purchase gold as a safe
haven. Gold can be used as a hedge during inflation, political
instability, or currency devaluation [44]. During uncertainty,
investors look for other mining commodities to invest their
money in by buying more limestone stock to safe haven their
wealth. They can make a higher profit after inflation when
prices will go up even higher. Another reason may be that
during uncertainty, the value of the real estate and other com-
modities produced from limestone may fall, which may affect
the production of limestone. A decrease in the production of
limestone may lead to an increase in the prices of limestone
due to scarcity. Coal and energy have negative correlations to
limestone. This shows that limestone is not directly affect-
ed by the change in the prices of energy used during pro-
duction. Also, the prices of energy may vary in different
locations. Some other factors (cost of production, labor
force, equipment, and operations) may also vary in differ-
ent locations. On the other hand, cement, which is pro-
duced from limestone, shows a positive correlation of
0.65. This means that an increase in limestone will lead
to an increase in the production of cement and vice versa.
During an economic boom, real estate stocks will rise
higher and the demand for raw materials like limestone
will also increase leading to an increase in the prices of
limestone. Conclusively, the change in the prices of lime-
stone is not directly affected by the energy needed during
production but by other factors such as the market, de-
mand, financial, political, and economic factors.
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Fig. 2 Limestone scatter plot
showing outliers
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3.1 Modeling of Limestone Prices

Two different network models are used in this study: the RNN
and ARIMA model. The dataset is divided into a training set
and a test set. The training set is used to train the network
model while the test set is used to validate the predictions.

3.2 The RNN Model

The RNN model is a network model that is able to learn data
patterns during training, stores important information, and
uses it in predictions. Based on its limitations, like short se-
quences and computational resources, variants of RNN have
been developed to overcome these problems. Some of the
variants are LSTM and GRU. The LSTM model uses a se-
quential time series and a stochastic approximation process

H

Limestone Scatter plot

10 12 14
y(t)

16 18

[22]. The sequential model is used to add multiple LSTM
layers to the network that captures the upward and downward
trend of the prices. The LSTM is made up of cells. Each cell
has an input gate, output gate, forget gate, and a cell state (Fig.
3). The data is first converted as readable vectors and process
one after the other. The first vectors processed by the first cells
are sent to the next cell by the hidden layers (which function as
the network’s memory). In the next cell, the new input and the
previous data combine together to form a vector. The vector
passes through the activation function where the values are
being normalized to 0 and 1 or — 1 and 1. Normalization is
important in the sense that it gives equal weights to the data.
This means that the magnitude or weight of each feature is
more or less the same. Another reason is that normalizing the
data will transform it to a mean close to zero (positive and
negative values) which is easier to compute than a dataset with

Table 1 Correlation coefficient

of factors affecting limestone Price increase Limestone Gold Energy Coal Cement Interest rates
prices Price

Limestone 1

Gold 0.59 1

Energy -0.51 -0.74 1

Coal —-0.49 —0.84 0.84 1

Cement 0.65 0.17 0.08 —-0.03 1

Interest rates 0.86 0.57 -0.34 -041 0.75 1

@ Springer
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Fig. 3 LSTM cell showing the
cell state, input gate, output gate,
and forget gate. A and B are
activation functions

Input gate

all positive values or negative values. The values close to 0 or
— 1 are less important and are more likely to go through the
forget gate. The values with 1 are more important and are
more likely to go through the output gate. Before they go
through the output gate, they are combined with the new in-
puts and pass through the activation function. The new cell
state can be determined by multiplying the forget vector to the
previous cell state. Values which are near or close to — 1 and 0
are more likely to be dropped. A pointwise addition of the
output of the input gate will then determine the cell state.
The output can then be used in predictions [43].

The data was imported and visualized as shown in Fig. 4.
From the graph, we can see that the variation pattern of lime-
stone price is represented as red, gold price as green, cement

Fig. 4 Price variation

representation of factors affecting 0
the price of limestone, with
respect to date 35
30
25
w
[
L 20
&

15

10
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Forget gate

Pointwise addition

Cell state

Pointwise
multiplication

Output gate

price as orange, coal price as magenta, energy prices as blue,
and interest rates as yellow. This variation pattern shows
which factors are highly correlated with limestone prices by
the upward and downward movement with respect to lime-
stone price variation. The dataset has a total of 1575 points
which represents the data collected on a daily basis from
January 2, 2014, to April 3, 2020. The data has a total of six
factors (limestone, cement, gold, interest rates, coal, and ener-
gy). The data of each factor was collected separately for the
same amount of time. The mean of each day (mean of high,
low, and close) was recorded in the dataset. Feature selection
is done by both automatic and manual selection methods. For
the manual selection method, the visualization in Fig. 4 can be
used to compare which factors or features are closely

