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Abstract

Background: Attempts to associate amyloid-β (Aβ) pathogenesis with synaptic loss in Alzheimer’s disease (AD)
have thus far been limited to small numbers of postmortem studies. Aβ plaque burden is not well-correlated with
indices of clinical severity or neurodegeneration—at least in the dementia stage—as deposition of Aβ reaches a
ceiling. In this study, we examined in vivo the association between fibrillar Aβ deposition and synaptic density in
early AD using positron emission tomography (PET). We hypothesized that global Aβ deposition would be more
strongly inversely associated with hippocampal synaptic density in participants with amnestic mild cognitive
impairment (aMCI; a stage of continued Aβ accumulation) compared to those with dementia (a stage of relative Aβ
plateau).

Methods: We measured SV2A binding ([11C]UCB-J) and Aβ deposition ([11C]PiB) in 14 participants with aMCI due to
AD and 24 participants with mild AD dementia. Distribution volume ratios (DVR) with a cerebellar reference region
were calculated for both tracers to investigate the association between global Aβ deposition and SV2A binding in
hippocampus. Exploratory analyses examined correlations between both global and regional Aβ deposition and
SV2A binding across a broad range of brain regions using both ROI- and surface-based approaches.
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Results: We observed a significant inverse association between global Aβ deposition and hippocampal SV2A binding
in participants with aMCI (r = − 0.55, P = 0.04), but not mild dementia (r = 0.05, P = 0.82; difference statistically significant
by Fisher z = − 1.80, P = 0.04). Exploratory analyses across other ROIs and whole brain analyses demonstrated no broad
or consistent associations between global Aβ deposition and regional SV2A binding in either diagnostic group. ROI-
based analyses of the association between regional Aβ deposition and SV2A binding also revealed no consistent
pattern but suggested a “paradoxical” positive association between local Aβ deposition and SV2A binding in the
hippocampus.

Conclusions: Our findings lend support to a model in which fibrillar Aβ is still accumulating in the early stages of
clinical disease but approaching a relative plateau, a point at which Aβ may uncouple from neurodegenerative
processes including synaptic loss. Future research should investigate the relationship between Aβ deposition and
synaptic loss in larger cohorts beginning preclinically and followed longitudinally in conjunction with other
biomarkers.
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Introduction
The concept that Alzheimer’s disease (AD) is initiated by
the progressive accumulation of the amyloid-β peptide
(Aβ) in brain regions important for cognition is currently
the leading theory of causation but remains controversial
[1]. A loss of synapses has long been recognized as per-
haps the strongest neuropathological correlate of cognitive
impairment in AD [1–3]. A refinement of the amyloid hy-
pothesis is thus based on convergent evidence that Aβ
oligomers, the most neurotoxic Aβ species, impair both
synaptic function (e.g., long-term potentiation) and synap-
tic structure (e.g., dendritic spines) [4, 5]. Aβ plaques,
themselves comprised of fibrillary Aβ, are thought to have
a penumbra of soluble Aβ oligomers in which synaptic
density is low, whereas synapse number normalizes at
greater distances from the plaque core [6]. Attempts to as-
sociate Aβ pathogenesis with synaptic loss have thus far
been limited to a small number of postmortem [7, 8] and
transgenic mouse [6, 9–11] studies.
The ability to assess synaptic density in vivo would be

of great utility for tracking AD progression and monitor-
ing the efficacy of potential therapies. A novel molecular
target is synaptic vesicle glycoprotein 2 (SV2), an essen-
tial presynaptic vesicle membrane protein whose isoform
SV2A is ubiquitously expressed in virtually all synapses
[12, 13]. To assess the spatiotemporal distribution of
synaptic density in vivo, a PET tracer for SV2A known
as [11C]UCB-J has previously been developed and ad-
vanced for human studies [14–16]. The specific utility of
SV2A imaging as a synaptic marker relevant to AD was
exemplified by our initial study using this novel SV2A
PET tracer, in which we reported significant reductions
in SV2A hippocampal binding in patients with amnestic
mild cognitive impairment (aMCI) and mild AD demen-
tia [17]. In our subsequent study of [11C]UCB-J in early
AD in a larger cohort, we observed more extensive cor-
tical and subcortical reductions in SV2A binding, most

pronounced in the hippocampus and entorhinal cortex
and more widespread than reductions in gray matter
volume [18]. When the AD group was separated into
aMCI and dementia subgroups, these patterns were ob-
served at both stages of disease [18]. These results are
consistent with the subset of postmortem studies that
have examined the prodromal or mild stages of AD [19–
24]. These studies have focused primarily on hippocam-
pus as the site of the earliest and most profound synap-
tic loss [19–21], consistent with the early degeneration
of entorhinal cortical cells projecting via the perforant
path to the hippocampus [25, 26].
As a general principle, Aβ plaque burden is not well-

