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Abstract

Fetal magnetic resonance imaging (MRI) is challenged by uncontrollable, large, and irregular fetal 

movements. It is, therefore, performed through visual monitoring of fetal motion and repeated 

acquisitions to ensure diagnostic-quality images are acquired. Nevertheless, visual monitoring of 

fetal motion based on displayed slices, and navigation at the level of stacks-of-slices is inefficient. 

The current process is highly operator-dependent, increases scanner usage and cost, and 

significantly increases the length of fetal MRI scans which makes them hard to tolerate for 

pregnant women. To help build automatic MRI motion tracking and navigation systems to 

overcome the limitations of the current process and improve fetal imaging, we have developed a 

new real-time image-based motion tracking method based on deep learning that learns to predict 

fetal motion directly from acquired images. Our method is based on a recurrent neural network, 

composed of spatial and temporal encoder-decoders, that infers motion parameters from 

anatomical features extracted from sequences of acquired slices. We compared our trained network 

on held-out test sets (including data with different characteristics, e.g. different fetuses scanned at 

different ages, and motion trajectories recorded from volunteer subjects) with networks designed 

for estimation as well as methods adopted to make predictions. The results show that our method 

outperformed alternative techniques, and achieved real-time performance with average errors of 

3.5 and 8 degrees for the estimation and prediction tasks, respectively. Our real-time deep 

predictive motion tracking technique can be used to assess fetal movements, to guide slice 

acquisitions, and to build navigation systems for fetal MRI.
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I. Introduction

A. Motivation

MAGNETIC Resonance Imaging (MRI) is a relatively slow imaging technique hence it is 

extremely susceptible to subject motion. To deal with this limitation, when MRI scans are 

performed, subjects are instructed to stay completely still. To scan newborns and young 

children, this requires strategies such as feed-and-wrap, padding, or training, whichever is 

applicable, to restrain or reduce motion [1]–[3]. There has been extensive research and 

development in motion-robust sequences and motion correction techniques in MRI (e.g. [4]–

[10]), however none of these techniques can be universally applied to all MRI sequences and 

all patient populations. For example none of the above-referenced techniques can be used for 

motion tracking in fetal MRI, as discussed next.

Among all rapidly-emerging MRI applications, fetal MRI is, arguably, one of the most 

challenging, due to uncontrollable, large, and irregular fetal movements [11]. In particular, in 

midgestation fetuses have enough space to stretch and rotate in large angles. Fetal motion is 

complex and cannot be monitored or tracked by external sensors or camera systems or 

accounted for by cardiac and/or respiratory gating. Fetal MRI motion correction techniques 

have thus relied upon retrospective image registration solely based on image information 

[12]–[20].

Slice-to-volume registration, which has been widely used in retrospective fetal MRI 

reconstruction, is inherently an ill-posed problem [21]. It has a limited capture range as it 

relies on iterative optimization of intensity-based similarity metrics that are only surrogate 

measures of alignment between a reference volume and slices. Moreover, a motion-free 

reference volume may or may not be readily available. To increase capture range, one may 

use grid search on rotation parameters along with multi-scale registration [22]; but this 

approach is computationally expensive as it is based on iterative numerical optimization at 

test time. For reference volumes, one may use age-matched atlases, e.g. [23], and perform 

atlas-based registration, e.g. [22], [24], however these methods are also computationally 

expensive for real-time application.

To improve capture range and the speed of subject-to-atlas image registration, in a recent 

work [25], deep regression convolutional neural networks (CNNs) were trained to estimate 

3D pose of the fetal brain based on image slices and volumes. Partly inspired by [25], in this 

paper we present a novel deep predictive motion tracking framework based on long short 

term memory (LSTM) [26] recurrent neural networks (RNNs). While the technique in [25] 

addressed static 3D pose estimation only (based on regression CNNs), our work here 

addresses dynamic, real-time, 3D motion tracking in MRI, for the first time, using RNNs, 

exploiting LSTM modules and innovative learning strategies, that are explained in this 

paper. In static pose estimation we infer 3D pose of the anatomy based on one slice, whereas 

in dynamic motion tracking, we infer relative pose changes of the subject based on a time 

series of slices. Our proposed method, therefore, learns to predict motion trajectory based on 

MRI slice time series. While motivated by an unmet need in the application domain, our 
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technique was inspired by the most recent advances in computer vision, which are reviewed 

next, where we also review the related work in fetal MRI and MRI motion tracking.

B. Related Work

Pose estimation using 2D (digital) images and videos has been extensively researched in 

computer vision, where algorithms aim to find 3D pose of objects with respect to camera. 

Work in this area can be studied in two main groups: methods that predict key points 

leveraging object models to find object orientation, e.g. [27]; and methods that predict object 

pose directly from images to discrete pose space-bins, e.g. [28], [29] and [30]. While the 

majority of pose estimation techniques have been designed as classification methods, the 

problem has been recently modeled and solved by regression deep neural networks [31]. 

Deep CNNs have shown great performance in pose estimation in recent years, e.g. [31]–

[34].

Three-dimensional pose estimation from 3D or stack-of-2D medical images has also been 

recently addressed using CNNs. For a review of the related pose estimation and registration 

methods we refer to [25]. For fetal MRI, in particular, deep regression CNNs were designed 

for slice-to-volume registration on non-Euclidean manifolds [35], and used to estimate 

transformation parameters for fetal head position to reconstruct fetal brain MRI volumes 

from slices [36]. Real-time fetal head pose estimation was achieved in [25] by multi-stage 

loss minimization using mean squared error and geodesic loss, and used for image-to-

template and inter-subject rigid registration.

The above-referenced techniques treat image slices independently. Therefore, while they are 

powerful in that they learn to predict head position based on single slices (or volumes), they 

ignore the rich information content of stack of sequentially acquired slices and the dynamics 

of head motion. Consequently, these methods may be limited in their predictive performance 

as they ignore (or do not model) the dynamics of motion (e.g., the motion velocity). 

Moreover, the average 3D pose estimation error of these methods is often high for slices in 

the boundaries of the anatomy where image features are sparse [37]. While pose estimation 

methods can be combined with iterative slice-to-volume registration for head motion 

tracking, e.g. [19]; a natural, promising extension of this line of work is dynamic image time 

series modeling, which has been the subject of our work presented in this paper. In our 

experiments, we compared our predictive motion tracking technique with zero-velocity and 

auto-regressive prediction models built upon static 3D pose estimation methods.

