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Abstract

Objective: Patient notes in electronic health records (EHRs) may contain critical information for medical investi-

gations. However, the vast majority of medical investigators can only access de-identified notes, in order to pro-

tect the confidentiality of patients. In the United States, the Health Insurance Portability and Accountability Act

(HIPAA) defines 18 types of protected health information that needs to be removed to de-identify patient notes.

Manual de-identification is impractical given the size of electronic health record databases, the limited number

of researchers with access to non-de-identified notes, and the frequent mistakes of human annotators. A reli-

able automated de-identification system would consequently be of high value.

Materials and Methods: We introduce the first de-identification system based on artificial neural networks

(ANNs), which requires no handcrafted features or rules, unlike existing systems. We compare the performance

of the system with state-of-the-art systems on two datasets: the i2b2 2014 de-identification challenge dataset,

which is the largest publicly available de-identification dataset, and the MIMIC de-identification dataset, which

we assembled and is twice as large as the i2b2 2014 dataset.

Results: Our ANN model outperforms the state-of-the-art systems. It yields an F1-score of 97.85 on the i2b2

2014 dataset, with a recall of 97.38 and a precision of 98.32, and an F1-score of 99.23 on the MIMIC de-

identification dataset, with a recall of 99.25 and a precision of 99.21.

Conclusion: Our findings support the use of ANNs for de-identification of patient notes, as they show better per-

formance than previously published systems while requiring no manual feature engineering.
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INTRODUCTION AND RELATED WORK

In many countries including the United States, medical professionals

are strongly encouraged to adopt electronic health records (EHRs)

and may face financial penalties if they fail to do so.1,2 The Centers

for Medicare and Medicaid Services have paid out more than $30

billion in EHR incentive payments to hospitals and providers who

have attested to meaningful use as of March 2015. Medical investiga-

tions can greatly benefit from the resulting increasingly large EHR

datasets. One of the key components of EHRs is patient notes; the in-

formation they contain can be critical for a medical investigation, be-

cause much information present in texts cannot be found in the other

elements of the EHR. However, before patient notes can be shared

with medical investigators, some types of information, referred to as

protected health information (PHI), must be removed in order to pre-

serve patient confidentiality. In the United States, the Health Insurance

Portability and Accountability Act (HIPAA)3 defines 18 different
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types of PHI, ranging from patient names to phone numbers. Table 1

presents the exhaustive list of PHI types as defined by HIPAA.

The task of removing PHI from a patient note is referred to as

de-identification, since the patient cannot be identified once PHI is

removed. De-identification can be either manual or automated.

Manual de-identification means that the PHI is labeled by human

annotators. There are three main shortcomings of this approach.

First, only a restricted set of individuals is allowed to access the iden-

tified patient notes, thus the task cannot be crowdsourced. Second,

humans are prone to mistakes. Neamatullah et al.4 asked 14 clini-

cians to detect PHI in approximately 130 patient notes; the results

of the manual de-identification varied from clinician to clinician,

with recall ranging from 0.63 to 0.94. Third, human annotation is

costly. Douglass et al.5,6 reported that annotators were paid US$50

per hour and read 20 000 words per hour at best.

As a matter of comparison, the MIMIC dataset,7,8 which con-

tains data from 50 000 intensive care unit stays, consists of 100 mil-

lion words. This would require 5000 hours of annotation, which

would cost US$250 000 at the same pay rate. Given the annotators’

spotty performance, each patient note would have to be annotated

by at least two different annotators; it would therefore cost at least

US$500 000 to de-identify the notes in the MIMIC dataset.

In order to reduce the cost of annotating, many studies investi-

gate the use of machine pre-annotation, where human annotators

are provided with machine-annotated data to reduce the annotation

time. Lingret et al.9 show that using pre-annotation resulted in

13.85–21.5% in time savings for developing a clinical named-entity

recognition corpus. However, another study by South et al.10

showed that using machine pre-annotation along with an interactive

annotation tool neither improved the quality nor decreased the time

investment when annotating a clinical text de-identification corpus.