correlated with indices of symptom duration and sever-
ity—at least in the dementia stage—as deposition of Aβ
reaches a ceiling [27–29]—suggesting a dynamic balance
between Aβ deposition and clearance [28, 29]. In the era
of Aβ PET imaging, this ceiling has been better defined
longitudinally, and brain Aβ load has been shown to ap-
proach a “plateau” [30]. Longitudinal studies have gener-
ally demonstrated continued Aβ accumulation through
the prodromal stages of AD [31–33], with minimal
change by the time of conversion to AD dementia [31,
34] or in the dementia stage [35]. Therefore, in the pro-
dromal stage of AD, when Aβ plaques are still accumu-
lating, we might expect them to be associated with
indices of severity, including synaptic loss—particularly
in those brain regions that show marked early synaptic
loss, such as hippocampus.
In this study, we examined the association between fi-

brillar Aβ deposition with [11C] PiB PET and synaptic
density with [11C]UCB-J in early AD. We hypothesized
that global Aβ deposition would be more strongly in-
versely associated with hippocampal synaptic density in
the aMCI stage than the mild dementia stage. Given
some in vitro evidence for local associations between Aβ
plaques and synaptic abnormalities [6, 8, 10, 11], we also
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conducted exploratory correlational analyses of both glo-
bal and regional Aβ deposition with synaptic density in a
broad range of cortical and subcortical regions.

Methods
Detailed methods and statistical analyses are further de-
scribed in the Supplementary Methods (Additional file 1).

Study participants and design
Individuals aged 55–85 years were screened to ensure
diagnostic eligibility. Participants with dementia met
diagnostic criteria for probable dementia due to AD
[36], had a Clinical Dementia Rating (CDR) score of
0.5–1.0 points, and a Mini-Mental Status Examination
(MMSE) score ≤ 26 points. Participants with MCI met
diagnostic criteria for amnestic MCI [37], had a CDR
score of 0.5 points, and a MMSE score of 24–30 points.
All participants with dementia and aMCI demonstrated
impaired episodic memory, as evidenced by a Logical
Memory II (LMII) score 1.5 standard deviations below
an education-adjusted norm. Cognitively normal (CN)
participants had a CDR score of 0, an MMSE score > 26,
and a normal education-adjusted LMII score. The Rey
Auditory Verbal Learning Test (RAVLT) was also
administered to generate an episodic memory score, cal-
culated by averaging the RAVLT and LMII z-scores.
APOE genotyping was performed as in our previous
study [38]. Participants with dementia and aMCI were
required to be Aβ+ and all CN participants Aβ−, accord-
ing to their [11C] PiB scans (Additional file 1). All partic-
ipants provided written informed consent as approved
by the Yale University Human Investigation Committee
prior to participating in the study.

Brain imaging
T1-weighted magnetic resonance imaging (MRI) was
performed to define regions of interest (ROI) and to per-
form partial volume correction (PVC) using the Iterative
Yang (IY) algorithm [39, 40]. PET scans were performed
on the HRRT (207 slices, resolution < 3mm full width
half max [FWHM]), the highest resolution human PET
scanner [41]. List-mode data were reconstructed using
the MOLAR algorithm [42] with event-by-event motion
correction based on an optical detector (Vicra, NDI Sys-
tems, Waterloo, Canada) [43]. Dynamic [11C] PiB scans
were acquired for 90 min following administration of a
bolus of up to 555MBq of tracer [38], while dynamic
[11C]UCB-J scans were acquired for 60 min after admin-
istration of a bolus of up to 740MBq [16]. Software mo-
tion correction was applied to the dynamic PET images
using a mutual-information algorithm (FSL-FLIRT) to
perform frame-by-frame registration to a summed image
(0–10 min). A summed motion-corrected PET image
was registered to each participant’s MRI. Cortical

reconstruction and volumetric segmentation was per-
formed using FreeSurfer [version 6.0] [44]. Specific ROIs
utilized for [11C] PiB and [11C]UCB-J analyses in this
study included medial temporal (entorhinal, hippocam-
pus, parahippocampal, amygdala), prefrontal, lateral tem-
poral, posterior cingulate/precuneus, anterior cingulate,
lateral parietal, lateral occipital, medial occipital, and
pericentral ROIs, as previously described (Supplemen-
tary Tables 1 & 2 from [18]). Global Aβ deposition was
determined for a composite of regions commonly af-
fected by Aβ deposition in AD which included pre-
frontal, lateral temporal, posterior cingulate/precuneus,
and lateral parietal ROIs.