Price variation of different Parameters

Red - Limestone
Green - Gold
Orange - Cement
Magenta - Coal
Blue - Energy

- Interest rates

600 800 1000 1200 1400 1600
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correlated with limestone while in the automatic selection, (—
1) can be used to find the best values during reshaping. The
dataset was scaled (normalized) to the interval of (0, 1) to
avoid bias and help the algorithm converge easily. The stan-
dard input for the LSTM layer is in the form of a 3D array. The
data is then converted into a 3D array. The 3-dimensional
array consists of the batch size, time steps, and features.
Putting the data into a 3D array helps to reduce the number
of features thereby increasing the classifier performance and
limit overfitting of the model. This helps to solve the problem
of dimensionality.

The LSTM layers are added using the sequential model.
The grid search is used to tune hyperparameters (activation
function, dropout regularization, batch size, number of
epochs, neurons in hidden layers, and optimizer.) The data is
dispatched in batches known as batch size. The batch size
determines the number of patterns that the network receives
before weights are updated and stored in the memory. The
number of times the training data is fed into the network is
known as the epoch. The grid-search method is used to deter-
mine the number of a batch size of 40 and 15 epochs (batch
size and epochs search code). The grid search is also used to
find the best optimizer. In this case, the Adam optimizer pro-
duced the best results with respect to the data and shows an
accuracy of 87% (optimizer code) [33]. The activation func-
tion selects which neuron is activated by summing the input
weights and a bias. The ReLU activation was chosen after
applying the grid search (activation function code). The
ReLU function has a number of benefits due to its nonlinear
sparse activation. This means only neurons which meet the
threshold criteria will be fired. This is particularly important
as many layers can be stacked together without activating all
the layers [52]. During the training of the network, dropout
regularization is used to drop out certain nodes (excluded from
being activated) when the network is saturated to prevent
overfitting of the network model. A summary of the model
shows that there were 12,131 trainable parameters. The net-
work model was compiled using the Adam optimizer, and the
loss of the model was calculated using the mean square error
(MSE) function equation (2). Where % Y? is the mean, and
(y,) is the squared difference between the predicted and
the actual value. The MSE estimates and updates the weights,
thereby decreasing the loss and improving the generalization
error [15]. The network model is trained over 15 epochs, a
batch size of 40, validation split of 0.1, and dropout regulari-
zation of 0.2. Figure 5 shows the loss of the model versus
epochs. The loss is the sum of errors of the training set and
validation set. The training loss and validation loss decreases
to a point of stability, which shows that all the parameters have
been tuned optimally. Also, there is no overfitting or
underfitting of the model which shows good convergence.
This means that the model is well fitted and that the model

can give good predictions. The results of the predictions were
visualized using Matplot Library. The full code can be found
on GitHub.

MSE = Z’j: (yi_?,)z (2)

1
n
3.3 The ARIMA Model

Autoregression integrated moving average (ARIMA) takes into
consideration the assumption that the past or previous data can
forecast the behavior of present and or future data under normal
conditions. The name clearly defines the aspects of the model.
It is based on autoregression, integration, and moving average.
It uses lag observations to determine the difference in raw ob-
servations and calculates error. The main parameters of the
ARIMA model are lag order (P), degree of differencing (D),
and order of moving average (Q) [12]. Before simulating the
model, a scatter plot of the dataset is used to visualize the data
as shown in Fig. 2. The scatter plot (lag plot) shows a positive
linear correlation with some outliers and randomness. The scat-
ter plot helps to visualize the data and to determine what type of
model is suitable for the data. In this case, the scatter plot is
linear, so the use of an autoregressive model will be a good
choice for predictions [47]. The Dickey-Fuller test (DFT) is
used to test for stationarity in the data. The dataset is said to
be stationary when certain statistical properties are constant and
have an independent covariance. This is particularly important
as most statistical analysis works best on stationary data. Also,
stationary datasets are easier to model, especially in time series
analysis. From the DFT test, it can be seen that the dataset is not
stationary (non-stationary) by the upward and downward
movement of the rolling mean and standard deviation as shown
in Fig. 6. Also, the static test is more than 5% of critical value
and the p value (0.49) is greater than 0.05. So, the Dickey-
Fuller null hypothesis cannot be rejected. Before diving into
the predictions, the dataset needs to be transformed into a sta-
tionary data in order to have good results of the prediction. A
non-stationary data can be converted to a stationary data by
applying decomposition and differencing techniques [41].
Decomposition is the separation of the trend and seasonality
of the dataset. Differencing is finding the differences of the
observations as shown in the code section of the ARIMA mod-
el. Once it is converted into a stationary data, the auto ARIMA
function is used to find the best values of p, d, and ¢ (ARIMA
hyperparameters code). The (p) parameter stands for the order
of the autoregressive model, the (d) parameter stands for the
order of differencing, and the (¢) parameter stands for the order
of the moving average. The (p) parameter uses past values in
regression calculations, and the (d) parameter subtracts the pre-
vious and current values of (d). The (d) parameter is also used