Instead of annotating all documents at the same time from either

raw or pre-annotated texts, Hanauer et al.11 took a novel approach,

where annotations were performed alternately by humans and ma-

chine. More specifically, the clinical notes were divided into multiple

batches of 10, 20, or 40 notes and each batch was annotated sequen-

tially by human annotators after being pre-annotated by a de-

identifier trained on previously annotated batches. They showed

that the annotation time for each instance decreased in later batches

as the de-identifier’s performance improved, achieving an F1-score

Table 1. PHI types as defined by HIPAA, i2b2, and MIMIC

PHI categories PHI types Descriptions HIPAA i2b2 MIMIC

AGE AGE Ages �90 x x x

Ages <90 x

CONTACT PHONE Telephone numbers x x x

FAX Fax numbers x x PHONE

EMAIL Electronic mail addresses x x

URL Uniform resource locators x –

IP ADDRESS Internet protocol addresses x –

DATE DATE Dates (month and day parts) x x x

Year x x

Holidays x x

Days of the week x

ID IDNUM Social Security numbers x x x

Account numbers x x x

Certificate or license numbers x x x

MEDICAL RECORD Medical record numbers x x IDNUM

DEVICE Vehicle or device identifiers x x IDNUM

HEALTH PLAN Health plan numbers x – IDNUM

BIOID Biometric identifiers or full-face photographs x –

LOCATION STREET Street address x x x

CITY City x x LOCATION-OTHER

ZIP Zip code x x x

STATE State x x

COUNTRY Country x x

LOCATION-OTHER Other identifiable locations such as landmarks x x

ORGANIZATION Employers x x

HOSPITAL Hospital name x x

Ward name x

NAME PATIENT Names of patients and family members x x x

DOCTOR Provider name x x

USERNAME User IDs of providers x

PROFESSION PROFESSION Profession x

Classification of PHI into categories and types are as defined in the i2b2 dataset. During training, the PHI types are used as the labels to predict. The mark “–”

denotes that two or fewer instances of the corresponding PHI types are present in the whole dataset, and no instance is present in the test set. In the MIMIC data-

set, some PHI types are mapped to a different PHI type due to data ambiguity or sparsity issues: these PHI types are marked with the specific PHI type that it is

mapped to instead of the mark “x”.
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of 0.95 after just over 8 hours of annotation time (after 20 batches

of 10 notes each). Similarly, Gobbel et al.12 presented a tool called

RapTAT to assist human annotators by pre-annotating the docu-

ments interactively while the annotators are working on them, re-

sulting in up to 50% reduction in annotation time.

Automated de-identification systems can be classified into two

categories: rule-based systems and machine learning-based systems.

Rule-based systems4,14–22 typically rely on patterns, expressed as

regular expressions and gazetteers, defined and tuned by humans.

They do not require any labeled data (aside from labels required for

evaluating the system) and are easy to implement and interpret,

which explains their large presence in the industry.13 However, they

need to be fine-tuned for each new dataset, are not robust to lan-

guage changes (e.g., variations in word forms, typographical errors,

or infrequently used abbreviations), and cannot easily take into ac-

count the context (e.g., “Mr. Parkinson” is PHI, while “Parkinson’s

disease” is not). To alleviate some downsides of the rule-based sys-

tems, there have been many attempts to use supervised machine

learning algorithms to de-identify patient notes. These algorithms

are used to train a classifier to label each word as PHI or not PHI,

sometimes distinguishing between different PHI types. Common sta-

tistical methods include decision trees,23 log-linear models, support

vector machines,24–26 and conditional random fields (CRFs).27 The

latter is employed in most state-of-the-art systems. For a thorough

review of existing systems, see Meystre et al.28 and Stubbs et al.29

All these methods share two downsides: they require a decent-sized

labeled dataset and much feature engineering. As with rules, quality

features are challenging and time-consuming to develop.

Recent approaches to natural language processing based on arti-

ficial neural networks (ANNs) do not require handcrafted rules or

features. Instead, ANNs can automatically learn effective features

by performing composition over tokens, which are represented as

vectors, often called token embeddings. The token embeddings are

jointly learned with the other parameters of the ANN. They can be

initialized randomly, or can be pre-trained using large unlabeled

datasets typically based on token co-occurrences.30–32 The latter of-

ten performs better, since the pre-trained token embeddings explic-

itly encode many linguistic regularities and patterns. As a result,

methods based on ANNs have shown promising results for various

tasks in natural language processing (NLP), such as language model-

ing,33 text classification,34–37 question answering,38,39 machine

translation,40–42 and named entity recognition.31,43,44 A few meth-

ods also use vector representations of characters as inputs in order

to either replace or augment token embeddings.43–45

Inspired by the performance of ANNs for various other NLP

tasks, this article introduces the first de-identification system based

on ANNs. Unlike other machine learning-based systems, ANNs do

not require manually curated features, such as those based on regu-

lar expressions and gazetteers. We show that ANNs achieve state-

of-the-art results on de-identification of two different datasets for

patient notes, the i2b2 2014 challenge dataset and the MIMIC data-

set. To the best of our knowledge, this is the first paper to introduce

ANN-based approaches using token and character embeddings to

the clinical de-identification task.