Traditional time series prediction models such as ARIMA (auto-regressive integrated 

moving average; seasoned, and non-seasoned) expect data to be locally stationary. These are 

regression models that make strong assumptions about data to predict future values based on 

past observations. These models shall be paired with other techniques to effectively process 

and use image time series information; but this integration may not be straightforward. 

RNNs [38], on the other hand, can handle non-stationary and nonlinear data. They offer end-

to-end framework to take images as input and make predictions, and are flexible in terms of 

the corresponding objectives.
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Variants of RNNs such as networks based on LSTM [26] have the capacity to learn the 

amount of information to remember and forget from past sequences. This makes them less 

susceptible to unaccounted cases that cannot be easily handled by graph designer of dynamic 

Bayesian networks (DBNs) [39]. Compared to traditional models where error propagation 

leads to error accumulation in long-term prediction, advanced LSTM-based methods, such 

as sequence-to-sequence (Seq2Seq) learning [40], can reliably predict variable time steps 

with long prediction horizons.

Deep predictive motion tracking using RNNs based on video sequences has also been 

widely studied in robotics and computer vision, e.g. [40]–[42]. A review of these studies is 

beyond the scope of this paper, but we briefly review some representative methods and 

studies. The first group of techniques based on siamese networks detect and use regions 

close to object locations to track objects, e.g. [43], [44]. Large datasets can be used to train 

these networks for feature extraction and region proposals for simultaneous one-shot 

detection (classification) and online tracking (regression) [45]. Early performance gains in 

accuracy were obtained by passing features from an object detector to LSTMs [46]. In the 

LSTM category, the Real-time Recurrent Regression (Re3) network [47] combined non-

differentiable cropping and warping with feature extraction using a residual network 

(ResNet), and passed them to LSTM for object tracking.

C. Contributions

In this paper we present, for the first time, a dynamic motion tracking framework for MRI 

based on deep learning. Compared to recent developments in static 3D pose estimation from 

MRI slices and volumes based on CNNs [25], [36], in this work we exploit RNNs for 

predictive dynamic motion tracking. Compared to motion tracking in computer vision, 

robotics, digital image and video processing, where 3D pose or projected motion of objects 

is modeled and estimated based on 2D+time images (videos) with respect to cameras, in this 

work we deal with 3D rigid motion of anatomy (in the scanner/world coordinate system) 

from stacks of sequentially acquired slices (3D+time image time series). Consequently, 

while the majority of human pose tracking or video object tracking methods are formulated 

and solved as classification problems in a parameter space, we solve a regression problem 

where 3D rigid motion parameters are estimated based on features directly extracted from 

MRI time series.

Our contributions are threefold: 1) We developed a learning-based, image-based, real-time 

dynamic motion tracking in MRI based on deep RNNs: Our model encodes motion using 

LSTM after extracting spatial features from sequences of input images using CNNs, 

estimates objectives for given images and creates a context vector that is used by LSTM 

decoders to regress against angle-axis representation and translation offset to predict 3D 

rigid body motion. The network constitutes multiple representation heads to avoid over-

fitting to either rotation or translation parameters. 2) We devised multi-step prediction by 

feeding output of previous decoder as input to current decoder combined with the context 

vector. 3) We trained and tested networks on sequences with masked slices that are slices 

lost due to intermittent fast intra-slice motion.
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We developed and tested our method for fetal head motion tracking in fetal MRI, which is a 

very challenging problem due to the wide range of fetal head positions and motion; but the 

technique can be used in broader applications. The fetal brain MRI data intrinsically shows a 

wide feature range due to inter-subject variability and different age of fetuses at the time of 

MRI scans as well as rapid changes that occur to the fetal brain during gestation. To train 

and test models we used images of different fetuses scanned at different gestational ages. We 

simulated motion and also used motion trajectories from sensor recordings of head motion 

of volunteer subjects to test the generalization capacity of our trained network. We set up a 

probing task to examine temporal and spatial dependency of our trained model. Our network 

infers motion parameters from features extracted from 2D slice time series, therefore it does 

not require coverage of the entire brain in 3D and hence does not require data that are on a 

regular grid. Our experiments showed that our trained model not only estimated motion 

trajectories but also was able to make long term predictions based on sequences of fetal 

brain MRI slices with both simulated and real motion in the test set. The paper is organized 

as follows: the details of our network and methods are discussed next. Then, the experiments 

and experimental results are described in Section III; which are followed by a discussion in 

Section IV and conclusion in Section V.

II. Methods

A. Problem formulation

Our goal is to take in a sequence of slices X1, X2, …, Xn (Xn : N × N) sampled sequentially 

(in time) from 3D fetal anatomy (usually acquired in an interleaved manner) in an MRI scan 

to estimate and predict 3D pose (rotation and slice position) Y1, Y2, …, Yn+m of the fetal 

brain for current n timesteps as well as future m timesteps (timestep unit defined in Section 

III-A). Our technique does not put any restriction on the values of n and m. Although n is 

limited by the number of input slices, m can be variable i.e. either less, equal or greater than 

n. The slices are from a stack of sliced anatomy where the anatomy moves in 3D in between 

slice acquisitions. For the purpose of this study we assume that the fetal brain is extracted in 

each slice using a real-time fetal brain MRI segmentation method [48]. For the development 

and evaluation of predictive motion tracking, we also assume that center-aligned slices are 

extracted from 3D fetal brain images reconstructed and segmented using the existing 

techniques [15], [49].

Figure 1 shows how the data is pre-processed and prepared for fetal head motion tracking. 