@ Springer
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Fig. 5 Loss versus epochs shows
how well the model fits with
respect to the training set and test

0.20
set

0.15

loss

0.05

0.00

o
N

to convert the data from non-stationary to a stationary data. The
(¢) parameter defines the error of the model by a combination
of previous errors. It determines the number of terms to be
included in the model. After fitting the model, the optimal
values of p, d, and g were (0, 1, 2) which can be written as
equation (3) where 4 is the regressive parameter, Y,_; the
differencing, and 6, e, the moving average.

/Y\t =u+ Y 1—0) e-1—0; e (3)

The diagnostic plots are used to visualize the auto ARIMA
model. Figure 7 shows four graphs. At the top left corner,
standardized residuals fluctuate around a mean of zero. The
top-right displays the density plot which shows a normal

Fig. 6 Dickey-Fuller test for
stationarity showing upward and
downward movement of rolling
mean and standard deviation
15.0
12.5
10.0
7.5
5.0

Z2e5

0.0
0
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distribution. The bottom left represents a correlation which
shows a normal liner distribution following the red line.
Lastly, the bottom right is the ACF (correlogram) which
shows that the residuals are not autocorrelated. From the di-
agnosis, auto ARIMA will fit the data perfectly. An ARIMA
model is then created with the optimal parameters of p, d, and
q (ARIMA model evaluation). The dataset is divided into a
training set (used to train the model) and a test set (used to
compare and validate the predictions) as shown in Fig. 8. Of
the data, 80% is used for the training set and 10% is used for
the test set. The symmetric mean absolute percentage error
(SMAPE) Eq. (4) is used to evaluate the model [54]. In Eq.
(4), A, is the actual value and P; is the predicted value. It is
calculated by differencing the absolute of the actual value
from the absolute of the predicted value divided by half the

Rolling Mean & Standard Deviation
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Fig. 7 Auto ARIMA plot diagnostics
sum of the predicted and actual values. The result is summed 100% P
. o . n —
for each fitted point (r) and divided by the number of fited ~ SMAPE = ° 3 [Pi=A | (4)
points (n) [35]. This equation evaluates the model by generat- =1 (1A + |Pt|) /2

ing a positive and negative error while limiting the effect of
outliers and bias [2].

The prediction is done by using the predict function (inter-
prets the number of features it receives from the model and
passes the number of features it receives to the output layer) of
the future price range. The full code can be found on GitHub.

4 Results and Discussion

The two network models show a tremendous performance in
price prediction. The loss is calculated by the MSE for the
RNN model and SMAPE for the ARIMA model.

Limestone Prices Prices
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== Training Data
= Testing Data
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8
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&
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4
2
2014-01-02 2015-03-13 2016-05-20 2017-07-31 2018-10-08 2019-12-17
Dates

Fig. 8 Training set and test set. The training set is used to train the network while the test set is used to validate the predictions

@ Springer



922

Mining, Metallurgy & Exploration (2021) 38:913-926

a Limestone Price Prediction showing the test set and the training set
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Fig. 9 a RNN results of test set and predicted limestone prices. b RNN results of test set and predicted limestone prices zoomed. ¢ RNN results of the

original dataset and future predictions

Two predictions are done for the RNN model. The first
predictions are compared with the test set to see how well
the model predicted the test set. The second predictions are
future predictions. There is no data available to compare the
second prediction. Figure 9a, b, ¢ show the results of the
RNN model. Figure 9a shows the results of the training set,
the test set, and the predicted price. In Fig. 9b, only the test
set and the predicted prices are displayed. Figure 9¢ shows
the original data and future predictions. The test set is in red,
the predicted price is in blue, and the future predictions are
in orange. From the results of Fig. 9a, b, and ¢, the RNN
model predicts the upward and downward movement of
prices to an extent but is unable to capture the exact prices
at certain intervals. Also, the future predictions begin with a
visible upward and downward movement of the graph but
later become almost horizontal as the predictions go further
into the future. This may mean that the future predictions are
more accurate the closer they are to the present, but they are
less accurate the farther into the future.