A few related publications have applied ANNs and word embed-

dings for clinical NLP tasks. Wu et al.46 investigated the use of deep

neural networks to learn word embeddings and perform named en-

tity recognition of four types of clinical entities – problems, lab tests,

procedures, and medications – on Chinese clinical text. Two submis-

sions47,48 to a recent SemEval-2016 Task 12: Clinical TempEval chal-

lenge report ANN-based methods for information extraction from

clinical notes and pathology reports. Li and Huang47 used convolu-

tional neural networks and Fries48 compared the performance of recur-

rent neural networks (RNNs) and DeepDive49 for the task.

METHODS AND MATERIALS

We first present a de-identifier we developed based on a CRF model.

This de-identifier yielded state-of-the-art results with the i2b2 2014

dataset, which is the reference dataset for comparing de-

identification systems. This system is used as a challenging baseline

for the ANN model that we present next. The ANN model outper-

formed the CRF model, as outlined in the results section.

CRF model
In the CRF model, each patient note is tokenized using the Stanford

CoreNLP tokenizer,50 and features are extracted for each token.

During the training phase, the CRF’s parameters are optimized to

maximize the likelihood of the gold standard labels. During the test

phase, the CRF predicts the labels. The performance of a CRF model

depends mostly on the quality of its features. We used a combination

of lexical, morphological, temporal, semantic, gazetteer, and regular

expression features. Table 2 lists some of the features used in the

CRF model. The regular expressions were written mostly based on

the best-performing CRF-based competitors in the i2b2 challenge.51

The gazetteers were compiled using common resources from the

Web, and most other features were from Filannino et al.52

In order to effectively incorporate context when predicting a la-

bel, all the features for a given token are computed based on that to-

ken and on the four surrounding tokens.

ANN model
The main components of the ANN model are RNNs. In particular, we

use a type of RNN called long short-term memory (LSTM),53 as dis-

cussed in the following subsection. The system is composed of 3 layers:

• Character-enhanced token-embedding layer

• Label prediction layer and

• Label-sequence optimization layer.

Table 2. Examples of features used in the CRF model

Feature types Features

Lexical/syntactic Token, lemma, tense, parts of speech

Morphological Ends with s, contains a digit, is numeric, is alphabetic, is alphanumeric, is title case, is all lowercase, prefix, suffix

Temporal Season, month, weekday, time of day

Semantic/wordnet Hypernyms, senses, lemma names

Gazetteers First names, last names, medical titles, medical specialties, cities, states (including abbreviations),

countries, organizations, professions, holidays

Regular expressions E-mail, age, date, phone, zip code, ID number, medical record number
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As in the CRF model, patient notes are first tokenized using

the Stanford CoreNLP tokenizer. The character-enhanced token-

embedding layer maps each token to a vector representation.

The sequence of vector representations corresponding to a se-

quence of tokens is inputted into the label-prediction layer,

which outputs the sequence of vectors containing the probability

of each label for each corresponding token. Lastly, the sequence-

optimization layer outputs the most likely sequence of predicted

labels based on the sequence of probability vectors from the pre-

vious layer. All layers are learned jointly. Figure 1 shows the

ANN architecture.

In the following, we denote scalars in italic lowercase (e.g., k,

bf ), vectors in bold lowercase (e.g., s; xi), and matrices in italic up-

percase (e.g., Wf ) symbols. We use the colon notations xi:j and vi:j to

denote the sequence of scalars xi;xiþ1; . . . ; xj and vectors

vi; viþ1; . . . ; vj, respectively.

Bidirectional LSTM

An RNN is a neural network architecture designed to handle input

sequences of variable sizes, but it fails to model long-term dependen-

cies. An LSTM is a type of RNN that mitigates this issue by keeping

a memory cell that serves as a summary of the preceding elements of

an input sequence. More specifically, given a sequence of vectors

x1;x2; . . . ; xn; at each step t ¼ 1; . . . ;n, an LSTM takes as input xt;

ht�1; ct�1 and produces the hidden state ht and the memory cell ct

based on the following formulas:

it ¼ rðWi ½xt; ht�1; ct�1� þ biÞ
~ct¼ tanhðWc ½xt; ht�1� þ bcÞ
ct ¼ ð1� itÞ � ct�1 þ it � ~ct

ot ¼ rðWo ½xt; ht�1; ct� þ boÞ
ht ¼ ot � tanhðctÞ

where Wi;Wc;Wo are weight matrices and bi; bc; bo are bias vectors

used in the input gate, memory cell, and output gate calculations, re-

spectively. The symbols rð�Þ and tanhð�Þ refer to the element-wise

sigmoid and hyperbolic tangent functions, and � is the element-wise

multiplication. h0 ¼ c0 ¼ 0.