Tracer kinetic modeling For [11C] PiB image analysis,
parametric images of BPND were generated using a sim-
plified reference tissue model—2 step (SRTM2) from 0
to 90min [45] with whole cerebellum as the reference
region as previously described [18, 38]. These values
were then directly converted to distribution volume ra-
tios (DVR), in that DVR = BPND + 1. For [11C]UCB-J
image analysis, parametric images of BPND were gener-
ated using a SRTM2 from 0 to 60min [45] and a small
ROI (2 mL) in the core of the centrum semiovale (CS) as
the reference region [46]. SRTM2 requires a global

clearance rate constant of the reference region ( k
0
2 ),

which was previously computed as a population average

of k2 of the CS obtained using the 1TC model ( k
0
2 =

0.027 min− 1) [18]. As previously described, values of
DVR using a whole cerebellum reference region were
then computed for each voxel as (BPND + 1)/(BPND

[cerebellum] + 1) [18], which was used as the primary
outcome measure for [11C]UCB-J. In a separate sample,
conversion of BPND with a CS reference region to values
of DVR with a cerebellar reference region was validated
by comparison against regional values of [11C]UCB-J
DVR calculated directly with a cerebellar reference re-
gion using the SRTM2 model from 0 to 60 min and
DVR calculated from the 1-tissue compartment (1TC)
model using metabolite-corrected arterial plasma curves
and a cerebellar reference region (Additional file 1, Sup-
plementary Figure 1). For whole-cortex surface-based
correlations between synaptic density and Aβ deposition,
parametric PET images were co-registered to native sub-
ject space, sampled onto the cortical surface, and
spatially smoothed with a 10mm FWHM Gaussian ker-
nel prior to statistical analysis.

Statistical analyses
Statistical analyses are described in detail in the Supplemen-
tary Methods (Additional file 1). Briefly, characteristics of the
participant groups were compared using χ2 test for categor-
ical variables and unpaired t-tests for continuous variables.
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Separate linear mixed models were used to compare [11C]
PiB DVR and [11C]UCB-J DVR across multiple ROIs be-
tween CN, aMCI, and dementia groups, with post hoc tests
including ANOVAs within each ROI followed by unpaired t-
tests for between-group comparisons within an ROI. The
Benjamini-Hochberg procedure was used to control the false
discovery rate (FDR) for multiple comparisons (12 compari-
sons for ROIs, and 3 comparisons for diagnostic groups). For
the primary analysis of the association between global Aβ de-
position and hippocampal synaptic density in participants
with aMCI and dementia, separate univariate regression ana-
lyses were performed for each diagnostic group with correl-
ation coefficients (Pearson r) and associated two-tailed P
values reported for each model. For sensitivity analyses, sep-
arate multiple linear regression models were fit that also in-
cluded covariates of age and sex. Based on our primary
hypothesis of stronger correlation in aMCI than dementia,
Fisher z-transformation was used to assess for significant dif-
ferences in correlation coefficients between the aMCI and
dementia groups, with one-tailed P values reported. Explora-
tory analyses assessed the relationships between global Aβ
deposition and regional synaptic density, as well as intra-
regional Aβ deposition and synaptic density (both regional-
and surface-based approaches) using Pearson r correlation
and associated two-tailed P values. Correction for multiple
comparisons was not performed for exploratory analyses.

The contribution of partial volume effects on all aforemen-
tioned analyses was evaluated through application of PVC
(Additional file 1).

Results
Participant characteristics
The study sample consisted of 57 participants—14 with
aMCI due to AD, 24 with mild AD dementia, and 19
who were CN. This sample substantially overlapped that
in our previous study [18] but included 4 additional par-
ticipants with mild AD dementia. Diagnostic groups
were well balanced for age (F (2,54) = 0.30, P = 0.74) and
sex (χ2 = 2.55, P = 0.28), with the CN group demonstrat-
ing significantly more years of education than the de-
mentia group (Table 1; CN: 17.7 years ±2.1, dementia:
15.8 years ±2.4, unpaired t-test, P = 0.02). The symptom-
atic groups had clinical characteristics typical of aMCI
and mild dementia with significant deficits in cognition
(MMSE; aMCI: 26.3 ± 2.9, dementia: 21.5 ± 3.0) and
function (CDR sum of boxes; aMCI: 2.3 ± 1.0, dementia:
5.3 ± 1.5) in comparison to the CN participants
(MMSE = 29.2 ± 1.1, CDR sum of boxes = 0.0 ± 0.0). Re-
garding APOE genotype, typical of such samples, 21.1%
of CN, 64.3% of aMCI, and 70.8% dementia participants
carried at least one copy of APOE ε4.