The region-of-interest (RoI), which is the fetal brain in this study, is first extracted using a 

real-time brain extraction method [48] and the slices are cropped, masked, and center-

aligned to form a 3D stack. For slices that are corrupted by intra-slice motion (causing full 

or partial signal loss), the brain extraction method does not generate brain masks that are 

coherent between those slices and their spatially neighboring slices. The motion-corrupted 

slices can, therefore, be detected by statistical or learning based methods (e.g., outlier 

detection [16], [37] or support vector machines [19]). Hence, fetal motion appears as inter-

slice motion with occasional black (masked) slices due to intra-slice motion. The problem is 

formulated as finding 3D rigid transformations, T, relative to the starting slice X1, of the 

fetal head at the times corresponding to slice Xi acquisitions.
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A 3D rigid-body transformation T has 6 degrees-of-freedom represented by a vector t 

comprising of three translation (tx, ty, tz) and three rotation θ (θx, θy, θz) parameters. For 3D 

rotation representation we follow [25] which uses Euler’s theorem and the Rodrigues 

rotation formula to represent the 3 × 3 rotation matrix by the angle-axis representation where 

the rotation axis is its unit vector and the angle in radians defines its magnitude. Since we 

center align the images in the pre-processing step, the translation parameters are assumed to 

be known a priori, which allows us to constrain our parameter space to the slice position z 
and the rotations θ represented by the angle-axis formalism. The methods in [25] can be 

used to estimate the initial pose and the a priori translation parameters.

B. Deep regression RNN for predictive motion tracking

As shown in Figure 2, our deep RNN model for predictive slice-level motion tracking in 

MRI is built of two main parts: an encoder and a decoder. The encoder network, which is 

composed of deep CNN blocks followed by unidirectional LSTM and P blocks, takes a 

sequence of slices X1, …Xn as input, and estimates a sequence of n transformations as well 

as an encoder state, which is fed into the decoder network. Conditioned on the encoder state, 

the decoder network, which also constitutes LSTM and P blocks, predicts transformations 

for future time steps m. A P block involves three representation heads, each consisting of a 

dense block and an activation function for regression at the output layer. The activation 

functions are πtanh for the rotation parameters θ and rectified linear unit (ReLU) for slice 

position shown here by z. In the sections that follow we discuss each of the network 

components and the details of training.

C. Encoder: Spatial

For spatial encoding, convolutions [50] are applied to each slice Xn of a sequence where n is 

the index of the slice in the sequence. Figure 3 shows the architecture of the spatial encoder 

network. Through weight sharing the same CNN is trained and applied to all slices. This 

means there is no dedicated network for each timestep. Instead during training, kernel 

weights of the same CNN are updated to account for variations in all timesteps. This allows 

the spatial encoder CNN to learn anatomical variations between different ages, and pass the 

encoded information into the temporal encoder. We used parametric rectified linear unit 

(PReLU) as activation function as it has shown better performance than ReLU [51]. PReLU 

avoids the dying ReLU problem, in which a neuron (with ReLU activation) becomes inactive 

when it gets negative input making the gradient of an inactive neuron zero, hence unable to 

pass any information via backpropagation.

D. Encoder: Temporal

Just as CNN learns spatial variations, RNN learns variations between elements in a 

sequence. Since vanilla RNNs face the vanishing gradient problem [52], which makes it 

difficult to propagate gradients back in time, we used LSTM [26], which also learns what to 

remember and what to forget. This is important to learn the anatomy and how it is sampled 

by slices over time using the gating mechanism. Based on encoded image features from the 

CNN, the LSTM learns to estimate the state of the anatomy, i.e. the 3D pose of the anatomy 

and its sampling. LSTM has three primary components: W, U, b; where W is the recurrent 
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connection between previous and current hidden layers, U connects inputs to current hidden 

layer and b is bias:

LSTMencoder:Xn, ℎn − 1, cn − 1 ℎn, cn (1)

in = σ W iXn + Uiℎn − 1 + bi (2)

fn = σ W fXn + Ufℎn − 1 + bf (3)

on = σ W oXn + Uoℎn − 1 + bo (4)

cn = tanℎ W cXn + Ucℎn − 1 + bc (5)

cn = fn ⊙ cn − 1 + in ⊙ cn (6)

ℎn = on ⊙ tanℎ cn (7)

For each time step n, the memory cell cn ∈ ℝn is called as it controls exposure of the 

previous memory cn−1 with current input Xn. This is done by combining cn−1 multiplied by 

the forget gate fn, with the computed hidden state hn multiplied by the input gate in. These 

are called gates because they squash values between 0 and 1 using the sigmoid activation 

function σ. The element-wise multiplication ⊙ controls how much of information is let 

through: The input gate controls how much of the current input goes through; the forget gate 

controls the throughput of the previous state; and the output gate controls the amount of 

exposure of the internal states to the next timesteps (or the downstream layers). All gates 

have dimensions equal to that of the hidden layer hn, which is computed by multiplying the 

hyperbolic tangent tanh of memory cn with the output on.ĉn is the candidate hidden state that 

connects the current input Xn to the previous hidden state. One can ignore old memory 

completely (all zeros fn) or ignore states (all zeros in in), but we chose to store nuances of 

changes in data over time thus the values were chosen to be between 0 and 1.

Flattened feature maps pass from the spatial encoder to the unidirectional LSTM network. 

Output of each time step of the encoder and decoder LSTM go through dense fully-

connected layers to get estimated and predicted parameters. The last nonlinear function with 

weights W θxyz on top of the dense layer is π × tanh which limits the output of each element 

from –π to +π and simulates the constraints of each element of the rotation vector (θx, θy) 

and θz independently:

θn
xyz = πtanℎ W θxyzon + bθxyz (8)
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The slice index (z) estimator head with weights Wz contains a scalar, as the network tries to 

estimate the continuous slice index along with its orientation. For inference, the continuous 

index is rounded (i.e. ⌊z⌉) to infer a discrete slice number.

zn = max 0, W zon + bz     (ReLU) (9)

E. Decoder: Modeling variable and long term predictions

The conventional approach to predict sequential data is to use n steps of the sequence from 

the past to predict the immediate future time step n + 1 and repeat recursively to make future 

predictions up until the desired prediction horizon. This model, however, shows limited 

multi-step prediction performance in applications such as image-based motion tracking as it 

faces issues raised by compounding errors especially when initial predictions may exhibit 

relatively large amounts of error. To mitigate this issue and make variable-length, long-term 

predictions we follow the idea of sequence to sequence learning [40]. In this approach, an 

LSTM encodes the input sequence of images into a fixed dimension vector, and another 

LSTM decodes the target sequence from this vector. The advantage of this technique is that 

we no longer need to rely on encoder estimates to predict variable-length time steps of the 

future as encoder and decoder are two separate LSTM networks. Figure 2 shows our LSTM 

network unrolled.