A bidirectional LSTM consists of a forward LSTM, which calcu-

lates the forward hidden states ðh1

!
;h2

!
; . . . ;hn

!
Þ; and a backward

LSTM, which calculates the backward hidden states ðh1

 
; h2

 
; . . . ; hn

 
Þ

by feeding the input sequence in backward order, from xn to x1:

Depending on the application of the LSTM, one might need an

output sequence corresponding to each element in the sequence, or a

single output that summarizes the whole sequence. In the former

case, the output sequence h1; h2; . . . ; hn of the LSTM is obtained by

concatenating the hidden states of the forward and backward

LSTMs for each element, i.e., ht

$
¼ ht

!
; ht

 � �
for t ¼ 1; . . . ;n: In the

latter case, the output is obtained by concatenating the last hidden

states of the forward and backward LSTMs, i.e., ht

$
¼ ðhn

!
; hn

 
Þ:

Character-enhanced token embedding layer

The character-enhanced token-embedding layer takes a token as in-

put and outputs its vector representation. The latter results from the

Figure 1. Architecture of the artificial neural network (ANN) model. (RNN, recurrent neural network.) The type of RNN used in this model is long short-term mem-

ory (LSTM). n is the number of tokens, and xi is the i th token. VT is the mapping from tokens to token embeddings. ‘ðiÞ is the number of characters and xi;j is the

j th character in the i th token. VC is the mapping from characters to character embeddings. ei is the character-enhanced token embeddings of the i th token. di

$
is

the output of the LSTM of the label prediction layer, ai is the probability vector over labels, yi is the predicted label of the i th token.
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concatenation of two different types of embeddings; the first one di-

rectly maps a token to a vector, while the second one comes from

the output of a character-level token encoder. The direct mapping

VTð�Þ from token to vector, often called a token (or word) embed-

ding, can be pre-trained on large unlabeled datasets using programs

such as word2vec30,54,55 or GloVe,32 and can be learned jointly with

the rest of the model. Token embeddings, often learned by sampling

token co-occurrence distributions, have desirable properties, such as

locating semantically similar words closely in the vector space, lead-

ing to state-of-the-art performance for various tasks.

While the token embeddings capture the semantics of tokens to

some degree, they may still suffer from data sparsity. For example,

they cannot account for out-of-vocabulary tokens, misspellings, and

different noun forms or verb endings. One solution to remediate

some of these issues would be to lemmatize tokens before training,

but this approach may fail to retain some useful information, such

as the distinctions between some verb and noun forms.

We address this issue by using character-based token embed-

dings, which incorporate each individual character of a token to

generate its vector representation. This approach enables the model

to learn sub-token patterns such as morphemes (e.g., suffixes or pre-

fixes) and roots, thereby capturing out-of-vocabulary tokens, differ-

ent surface forms, and other information not contained in the token

embeddings.

Let xi;1; . . . ;xi;‘ðiÞ be the sequence of characters that comprise

the ith token xi, where ‘ðiÞ is the number of characters in xi: The

character-level token encoder generates the character-based to-

ken embedding of xi by first mapping each character xi;j to a vector

VCðxi;jÞ; called a character embedding, via the mapping VCð�Þ: Then

the sequence VC xi;1

� �
; . . . ; VCðxi;‘ðiÞÞ is passed to a bidirectional

LSTM, which outputs the character-based token embedding bi

$
.

As a result, the final output ei of the character-enhanced token-

embedding layer for ith token xi is the concatenation of the token

embedding VTðxiÞ and the character-based token embedding bi

$
In

summary, when the character-enhanced token-embedding layer re-

ceives a sequence of tokens x1:n as input, it will output the sequence

of token embeddings e1:n.

Label-prediction layer

The label-prediction layer takes as input the sequence of vectors e1:n,

i.e., the outputs of the character-enhanced token-embedding layer,

and outputs a1:n, where the tth element of an is the probability that

the nth token has the label t. The label is either one of the PHI types

or non-PHI. For example, if we aimed to predict all 18 HIPAA-

defined PHI types, there would be 19 different labels.