Table 1 Participant demographics and test results

Cognitively normal Mild cognitive impairment Mild dementia F/χ2 P

Participants (n) 19 14 24

Sex (M/F) 9/10 9/5 9/15 2.55 0.28

Age (years) 71.5 (7.6) 71.6 (4.2) 69.9 (9.2) 0.30 0.74

Education (years) 17.7 (2.1) 17.3 (1.9) 15.8 (2.4)* 4.71 0.013

CDR-global 0 (0) 0.5 (0)*** 0.88 (0.22)***,††† 194.90 < 0.0001

CDR-SB 0 (0) 2.32 (1.03)*** 5.25 (1.52) ***,††† 119.72 < 0.0001

GDS 0.68 (0.82) 2.79 (2.15)* 1.50 (1.84) 6.40 0.003

UPSIT 34.05 (5.86) 22.64 (9.79)** 21.09 (6.95)*** 17.35 < 0.0001

MMSE 29.21 (1.13) 26.29 (2.89)* 21.46 (2.98)***,††† 52.88 < 0.0001

LMII 13.58 (4.38) 3.57 (2.98)*** 0.25 (0.44)***,† 113.55 < 0.0001

RAVLT-delay 11.05 (2.80) 2.14 (2.71)*** 0.29 (0.69)***,† 143.61 < 0.0001

Episodic memory (z-score) 1.25 (0.52) −0.35 (0.39)*** −0.78 (0.08)***,† 177.54 < 0.0001

APOE ɛ4 copy number (n) 14.95 0.005

2 copies 0 (0%) 5 (35.7%) 5 (20.8%)

1 copy 4 (21.1%) 4 (28.6%) 12 (50.0%)

0 copies 15 (78.9%) 5 (35.7%) 7 (29.2%)

Data for continuous variables are mean (SD). Data for APOE copy number are n (percent). F statistics and P values are from one-way ANOVA significance tests. χ2

statistics and P values for counts are from χ2 significance tests. Post hoc unpaired t-tests after one-way ANOVA for continuous variables were Bonferroni corrected
for 3 diagnostic groups. * denotes significant group differences between either amnestic mild cognitive impairment and cognitively normal or mild dementia and
cognitively normal. * P < 0.05, ** P < 0.001, *** P < 0.0001. † denotes significant group differences between mild dementia and amnestic mild cognitive
impairment. † P < 0.05, †† P < 0.001, ††† P < 0.0001. Episodic Memory was calculated by averaging the z-scores of the RAVLT and LMII. Abbreviations: CDR-global
clinical dementia rating global score, CDR-SB clinical dementia rating sub of boxes, MMSE Mini-Mental State Examination, LMII Logical Memory II score, RAVLT Rey
Auditory Verbal Learning Test, GDS Geriatric Depression Scale, UPSIT University of Pennsylvania Smell Identification Test, APOE Apolipoprotein E
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Distribution of synaptic density and Aβ deposition in
normal cognition, aMCI, and dementia
Analyses of both [11C]UCB-J and [11C] PiB DVR demon-
strated significant effects of group ([11C]UCB-J: F (2,54) =
10.1, P = 0.0002, [11C]PiB: F (2,54) = 56.9, P < 0.0001), ROI
([11C]UCB-J: F (11,594) = 318.9, P < 0.0001, [11C]PiB: F
(11,594) = 257.4, P < 0.0001), and group × ROI interaction
([11C]UCB-J: F (22,594) = 2.3, P = 0.001, [11C]PiB: F (22,
594) = 43.3, P = < 0.0001) as predictors of SV2A and Aβ
binding. Consistent with our recent publication [18], one-
way ANOVA with post hoc, false discovery rate (FDR)-
corrected unpaired t-tests revealed significant reductions
of SV2A binding in both aMCI and dementia participants
(compared to CN) across the majority of neocortical re-
gions, with the exception of the anterior cingulate and
medial occipital cortices (Fig. 1a, c, Supplementary
Table 1). Group differences were largest in the hippocam-
pus, entorhinal cortex, and lateral temporal cortex. The
prefrontal, PCC/precuneus, and lateral occipital cortices
also demonstrated significant reductions in SV2A binding

in the dementia group, while non-significant trends of
SV2A reduction were observed in aMCI participants (as
compared to the CN group). One-way ANOVA with post
hoc, FDR-corrected unpaired t-tests of [11C] PiB revealed
significant and broadly distributed Aβ deposition across
all neocortical regions in both aMCI and dementia (com-
pared to CN) participants, with the exception of the
hippocampus (Fig. 1b, d, Supplementary Table 2). No dif-
ferences were observed in either SV2A or Aβ binding be-
tween aMCI and dementia groups across all analyzed
ROIs. Average group images of DVR demonstrated visible
reduction and deposition of SV2A and Aβ binding, re-
spectively, in both aMCI and dementia groups (Fig. 1a, b),
compared to the CN group.
Volumetric MRI was used to investigate gray matter

volume differences between CN, MCI, and dementia
groups (Supplementary Table 3). Correction for partial
volume effects revealed continued significant reductions
of SV2A binding in medial temporal regions in both par-
ticipants with aMCI and dementia, as well as lateral