Each decoder is trained to predict parameters of the following step. Therefore, input to the 

first decoder is the estimation vector Ŷn of the last slice Xn from the encoder and the rest of 

the decoder takes output of the previous decoding stepŶm−1 so that over time the model 

learns to correct its own mistakes.

LSTMdecoder:Y n + m − 1, ℎn + m − 1, cn + m − 1 ℎn + m, cn + m (10)

The goal of decoding is to model the conditional probability of P(Y1, .., Yn+m|X1, .., Xn). 

The decoder uses hn, cn from encoder as its initial state to compute P(Yn+m). However the 

decoder does not directly model P(Y | X), its power comes from modeling probability of 

current output with respect to all previous timesteps P(Yn+m|Y<n+m, Xn) where Y<n+m 

represents output from 1 to n + m −1. The posterior probability of the output state given 

inputs, with model parameters γ, is as follows

Pγ(Y ∣ X) = ∏
n = 1

n + m
Pγ Y n ∣ Y < n, X (11)

F. Loss functions

The coupling between in-plane and out-of-plane rotation with the slice select direction and 

slice location z hinders optimization and learning [35]. To alleviate this issue, we divided the 

rotation θ regression heads from Equation (8) and added a hidden layer one each for θxy and 

θz as follows:
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θn
xy = πtanℎ W θxytanℎ W θxyzon + bθxyz + bθxy (12)

θn
z = πtanℎ W θztanℎ W θxyzon + bθxyz + bθz (13)

which changes our loss calculation from

LTotal = Lθxyz + Lz (14)

LTotal = Lθxy + Lθz + Lz (15)

For training, we minimized mean squared error (MSE) for both estimation and prediction 

LTotal = Lestimation + Lprediction where L = ∥Y − Ŷ∥2. We used tanh as activation of this 

hidden layer as its derivative provides a stronger gradient for regression tasks compared to 

ReLU or sigmoid functions. In summary, we split our rotation loss in two separate layers; 

and regressed our rotation and slice location parameters using the backpropagation 

algorithm.

III. Experiments

To train, test, and evaluate our method we conducted experiments with real fetal MRI data 

with simulated motion and motion tracking data of volunteers who moved inside the scanner 

while motion parameters were recorded using an external motion tracking sensor. All fetal 

MRI and volunteer experiments were performed under protocols approved by the 

institutional review board committee, and written informed consent was obtained from all 

pregnant women volunteers and other volunteers. We divided our main experiments into 

estimation for 10 timesteps and prediction for 10 timesteps; and evaluated our trained model 

for generalization, robustness, and latency; and compared our results against pose estimation 

networks in particular those based on SVRNet [35], PoseNet [25], and our baseline models 

for estimation and prediction. Further, we tested our estimated motion parameters with a 

retrospective slice-to-volume reconstruction method [53]. In this section, we describe the 

fetal MRI data and its pre-processing first; and then the details of our experiments that 

involved generating the training data and the results of estimation and prediction for both 

simulated and real motion trajectories.

A. Fetal MRI dataset

The fetal MRI dataset consisted of repeated multi-planar T2-weighted single shot fast spin 

echo scans as well as reconstructed T2-weighted fetal brain MRI scans of 82 fetuses scanned 

at a gestational age (GA) between 21 and 37 weeks (mean=30.1, stdev=4.6) on 3-Tesla 

Siemens Skyra scanners with 18-channel body matrix and spine coils. The in-plane spatial 

resolution of the original scans was 1 mm, the slice thickness was 2–3 mm, and the temporal 

resolution for slice acquisition was equal to the repetition time (TR), which was 1.5s. This 

defined the time unit for slice-level motion tracking, so the timestep in motion tracking was 
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1.5s. Brain masks were automatically extracted on slices of the original scans using the real-

time algorithm in [48]. The scans were automatically cropped around the fetal head RoI 

(based on the masks) and were then processed using slice-by-slice motion correction to 

reconstruct a super-resolved 3D volume [15], [17] at an isotropic resolution of 0.8 mm. Final 

3D brain masks were then generated on the reconstructed images using Auto-Net [49] and 

manually corrected in ITK-SNAP [54] as needed.

Brain-extracted reconstructed volumes were then registered to a spatiotemporal fetal brain 

MRI atlas described in [23]. We normalized the intensity of the reconstructed images to 

zero-mean, unit-variance. The set of 82 scans were split into 30, 6, 40 and 6 for training, 

validation, test, and reconstruction, respectively; where the GA range spanned over 29 to 35 

weeks for the training set, and from 26 to 37 weeks for the test set. We intentionally chose a 

narrower age range for the training set than the test set to examine the generalization 

capacity of the trained models on extended age ranges. To generalize well, the trained 

models had to account for both intrinsic inter-subject anatomical variations (due to different 

fetuses in the training and test sets) and anatomical variations due to different maturation 

levels of fetuses scanned at different GA ranges. The training, validation, test, and 

reconstruction set splits never had scans of the same subject. The GA of the reconstruction 

set subjects were 28, 30, 32, 32, 35, and 37; and between 6–10 (mean=7) multi-plane stacks 

of slices were used to reconstruct a volume for each of those subjects.

B. Generating the Training Data

To achieve our goal of predicting motion and slice position from sequences of slices, we 

aimed to train networks to learn the patterns of slice sampling and fetal head motion in 

reference to the fetal brain anatomy while it develops during gestation. To generate the 

training, validation, and test data for this purpose, from the pre-processed fetal MRI data, we 

generated sequences of fetal MRI slices with motion. This involved two sampling 

components: spatial sampling of slices and temporal sampling of spatial slices to model fetal 

motion. For slice excitation and spatial sampling, we sampled sequentially along permuted Z 
axes with 5 mm slice gap to account for fetal MRI acquisitions that are interleaved.

For temporal sampling to generate dynamic transformations corresponding to fetal motion, 

we exploited curve fitting with smoothing cubic Splines for each of the rotation angles. In 

this scheme, smoothing cubic splines generated different motion trajectories by interpolating 

curves between randomly-generated control points. The number of control points varied to 

control speed of motion. This was analogous to how fast or slow the fetus moved between 

scans. Further, to account for fast motion that disrupts slice encoding, we randomly masked 

a timestep in all slices. This resembled intra-slice motion as the brain masking technique in 

[48] generated all-zero masks for motion-corrupted slices. Figure 4 shows five 10-timestep 

sequences generated from the reference (GT) image sequence with random patterns and 

different speeds of motion.