Figure 10a and b show the results of the ARIMA model.
Figure 10a shows all results of the training set, test set, and the
predicted limestone prices. In Fig. 10b, only the test set and
the predictions are displayed. The training set is in blue, the
test set is in red, and the predicted limestone prices are in
green. From the graph, it can be seen that the ARIMA model

@ Springer

predicts almost the same price as the test set. It follows the
upward and downward movement of the graph.

From the results, the ARIMA model displays better predic-
tions than the RNN model. Also, the ARIMA model uses less
training time as compared to the RNN model. The RNN mod-
el shows an accuracy of 91.8% while the ARIMA model
shows an accuracy of 95.7%. The ARIMA model is more
accurate than the RNN model. This may be due to the auto
ARIMA function used to find the best possible values of p, d,
and ¢q. The poor results in the RNN model may be due to the
fact that some of the hyperparameters were tuned manually.
For example, the number of LSTM layers was tuned
manually.

Analysis from the results shows that there has been a steady
increase in the prices of limestone from 2014 until the begin-
ning of 2020. This is in accordance with the literature review
in Section 1 which states that the limestone market is expected
to rise about 2% annually. The sharp decrease in the year 2020
may be due to the coronavirus (COVID-19) which pushed
most industries to shut down in order to prevent the spread
of the virus. Due to the fact that most of these industries were
shut down, it affected the production and consumption of
limestone as seen on the graphs in the early months of 2020.
According to the Brownian motion, the state of future varia-
tions (price) is a stochastic process determined by a collection
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Fig. 9 (continued)

of random variables [40]. This means that the future variations
of an ore price may vary from the past and may be difficult to
predict the exact price due to variations that may occur in the
future. However, if the variables of a model are well tuned
based on a given circumstance and assumptions, it can pro-
duce accurate results.

5 Conclusions

Limestone is a very important raw material for many industries.
Its production and consumption are very important to the econ-
omy and in daily use. Predicting limestone prices can be bene-
ficial to investors as it can help them know when to invest and
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a Limestone Price Prediction

18 === Training Data
=e= Predicted Price

6 Test Data

14

12

10

Prices

2014-04-21 2015-06-29

2016-09-06
Dates

2017-11-13 2019-01-25 2020-04-03

b Visualizing the predictions

18

16

14

Prices

12

10

2019-08-16 2019-09-16 2019-10-14 2019-11-11

2019-12-10
Dates

=e = Predicted Price
== Test Data

2020-01-09 2020-02-07 2020-03-09

Fig. 10 a ARIMA results showing training set in blue, test set in red, and predicted limestone prices in green. b Visualizing the ARIMA model

predictions, the test set is in red, and the predictions in green

when to sell their stock. It can also help production industries to
regulate their production rates and market prices. Choosing the
right network model in predictions is very crucial as the results
may have a great impact on industries and investors. In this
study, two deep neural network models ARIMA and RNN
were used to predict limestone prices. Despite their complexity
in modeling, the results were encouraging. According to the
results, the ARIMA model predictions were better than the
RNN model in terms of the trend and variation of limestone
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prices. The main difference between these two models lies in
the fact that the ARIMA model is able to produce more accurate
results than the RNN model. Also, the training time of the
ARIMA model is less compared to the training time in the
RNN model. This may be due to multiple LSTM layers. The
ARIMA network is proven to be a sophisticated method in
modeling, analyzing, and predicting prices.

This study presents a simple yet sophisticated means of
applying deep learning algorithms to mining economics. The



Mining, Metallurgy & Exploration (2021) 38:913-926

925

authors intend to implement deep learning in mining opera-
tions. The next sections to follow will be implementing deep
learning neural networks in scheduling, simulation of eco-
nomics, and technical parameters to solve complex problems.
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