Fig. 1 Comparison of SV2A and Aβ deposition in CN, aMCI, and dementia groups. Coronal sections of average parametric images of DVR for a [11C]UCB-J and
b [11C] PiB in CN, aMCI, and dementia groups. Averaged images were created after co-registration to a common MNI template and overlaid on an MNI
template T1 MRI. Parametric images adhere to radiological convention, with orientation denoted in the first coronal section of each image series. Quantification
of between-group differences in c [11C]UCB-J DVR and d [11C] PiB DVR across all ROIs. One-way ANOVAs within each ROI with post hoc unpaired t-tests, FDR-
corrected for multiple comparisons (3 comparisons for diagnostic groups), demonstrated significantly lower [11C]UCB-J DVR and significantly higher [11C] PiB
DVR in both the aMCI and dementia participants (as compared to CN) across most analyzed regions. No group differences were observed in either SV2A or Aβ
binding between aMCI and dementia participants across all analyzed ROIs. # denotes significant post hoc group differences between aMCI and CN. # P<0.05,
## P<0.001, ### P<0.0001. * denotes significant group post hoc differences between dementia and CN. * P<0.05, ** P<0.001, *** P<0.0001. Abbreviations:
DVR, distribution volume ratio using a whole cerebellum reference region; PCC, posterior cingulate cortex, aMCI: amnestic mild cognitive impairment; CN:
cognitively normal; MNI, Montreal Neurological Institute; MRI, magnetic resonance image; PET, positron emission tomography; ROI, region of interest; SV2A,
synaptic vesicle glycoprotein 2A; PiB, Pittsburgh Compound B; FDR, false discovery rate
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parietotemporal reductions of SV2A binding in the de-
mentia group only. After correction for partial volume
effects, Aβ deposition remained significantly elevated
across all neocortical regions in both aMCI and demen-
tia participants, with the exception of the hippocampus
(Supplementary Figure 2, Supplementary Tables 1 & 2).

Association of global Aβ deposition and regional synaptic
density in aMCI and dementia
The primary analysis investigated the association of glo-
bal Aβ deposition and hippocampal synaptic density
(SV2A binding; Fig. 2). We hypothesized that in partici-
pants with aMCI (a stage of continued Aβ accumulation)
but not in those with dementia (a stage of relative Aβ
plateau), global Aβ deposition would be inversely associ-
ated with synaptic density in the hippocampus. Separate
univariate linear regressions for aMCI and dementia
groups demonstrated a significant inverse association in
participants with aMCI (r = − 0.55, P = 0.04) but not in
those with dementia (r = 0.05, P = 0.82). This difference
between group correlation coefficients was significant
(Fisher z = − 1.80, one-tailed P = 0.04). Addition of age
and sex as covariates to this model reduced the previ-
ously observed significance in the aMCI group (R2 =
0.36, semi-partial correlation coefficient = − 0.48, P =
0.09), while the association between global Aβ depos-
ition and hippocampal SV2A in the dementia group
remained non-significant (R2 = 0.24, semi-partial

correlation coefficient = 0.07, P = 0.72). When partici-
pants from the aMCI and dementia groups were pooled
(n = 38), the inverse association between global Aβ and
hippocampal SV2A was not significant (Pearson r = −
0.24, P = 0.58). Secondary exploratory analyses across
multiple ROIs suggested no broad associations between
global Aβ deposition and regional SV2A in either diag-
nostic group (Table 2). However, a nominal inverse asso-
ciation was observed between global Aβ deposition and
lateral parietal SV2A in the dementia group (r = − 0.43,
P = 0.03).
Exploratory whole brain analyses were also performed

on both a regional and surface-based level. On a regional
level, the relationship between global Aβ deposition and
SV2A binding in all FreeSurfer regions suggested nega-
tive correlations with right-sided subcortical structures
in aMCI participants, including the hippocampus, amyg-
dala, caudate, accumbens area, and ventral diencephalon
(Fig. 3a). In participants with dementia, however, inverse
associations were observed primarily with right-sided
cortical regions, including caudal middle frontal, pars
triangularis, supramarginal, superior parietal, and infer-
ior parietal regions (Fig. 3b). Surface-based analyses of
these same relationships revealed that global Aβ was
negatively correlated with SV2A binding in a small clus-
ter of vertices within the right lateral temporal cortex in
participants with aMCI (Supplementary Figure 3A). In
participants with dementia, by contrast, negative

Fig. 2 Correlation of global Aβ deposition and hippocampal SV2A in aMCI and dementia due to AD. Scatter plot with best-fit lines depicts a
significant inverse association between global Aβ deposition and hippocampal SV2A in participants with aMCI (green) but not with dementia
(red). Correlation coefficients were calculated from separate univariate linear regression analyses in each group with associated two-tailed P
values, without correction for multiple comparisons. Global Aβ deposition was calculated by averaging values of [11C] PiB DVR from the bilateral
prefrontal, lateral temporal, posterior cingulate/precuneus, and lateral parietal ROIs, weighted by volume. Green circles denote DVR values for
aMCI participants, while red circles denote DVR values for participants with dementia. Abbreviations: DVR, distribution volume ratio using a whole
cerebellum reference region; aMCI: amnestic mild cognitive impairment; SV2A, synaptic vesicle glycoprotein 2A; PiB, Pittsburgh Compound B
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Table 2 Correlation of global Aβ deposition and regional SV2A in aMCI and dementia due to AD