We sampled 32 sequences for each subject in the training set 300 times (epochs). This led to 

30 subjects × 32 sequences (1 batch size of 5 speed categories) × 300 times = 288,000 

sequences for training, where speed of motion was controlled by the number of smoothing 

spline control points sampled from a normal distribution (μ = 6.4, σ = 1.36, bounds=[4, 8]). 
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The initial rotation matrices were bound to [−π/3, π/3] range; and the rotation parameters 

θx, θy, θz were sampled from a zero-mean normal distribution in the [−π/6, π/6] range. This 

led to maximum rotation bounds of [−π/2, π/2]. For the validation set we followed the same 

sampling strategy, which led to 6 × 32 × 300 = 57, 600 sequences for validation.

C. Test Datasets

To test and compare algorithms, we sampled 32 sequences per speed of [4, 8] where we 

followed the spatial and temporal sampling strategies described in the previous section. This 

resulted in a total of 40 test subjects × 32 samples = 1280 sequences of 20 timesteps (10 

estimation + 10 prediction) each for test. Even though our main goal was to evaluate one-

step ahead prediction, having 10 prediction timesteps allowed us to test efficacy of the model 

on long-term predictions. While our training data was limited to sequences generated from 

fetal MRI scans using the described procedure, to evaluate the generalization capacity of the 

trained models for new (unseen) patterns of motion, in addition to the test set described 

above, we used motion data recorded using head motion tracking sensors [55] from 10 

volunteers. Rigid 3D transformation parameters were recorded in the scanner as volunteers 

moved their head with different patterns and speeds during scans. We applied these motion 

trajectory parameters to each of the 40 fetal test subjects, which led to a total of 400 new 

sequences with realistic motion patterns that differed from the motion patterns of the 

training data. The scans of the 6 test subjects in the reconstruction set were directly used in 

the reconstruction experiments. The details of the implementation and experiments are 

discussed next.

D. Implementation and Experimental Details

We used the mean square error (MSE) loss and the RMS-prop optimizer with initial learning 

rate of 0.001 ending in 0.00001 over the course of 300 epochs, decreasing the learning rate 

when the loss plateaued for 50 consecutive epochs. Due to the temporal nature of MRI slice 

acquisitions and the fact that the boundary slices did not include sufficient anatomical 

features, we limited estimation and prediction of motion trajectories to slices si; i ∈ [0.4S, 

0.9S], where S was the total number of slices in each reconstructed brain volume.

We conducted experiments and evaluated our model in both estimation and prediction tasks. 

For estimation, we compared our model (with 4.7M parameters) with two state-of-the-art 

fetal MRI pose estimation methods, i.e. an 18-layer residual network (ResNet) with two 

regression heads, one for angles θ and the other for slice location z, based on PoseNet [25] 

(with 11M parameters), and a VGG16-style network based on SVRNet [36] (with 14.7M 

parameters). Since SVRNet chose VGG16 among several other models, namely GoogLeNet, 

CaffeNet, Inception v4, and ResNet, we only compared against VGG16, as according to [36] 

it generated the lowest MSE.

For prediction, we conducted experiments for one-step and multi-step ahead predictions. To 

implicitly model motion states (i.e. to estimate motion velocity and acceleration) we needed 

a window size of at least three timesteps. In our experiments we used a window size of 10 

for estimation and prediction each. For multi-step prediction, we limited our evaluation to 10 

timesteps in the future although this was a choice and not a theoretical limit on the 
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prediction horizon. We compared our predictor against three baselines: 1) a naive predictor 

that used estimation at current time as one-step ahead prediction (referred to as zero velocity 

predictor); 2) an auto-regressive model that recursively used its own predictions in a sliding 

window of size 10 to predict multi-step motion trajectories; and 3) a predictive model that 

we adopted based on the network proposed in [56]. In this model (with 44M parameters), the 

data was passed directly into an LSTM without spatial feature encoding, thus we refer to it 

as directLSTM.

For the volume reconstruction experiments from multiple scans, we rearranged slices of the 

original fetal MRI scans (with inter-slice motion) based on slice timing, estimated 3D pose, 

and passed estimated parameters from our motion tracking algorithm along with volume-to-

volume transformation to the canonical atlas space [25] to NiftyMIC [20], [53]. We then 

compared the reconstructions to reconstructions directly performed by NiftyMIC in the atlas 

space. We compared reconstructed images using Structural Similarity Index (SSIM) which 

has a range of −1 to +1 where 1 means a perfect match, and Normalized Root Mean Square 

Error (NRMSE), which ranges between 0 and 1 where 0 means perfect match (0 error).

E. Results

Figure 5 shows 10 estimated and 10 predicted timesteps for a train case and a test case 

compared to the ground truth slices in the top rows. The predicted rotation was accurate after 

multiple timesteps. Table I shows average loss of estimation and prediction tasks (defined in 

Section II-F) on the test data with synthetic motion, along with the standard errors computed 

between groups of fetuses in the test set based on the prediction timestep (time), age at scan, 

and speed of motion, for the ablation studies as well as the comparisons to baseline and 

alternative methods. We compared our ”full model” trained with sequences with masked 

slices (resembling slices corrupted by intra-slice motion) and split loss explained in Section 

II-F against our ”baseline” which was trained without masked slices in the training set 

sequences and without split heads, and ”masked bl” which was trained with masked slices 

but without the split loss functions. The best results in each comparison, shown in bold, 

show that our full model outperformed the baselines and all other models in both estimation 

and prediction tasks. The low standard errors of our model show its consistent and robust 

performance with respect to the different characteristics of the test data. Figure 6 shows the 

rotational MSE of multi-step prediction per timestep (estimation for time 10 and predictions 

for times 11 to 19) on test data, where the images corresponding to time points 1 to 10 were 

the inputs to the model.

In the next sets of experiments, we evaluated our model for 1) its generalization performance 

for our test data that included subjects scanned at gestational ages not included in the 

training set; 2) its performance for different speeds of motion; 3) its robustness in the 

presence of intra-slice motion (i.e. lost slices in the input sequence due to fast motion that 

disrupted signal during slice encoding); and 4) its generalization and robustness to motion 

patterns that were different from the motion patterns in the training data (i.e. motion patterns 

recorded from volunteer subject experiments). Figure 7 shows boxplots of the MSE of the 

estimation and prediction tasks for 10 timesteps grouped by gestational age and datasets. 
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The consistency in error statistics across test and train datasets and GA, indicate that the 

trained model was robust and generalized well to the test data.

Table II shows the MSE of pose estimation, one-step and multi-step prediction for test data 

grouped by the location of a lost slice (due to intra-slice motion) in the input slice sequence. 

This table compares the performance of two models: our model trained without any missed 

(masked) slices in the training sequences (referred here as the baseline); and our full model 

trained with randomly missed (masked) slices in the training set. These results show that 1) 

in the baseline model, both estimation and prediction errors were higher when the lost slice 

was closer to the end of the input sequence; i.e. missing slice 10 in the sequence led to much 

higher errors (shown in red) compared to missing slices in earlier locations; 2) Our full 

model performed better than the baseline with much more consistent and robust 

performance; and 3) Our full model’s performance degrades if the first timestep is masked 

because being first timestep it does not have information from past and by masking it. These 

show that when our model was trained with randomly masked slices in the training 

sequences, it learned to rely less on the last slices in the sequence to gain robustness to intra-

slice motion.

We evaluated the generalization capacity of our model trained on data with synthetic motion, 

on motion trajectories recorded from volunteer subjects (that were never used in training). 

Figure 8 shows the mean squared pose prediction error for different timesteps for the test 

data with the recorded motion trajectories, obtained from our full model and other 

predictors. The results show that our model generated very low multi-step prediction errors, 

whereas all other methods showed high errors that increased with prediction horizon.

Our final experiment focused on end-to-end volume reconstruction from multiple stack-of-

slices with motion parameters estimated by our model and reconstructed with NiftyMIC 

[53]. The results of the reconstructions with our estimated motion parameters for 6 subjects 

in the test set have been shown in Figure S1, and compared favorably with reconstructions 

using conventional slice-to-volume registration in terms of NRMSE and SSIM. In particular, 

we achieved average NRMSE of 0.151 with standard deviation of 0.023; and SSIM of 0.912 

with standard deviation of 0.031 for our reconstructions. Supplementary Figure S2 shows 

multi-plane views of a sample case, and Figure S3 shows a case where reconstruction with 

conventional slice-to-volume registration failed, whereas the reconstruction was improved 

when we plugged in our estimated motion parameters in the firs iteration of reconstruction.

The latency for prediction on our hardware (an NVIDIA GeForce 1080 Ti) was ~ 1.42 ms 

per data point where each sequence comprised of 10 slices and outputs were 10 estimations 

and 10 predictions. Considering the slice acquisition time of ~ 1.5 seconds for T2-weighted 

MRI and ~80 ms for echo-planar imaging, this is real-time.

IV. Discussion

To the best of our knowledge, this is the first report of the development of a real-time 

predictive motion tracking technique for fetal MRI. Up until now motion correction in fetal 

MRI has been done retrospectively through non-causal iterations of slice-to-volume 
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registration and reference volume reconstruction. Slice-to-volume registration is intrinsically 

an ill-posed problem [21]. To overcome this issue, retrospective fetal MRI motion estimation 

methods that relied on slice-to-volume registration, evolved from hierarchical [12], [13] and 

slice intersection-based [14] methods to progressive [15]–[17], [20], patch-based [18], and 

more recently, dynamic motion estimation techniques [19]. There have also been nonrigid 

and deformable extensions of slice-to-volume registration [57].

General-purpose, image-based, MRI motion tracking techniques sought regularization 

through modeling motion dynamics [7], or used robust state space models to estimate 

relative position of sequentially-acquired slices [37], [58]. While the underlying phenomena 

are nonlinear, these techniques made simplifying assumptions to linearize the problem and 

used image registration along with state space estimation by Kalman filtering (or its robust 

extensions) for motion tracking. Bayesian filtering based Kalman filters fail to model 

nonlinear relationships as well as non-Gaussian noise, and their extended versions also fail 

when dynamics are highly nonlinear. These techniques are thus difficult to scale up to real 

life scenarios, in particular in challenging applications such as fetal MRI.

More capable Gaussian mixture models [59], process models [60], or dynamic Bayesian 

networks (DBN) [39] can accommodate complex dynamics but need strong priors by experts 

which makes them prone to the same practical issues that exist in conventional methods 

especially when long term prediction is desired. As a result of using image registration, 

these techniques are computationally intensive and cannot be easily applied in real-time. 

More importantly, none of the current techniques explicitly uses image information and 

image recognition to model motion dynamics for 3D pose estimation. Registration-based 

methods are slow and offer a limited capture range, which makes them prone to failure when 

motion is continuous and large. In other words, even when integrated with state space 

estimation methods for dynamic motion tracking, registration-based techniques may not 

easily recover if they loose subject’s position. This is especially problematic in motion 

estimation in fetal MRI as fetuses in the second and early third trimesters move frequently 

and rotate in large angles. Finally, almost all of the current methods rely on certain 

initialization assumptions such as the existence of a motion-free reference scan for 

registration, which is restrictive and unrealistic when considered for use in real-time 

applications, such as motion tracking for real-time navigation.

In this paper we showed predictive potential of recurrent neural networks for modeling end-

to-end motion in MRI. To this end, we developed a combination of spatial encoders based on 

convolutional neural networks and temporal encoder and decoder networks based on CNN-

LSTM to learn the spatiotemporal features of anatomy and slice sampling from imaging data 

to predict motion trajectories. Loss functions on multiple regression heads led to a robust 

model that generalized well beyond the training set to fetuses scanned at different ages and 

with motion patterns that were recorded from volunteers, which were characteristically 

different from the synthetic motion patterns that were used in training.

To resemble fetal head motion, our volunteer subjects moved their head at different speeds 

and in different directions to the largest possible extents while we recorded their motion. 

Comparing the results shown in Figure 8 (for the fetal test data with recorded motion) with 
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the results in Figure 7 (for the fetal test data with synthetic motion) indicates that the average 

prediction error on recorded data was lower than the average prediction error on synthetic 

data, despite the fact that the synthetic motion was generated by the same procedure that 

generated motion patterns in the training data. We attribute this to the fact that the recorded 

motion had constraints imposed by the mechanical linkage between head and neck that made 

it easier to predict compared to the synthetic motion.