Mild cognitive impairment (n = 14) Dementia (n = 24) Fisher z-transform

Primary region Pearson r P Pearson r P z P

Hippocampus −0.55 0.04* 0.05 0.82 −1.80 0.04

Exploratory regions Pearson r P Pearson r P z P

Entorhinal −0.08 0.77 0.10 0.65 −0.49 0.31

Parahippocampal −0.29 0.31 0.01 0.97 −0.83 0.20

Amygdala −0.43 0.13 0.04 0.87 −1.34 0.09

Lateral temporal −0.26 0.38 −0.10 0.65 −0.45 0.33

Prefrontal −0.02 0.95 −0.21 0.32 0.52 0.30

PCC/precuneus −0.12 0.69 −0.32 0.12 0.57 0.29

Anterior cingulate 0.07 0.80 −0.05 0.82 0.32 0.37

Lateral parietal −0.18 0.53 −0.43 0.03* 0.75 0.23

Lateral occipital −0.13 0.66 −0.32 0.13 0.54 0.30

Medial occipital −0.10 0.73 −0.19 0.37 0.25 0.40

Pericentral 0.00 0.99 −0.17 0.44 0.46 0.32

Data are Pearson r and associated two-tailed P values obtained from separate univariate linear regression analyses in each group, uncorrected for multiple
comparisons. Global Aβ deposition was calculated by averaging values of [11C] PiB DVR from the bilateral prefrontal, lateral temporal, posterior cingulate/
precuneus, and lateral parietal ROIs, weighted by volume. Global Aβ deposition was then correlated with [11C]UCB-J DVR from the 4 medial temporal structures
and 8 neocortical ROIs. To determine significant differences between group correlation coefficients, Fisher z-transformations and associated one-tailed P values
were reported. * denotes significant correlation, with P < 0.05. Abbreviations: PCC posterior cingulate cortex, PiB Pittsburgh Compound B, SV2A synaptic vesicle
glycoprotein 2A, DVR distribution volume ratio using a whole cerebellum reference region, ROI region of interest, aMCI amnestic mild cognitive impairment

Fig. 3 Brain maps of correlations between global Aβ deposition and SV2A in aMCI and dementia. Brain maps were created by producing images with
the voxels in each FreeSurfer region set uniformly to the calculated Pearson r for that region and overlaid on an MNI template T1 MRI. Correlations
were across all 84 lateralized FreeSurfer brain regions and displayed only for regions with uncorrected P < 0.05 in both the a aMCI and b dementia
diagnostic groups. MR image slices adhere to radiological convention, with orientation denoted in the first coronal section of each image series.
Abbreviations: DVR, distribution volume ratio using a whole cerebellum reference region; aMCI, amnestic mild cognitive impairment
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associations with SV2A binding were more widespread
across the right frontal, right parietotemporal, and right
lateral occipital cortices (Supplementary Figure 3B). No
differences remained significant after permutation-based
correction for multiple comparisons.
Correction for partial volume effects revealed similar re-

sults to those observed in non-corrected data across all
correlational analyses, including associations between glo-
bal Aβ deposition and hippocampal SV2A binding (Sup-
plementary Figure 4), global Aβ deposition and SV2A
binding in neocortical ROIs (Supplementary Table 4), and
global Aβ deposition and regional SV2A binding in all
FreeSurfer regions (Supplementary Figure 5).

Association of regional Aβ deposition and regional
synaptic density in aMCI and dementia
Additional exploratory analyses investigated regional Aβ
deposition and suggested no broad associations with re-
gional SV2A binding in either diagnostic group (Table 3).
However, in the dementia group, a nominal inverse asso-
ciation was observed between medial occipital Aβ depos-
ition and SV2A binding (r = − 0.46, P = 0.02). In
addition, a positive correlation was detected between
hippocampal Aβ deposition and synaptic density in the
dementia group (r = 0.63, P = 0.001) and was also present
if the aMCI and dementia groups were combined (r =
0.53, P = 0.001).
Analyses investigating the relationship between re-

gional Aβ deposition and synaptic density in all FreeSur-
fer regions suggested few correlations in aMCI
participants (Fig. 4a), while analyses restricted to

participants with dementia revealed inverse associations
across bilateral prefrontal, temporal, and parietal, and
occipital (both medial and lateral) cortical regions
(Fig. 4b). These inverse associations were strongest in
right-hemisphere regions. In addition, consistent with
the previous analysis, positive correlations were observed
in the bilateral hippocampi of dementia participants.
Correction for partial volume effects yielded similar re-

sults to those observed in non-corrected data across all
correlational analyses, including associations between re-
gional Aβ deposition and SV2A binding in neocortical
ROIs (Supplementary Table 5) and regional Aβ depos-
ition and regional SV2A binding in all FreeSurfer regions
(Supplementary Figure 6).

Discussion
In this study, we investigated the association of cerebral
Aβ deposition using [11C] PiB and regional synaptic
density using [11C]UCB-J. Overall, our analyses were
consistent with previous research showing that Aβ
plaque burden is not well-correlated with indices of clin-
ical severity. However, consistent with our hypothesis,
we observed that in participants with aMCI (a stage of
continued Aβ accumulation), global Aβ deposition was
more strongly inversely associated with synaptic density
in the hippocampus compared to those with dementia (a
stage of relative Aβ plateau). This stronger association
survived PVC (Supplementary Figure 4) and thus is not
driven primarily by atrophy. Secondary exploratory ana-
lyses across multiple ROIs and whole brain analyses sug-
gested no broad or consistent associations between

Table 3 Correlation of regional Aβ deposition and regional SV2A in aMCI and dementia due to AD

Mild cognitive impairment (n = 14) Dementia (n = 24)

Primary region Pearson r P Pearson r P

Hippocampus 0.40 0.16 0.63 0.001*

Exploratory regions Pearson r P Pearson r P

Entorhinal − 0.01 0.96 0.29 0.17

Parahippocampal − 0.45 0.10 0.18 0.40

Amygdala 0.03 0.92 0.35 0.09

Lateral temporal − 0.24 0.40 − 0.10 0.64

Prefrontal − 0.04 0.88 − 0.28 0.19

PCC/precuneus − 0.06 0.83 − 0.23 0.29

Anterior cingulate 0.14 0.63 0.02 0.93

Lateral parietal − 0.13 0.65 − 0.26 0.22

Lateral occipital − 0.02 0.96 − 0.32 0.12

Medial occipital 0.03 0.91 − 0.46 0.02*

Pericentral 0.09 0.77 − 0.12 0.58

Data are Pearson r and associated two-tailed P values obtained from separate univariate linear regression analyses in each group, uncorrected for multiple
comparisons. Correlations between regional [11C] PiB and [11C]UCB-J DVR were assessed within 4 medial temporal structures and 8 neocortical ROIs. * denotes P <
0.05. Abbreviations: PCC posterior cingulate cortex, PiB Pittsburgh Compound B, SV2A synaptic vesicle glycoprotein 2A, DVR distribution volume ratio using a whole
cerebellum reference region, ROI region of interest, aMCI amnestic mild cognitive impairment
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global Aβ deposition and regional SV2A in either diag-
nostic group. The nominal negative associations with
right-sided subcortical structures in aMCI but right-
sided cortical regions with dementia participants (Fig. 3)
in the full FreeSurfer region set are not fully mirrored in
the corresponding surface-based analyses (Supplemen-
tary Figure 3) and may lack biological plausibility.
Additional exploratory ROI-based analyses of the asso-

ciation of regional Aβ deposition and SV2A binding also
revealed no consistent pattern but suggested a nominal
inverse association in the dementia group between local
Aβ deposition and SV2A binding in medial occipital cor-
tex. A more compelling, larger positive correlation was
also observed between local Aβ accumulation and synap-
tic density in the hippocampus (Table 3; Fig. 4). The lat-
ter “paradoxical” positive association (which is also
present if the aMCI and dementia groups are combined)
may relate to the fact that the hippocampus and other
medial temporal lobe structures are atrophied to yield
low signal with both PET tracers. However, the fact that
this positive association is not impacted by PVC (includ-
ing in the combined aMCI/dementia sample; Supple-
mentary Table 5) suggests an alternative explanation. A
theory that we have recently proposed [47–49] is that in
early AD medial temporal lobe structures are degenerat-
ing so rapidly that the engine for Aβ production is

severely compromised, resulting in low levels of Aβ pla-
ques in this region (Supplementary Table 2). In particu-
lar, the rapid early destruction of the entorhinal cortex
may contribute to reduced Aβ production by neurons
that project to hippocampus. Thus, SV2A binding in the
hippocampus may represent an index of viable perforant
pathway neurons still capable of Aβ production and re-
lease, and thus correlates with [11C] PiB binding in this
region in AD.