Our approach is a learning-based technique, so its performance depends on what it learns 

from the training data. Our training data involved large rotations in the −90° to 90° range 

over 15 seconds (10 timesteps). Our training data generation methodology differed from 

those in earlier 3D pose estimation works, e.g., [25] [35], which randomly rotated individual 

slices without taking surrounding slices into account. We generated sequences of interleaved 

slices covering the 3D anatomy while the anatomy moved on a motion trajectory synthesized 

by B-Spline curve fitting. This is more realistic than moving slices independently. Yet our 

model may benefit from training with more realistic simulations of motion, for example 

using bio-mechanical models of fetal motion [61] or from ground truth motion recorded 

from adult volunteers. In this study we used recorded motion only for testing. Dynamic 

predictive motion tracking, as we proposed here, may also be useful to assess normal versus 

abnormal patterns of fetal movements [62] from cinematographic MRI (or 4D ultrasound), 

which, in-turn, may be used to assess fetal motor behavior [63], [64].

Obtaining ground truth fetal motion is difficult, especially for large ranges of motion. 

Motion estimates obtained from successful slice-to-volume reconstructions are typically 

only available (and reliable) for small ranges of motion. Slice to volume reconstruction 

techniques rely on 1) redundant slice acquisitions, 2) outlier detection and rejection, and 3) 

robust reconstructions. Therefore, they effectively filter or remove the effect of mis-

registered and motion-corrupted slices [15], [16]. The transformations obtained for the 

remainder of the slices that are effectively used in reconstruction are typically small; and yet 

may not be sufficiently reliable to be used as ground truth. Therefore, to test our approach on 

original fetal MRI scans with motion, we used our estimated motion parameters along with a 

powerful slice-to-volume reconstruction method [53] to reconstruct volumes from multiple 

stack-of-slices. Reconstruction with our estimated motion parameters compared favorably 

against reconstruction with retrospective slice-to-volume registration (Supplementary 

Figures S1–S3).

Our model generalized well to data from subjects at ages outside of the age range of the 

training data and with realistic motion patterns that were never used in training. Initially we 

found that the model had difficulty estimating motion for large and fast movements. To 

resolve this we used curriculum training which trained the network on difficult samples 

more often than easier ones that alleviated the issue. Our initially trained models also had 

difficulty generalizing to unseen gestational ages with large and fast movement in the 

validation set. To resolve that, we added batch normalization and regularized by reducing the 

number of parameters in the model which resulted in better performance. Yet, since our 

method is a learning-based approach, its performance is expected to degrade if there is 

significant domain shift between the training and test data. For example, the performance of 

our model may significantly drop if a different modality or sequence is used as test, or if a 
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significantly different set of parameters are used in fetal MRI scans. To adapt the model to 

new domains, domain adaptation techniques or pre-processing may be used, e.g. [25]. Also, 

our trained model may not generalize well for tracking motion of severely abnormal 

anatomies. Possible remedies for this problem are to include abnormal cases in training and 

to use curriculum learning with appropriate data augmentation. These are excellent 

directions for future work.

Our model architecture is small compared to most state-of-the-art RNNs. This helped us 

achieve real-time performance. Curriculum training helped the network focus on more 

difficult samples, i.e. sequences with large and fast motion. We kept our model a causal 

predictive model for its intended application which is real-time motion tracking and 

navigation. For other applications, such as retrospective processing of image time series, 

using signal from the future, e.g. by bidirectional LSTM, is expected to increase 

performance but would break the causal nature of the model. To train our model we used the 

MSE loss due to its well-posed convex nature for optimization in our high-dimensional 

search space. For static pose estimation [25], a second stage optimization (refinement) with 

the geodesic loss, which is a natural Riemannian metric on the compact Lie group SO(3) of 

orientations, improved the results. We observed a similar trend here but at a relatively lower 

degree. By fine tuning our model (trained with MSE) for 10 additional epochs at a learning 

rate of 0.0001 with geodesic loss we observed average error reduction of 0.4° in estimation, 

which was statistically significant; but did not see a statistically significant reduction in 

prediction error.

By observing a sequence of slices, our trained model predicts the relative 3D pose (motion) 

of the anatomy with respect to an initial pose. For real-time slice navigation, therefore, we 

require an estimate of the initial pose; which can be obtained by the pose estimation 

techniques proposed in [36] and [25]. Although those techniques can accurately estimate the 

3D pose of the fetal brain in a canonical (atlas) space based on a volume or a slice (or stack 

of slices) close to the center of the anatomy, their estimation error is relatively high in the 

border slices where image features are sparse, and their predictive performance is limited for 

fast and large motion. Experimental results in motion tracking showed that our technique 

outperformed time series prediction models built upon those static pose estimation methods. 

Therefore, to build an effective and efficient real-time fetal MRI navigation system, a 

combination of initial pose estimation by techniques such as those proposed in [36] and [25] 

and our predictive motion tracking technique is needed. Echo-planar imaging [65] may be an 

appropriate choice to acquire fast volumes (as 3D localizer or navigator) to estimate initial 

pose at the beginning or in intervals between sequences.

V. Conclusion

We developed and presented a technique that is capable of estimating and predicting the 3D 

pose trajectories of the fetal brain in real-time despite large fetal movements. This technique, 

when augmented with other real-time components and implemented on MRI scanner 

platforms, may be used to track fetal head motion as slices are acquired, make 

recommendations for scan orientations as a decision support system or a human-in-the-loop 

navigation system, or to build real-time automatic fetal MRI systems, which, in-turn, can 
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lead to much more efficient, effective, and tolerable fetal MRI scan sessions. Real-time 

predictive motion tracking can also play a critical role in real-time assessment of the quality 

of highly motion-sensitive scans such as fetal functional MRI that are very difficult to 

perform, and to automatically adapt the duration of such scans to ensure data of sufficient 

quality is acquired for post-acquisition processing. Finally, image-based dynamic motion 

tracking can also be used to assess fetal movements and motor behavior in-utero from cine 

MRI and 4D ultrasound.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The Region-of-Interest (RoI), here the fetal brain, is extracted using a real-time 

segmentation technique, e.g. [48], cropped, center aligned, and intensity normalized to form 

a volume of stacked slices for deep predictive fetal head motion tracking.
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Figure 2: 
Our many-to-many Seq2Seq model that takes as input sequence of slices and estimates 

angles as well as predictions. Multiple LSTM units are shown since we unroll our network. 