Comparison to previous human studies of Aβ deposition
Our overall results are consistent with prior evidence
that Aβ plaques are not well-correlated with indices of
disease severity—at least in the dementia stage [27–
29]—suggesting a dynamic balance between Aβ depos-
ition and clearance [28, 29]. They are also consistent
with evidence from longitudinal PET studies that Aβ de-
position eventually approaches a plateau [30]. However,
our finding that global Aβ deposition was more strongly
inversely associated with synaptic density in the hippo-
campus in participants with aMCI compared to those
with dementia is also consistent with longitudinal PET
studies. Such studies have demonstrated continued accu-
mulation through the prodromal stages [31–33] but with
minimal change by the time of conversion to AD de-
mentia [31, 34] or in the dementia stage [35]. Our

Fig. 4 Brain maps of correlations between regional Aβ deposition and SV2A in aMCI and dementia. Brain maps were created by producing images with the
voxels in each FreeSurfer region set uniformly to the calculated Pearson r for that region and overlaid on an MNI template T1 MRI. Correlations were across all
84 lateralized FreeSurfer brain regions and displayed only for regions with uncorrected P<0.05 in both the a aMCI and b dementia diagnostic groups. MR
image slices adhere to radiological convention, with orientation denoted in the first coronal section of each image series. Abbreviations: DVR, distribution
volume ratio using a whole cerebellum reference region; aMCI, amnestic mild cognitive impairment
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results are further compatible with models of AD in
which Aβ initiates the cascade but later uncouples from
neurodegenerative processes [34, 50, 51]. No previous
study has examined the relationship between Aβ plaque
deposition and synaptic density in vivo. However, a
number of studies have examined Aβ deposition in rela-
tion to other measures of neurodegeneration, including
MRI volumetry [52] and [18F]FDG-PET glucose metab-
olism [53], and have also observed this dissociation be-
tween Aβ deposition and neurodegenerative changes.

Postmortem and in vitro studies of Aβ and synapse
density
Although no previous human studies have investigated
in vivo the relationship between Aβ accumulation and
synaptic density, postmortem studies have provided lim-
ited evidence that soluble Aβ species [7] and Aβ oligo-
mers (Aβo) [9] are associated with loss of synapses and
synaptic proteins. However, measures of Aβ deposition,
Aβ-immunoreactive plaques, thioflavin histofluorescent
plaques, and concentrations of insoluble Aβ have not
been observed to correlate with synaptic change [7].
Non-human studies conducted in APP/PS1 transgenic

mice have more fully explored the localized relationship
between insoluble Aβ and synapses, demonstrating a loss
of synapses or dendritic spines in proximity to plaques
[6, 10, 11]. These studies have also suggested a halo of
neurotoxic soluble Aβo surrounding senile plaques,
resulting in up to 60% loss of excitatory synapses within
50 μm of the plaque [6]. Therefore, fibrillar Aβ may act
as a local reservoir of neurotoxic Aβo which results in
the loss of proximal dendritic spines and synapses [6]. In
the human brain, synaptic density has been observed to
decrease progressively as the proximity to senile plaques
increase, from normal levels of synaptic density at dis-
tances > 50 μm away from the nearest plaque to a ~ 65%
reduction in synaptic density levels near the edge of pla-
ques (in association with Aβo concentrations) [8]. Our
exploratory ROI-based analyses of the association of re-
gional Aβ deposition and SV2A binding revealed no
consistent pattern and therefore cannot lend support to
this model of fibrillar Aβ (such as [11C] PiB is capable of
measuring) acting as a local reservoir of synaptotoxic
Aβo. However, our methods do not permit us to address
highly localized (< 50 μm) associations.

Limitations
Important limitations of this study include the small
sample size (aMCI = 14, dementia = 24) that hindered us
from detecting regionally specific associations between
Aβ deposition and synaptic density across diagnostic
groups. The other major limitation is the absence of lon-
gitudinal data that would enable us to study disease
stage-specific relationships between Aβ deposition and

synaptic density within participants. In particular, al-
though we observed that in participants with aMCI, glo-
bal Aβ deposition was more strongly inversely associated
with synaptic density in the hippocampus compared to
those with dementia, we found no significant differences
in mean Aβ deposition ([11C] PiB DVR) between partici-
pants with aMCI and mild dementia (Supplementary
Table 2). The latter finding may appear inconsistent with
the notion that aMCI is a stage of continued Aβ accu-
mulation, while dementia is a stage of relative Aβ plat-
eau. This discrepancy may reflect the large inter-
individual variability in Aβ deposition that is present
even at similar disease stages [30–34]. However, longitu-
dinal studies would enable us to define stages of disease,
including periods of Aβ accumulation and plateau,
within participants and to analyze the relationship be-
tween longitudinal changes in Aβ deposition and synap-
tic loss.

Conclusions and future directions
To our knowledge, we have conducted the first in vivo
study investigating the relationship between Aβ deposition
and synaptic alterations in participants with AD. We ob-
served significant inverse associations between measures
of global Aβ deposition and hippocampal synaptic density
within participants with aMCI but not with dementia. Our
findings lend support to a model in which Aβ is still accu-
mulating in the early stages of clinical disease but ap-
proaching a relative plateau as a pool of primarily
insoluble fibrillar Aβ, a point at which Aβ may uncouple
from neurodegenerative processes including synaptic loss.
Future research should investigate the relationship be-
tween Aβ deposition and synaptic loss in larger cohorts
(beginning at preclinical stages of AD) followed longitu-
dinally in conjunction with other markers of pathogenesis.
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