All units of the same type and color share weights, hence they get the same gradient update 

during training. This model comprises of an encoder and a decoder component. The encoder, 

which contains spatial encoder (CNN) blocks followed by a temporal encoder that contains 

LSTM units and P blocks, encodes and learns sequence-of-image features to estimate 

position parameters. The encoder state is fed into the decoder network which comprises of 

LSTM units followed by P blocks. Each P block has three heads with πtanh activation for 

the rotation parameters and ReLU activation for the slice position.
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Figure 3: 
The architecture of the spatial encoder CNN blocks of our deep predictive motion tracking 

model shown in Figure 2. Each encoder performs 3×3 convolutions followed by batch 

normalization, PReLU [51] and MaxPooling that down-samples the image in half, extracts 

local dependencies and reduces computation in downstream layers. This enables fine-

grained feature preservation. The number of filters are doubled in each layer until it reaches 

512. Finally, features from the CNN are flattened and transferred as spatial encoding of time 

step n in the sequence to the LSTM layer of the encoder. Compared to the deep spatial 

encoder network used in [25] to infer 3D pose from a single slice, our CNN is lightweight, 

which boosts its real-time performance while it effectively encodes features of multiple 

sequentially-acquired slices and pass them to the LSTM modules to build an encoder state 

(Figure 2).
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Figure 4: 
A demo of five sequences of 10 timesteps each generated with different speeds of motion 

(corresponding to the number of spline control points from 4 to 8) from the 3D reconstructed 

fetal brain MRI scan of GA 35 weeks (shown at the top row). Randomly masked slices 

indicate slices corrupted by intra-slice motion.
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Figure 5: 
Inference (i.e. estimation for the first 10 timesteps and prediction for the rest of the 10 

timesteps) in the bottom rows has been compared to the ground truth sequence in the top 

rows for scans of two fetuses: the first figure is a scan of a 28-week, and the second figure is 

a scan of a 36-week GA fetus from the test set. Errors based on the MSE loss (Section II-F) 

have been shown underneath each timestep. In these figures the slices shown with red masks 

were masked in the input sequence. It can be seen that the estimated slices (in the bottom 

rows) corresponding to the masked slices, showed relatively larger error, but the masked 

slices did not have a major effect on predictions. Slight increase in prediction error with 

prediction time horizon was seen in the test sequence, but the predictions were overall 

accurate.
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Figure 6: 
Boxplots showing the statistics of the average rotational MSE loss on test data computed for 

prediction per timestep. Our model outperformed all other prediction models implemented 

and tested here (i.e., zero velocity, auto-regressive, and directLSTM).
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Figure 7: 
Average MSE of 3D pose in degrees of one-step ahead prediction tasks for 10 timesteps 

grouped by GA. Consistent errors show that our model generalized well to variations in 

anatomy and GA outside of the domain and range that it was trained on.
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Figure 8: 
3D pose MSE in degrees of multi-step prediction for the test data with motion trajectories 

recorded from volunteers, shows the generalization capacity of our model on real motion 

patterns. In all baseline models, the prediction error increased with the prediction steps due 

to compounding errors. In contrast, by passing context from encoder and prediction from 

previous decoding, our model maintained low error in multi-step prediction.

Singh et al. Page 28

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Singh et al. Page 29

Table I:

Mean squared error (μ error) for estimation and prediction of 3D pose in degrees along with the overall 

standard error of mean (σμ) and the standard error of different timesteps, ages, and speed of motion for the test 

data. The top part of the table compares estimation models and the bottom part compares prediction models. In 

these comparisons we also tested our model trained without any masked slices in the sequences, referred to as 

the “baseline”, our second baseline trained with masked slice sequences but without the split heads and the 

loss function explained in Section II-F (referred to as ”masked bl.”) and our ”full model” trained with both 

masked slices and the split loss function. Significant reduction in both estimation and prediction errors was 

achieved by our full trained model compared to baselines and all other compared models. Low standard errors 

show that our model performed consistently, and was robust to variations in data, timesteps, GA, and the speed 

of motion.

Model μ error σμ σμ time σμ age σμ speed

VGG16 129.33 11.74 3.72 3.48 9.51

Resnet18 82.60 5.76 3.55 1.31 3.34

Our baseline 20.19 2.57 1.21 2.23 2.06

Our masked bl. 9.10 2.31 1.11 1.92 2.45

Our full model 3.55 0.22 0.17 0.05 0.23

directLSTM 103.20 3.09 0.97 13.52 5.80

Zero velocity 74.14 1.09 0.86 1.77 1.32

Auto regressive 96.77 1.66 0.69 1.83 2.17

Our baseline 33.51 2.35 1.17 1.23 1.11

Our masked bl. 11.28 1.28 1.17 0.23 0.51

Our full model 8.07 0.72 0.42 0.39 0.59
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Table II:

Results of a probing task on our full model trained with masked data against our model trained on unmasked 

data (baseline): 3D pose MSE in degrees of estimation (Est), one step prediction (OSP) and multi-step 

prediction (MSP) on test data, which have been shown based on the timestep in which a slice was masked in 

the test sequence (first column). Results of both models on unmasked test data (first row) were similar, 

however the prediction performance of the baseline model indicates that to make predictions this model put a 

heavy weight on slices that appeared towards the end of the sequence. On the other hand, our full model 

trained with randomly-masked sequences, performed more consistently and robustly with respect to the 

position of the masked slice in the input test sequence.

Timestep Baseline model error Masked model error

Masked Est OSP MSP Est OSP MSP

No Mask 1.37 2.97 7.41 1.03 2.93 7.69

1 5.83 4.42 10.48 4.86 3.70 10.05

2 4.83 3.03 7.58 2.97 2.87 7.62

3 4.36 2.98 7.50 2.17 2.86 7.61

4 3.06 3.03 7.98 1.87 2.71 7.98

5 3.87 3.05 8.13 2.01 2.83 7.41

6 3.29 4.06 8.39 2.43 2.91 7.63

7 3.25 4.17 8.65 2.59 2.93 7.69

8 3.91 6.37 9.21 2.61 3.02 7.74

9 4.06 6.78 10.74 2.68 3.59 8.15

10 4.19 17.37 15.89 3.88 6.96 9.54
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