The label-prediction layer contains a bidirectional LSTM that

takes the input sequence e1:n and generates the corresponding output

sequence di:n

$
: Each output di

$
of the LSTM is given to a feed-forward

neural network with 1 hidden layer, which outputs the correspond-

ing probability vector ai.

Label sequence optimization layer

The label sequence optimization layer takes the sequence of proba-

bility vectors a1:n from the label-prediction layer as input and out-

puts a sequence of labels y1:n, where yi is the label assigned to the

token xi.

The simplest strategy to select the label yi would be to choose the

label that has the highest probability in ai, i.e., yi ¼ argmaxkai½k�.
However, this greedy approach fails to take into account the depen-

dencies between subsequent labels. For example, it might be more

likely to have a token with the PHI type STATE followed by a token

with the type ZIP than any other PHI type. Even though the label-

prediction layer has the capacity to capture such dependencies to a

certain degree, it might be preferable to allow the model to directly

learn these dependencies in the last layer.

One way to model such dependencies is to incorporate a matrix

T that contains the transition probabilities between two subsequent

labels. T½i; j� is the probability that a token with label i is followed

by a token with the label j. The score of a label sequence y1:n is de-

fined as the sum of the probabilities of individual labels and the

transition probabilities:

sðy1:nÞ ¼
Xn

i¼1

ai½yi� þ
Xn

i¼2

T½yi�1; yi�:

These scores can be turned into probabilities of the label se-

quences by taking a softmax function over all possible label se-

quences. During the training phase, the objective is to maximize the

log probability of the gold label sequence. In the testing phase, given

an input sequence of tokens, the corresponding sequence of pre-

dicted labels is chosen as the one that maximizes the score.

EXPERIMENTS AND RESULTS

Datasets
We evaluate our two models on two datasets: i2b2 2014 and

MIMIC. The i2b2 2014 dataset was released as part of the 2014

i2b2/UTHealth shared task Track 1.29 It is the largest publicly avail-

able dataset for de-identification. Ten teams participated in this

shared task, and 22 systems were submitted. As a result, we used the

i2b2 2014 dataset to compare our models against state-of-the-art

systems.

The MIMIC de-identification dataset was created for this work

as follows: the MIMIC-III dataset7,8,56 contains data for 61 532 in-

tensive care unit stays over 58 976 hospital admissions for 46 520

patients and includes 2 million patient notes. In order to make the

notes publicly available, a rule-based de-identification system5,6,57

was written for the specific purpose of de-identifying patient notes

in MIMIC, leveraging dataset-specific information such as patient

names or addresses. The system favors recall over precision: there

are virtually no false negatives, while there are numerous false posi-

tives. To create the gold standard MIMIC de-identification dataset,

we selected 1635 discharge summaries, each belonging to a different

patient, containing a total of 60 700 PHI instances. We then anno-

tated the PHI instances detected by the rule-based system as true

positives or false positives and found that 15% were false positives.

Table 1 introduces the PHI types used as labels for training, and

Table 3 presents the sizes of the datasets. For the test set, we used

the official test set for the i2b2 dataset, which is 40% of the dataset;

we randomly selected 20% of the MIMIC dataset as the test set for

this dataset.

Table 3. Overview of the i2b2 and MIMIC datasets

Statistics i2b2 MIMIC

Vocabulary size 46 803 69 525

Number of notes 1304 1635

Number of tokens 984 723 2 945 228

Number of PHI instances 28 867 60 725

Number of PHI tokens 41 355 78 633
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Evaluation metrics
To assess the performance of the two models, we computed the pre-

cision, recall, and F1-score. Let TP be the number of true positives,

FP the number of false positives, and FN the number of false nega-

tives. Precision, recall, and F1-score are defined as follows:

precision ¼ TP

TPþ FP
; recall ¼ TP

TPþ FN
; and

F1-score ¼ 2 � precision � recall

precisionþ recall
:

Intuitively, precision is the proportion of predicted PHI labels

that are gold labels, recall is the proportion of gold PHI labels that

are correctly predicted, and F1-score is the harmonic mean of preci-

sion and recall.

Training and hyperparameters
The model is trained using stochastic gradient descent, updating all

parameters, i.e., token embeddings, character embeddings, parame-

ters of bidirectional LSTMs, and transition probabilities, at each

gradient step. For regularization, dropout is applied to the

character-enhanced token embeddings before the label-prediction

layer. Training the model takes approximately 2 days on an Nvidia

Titan X graphics processing unit for the i2b2 dataset. The actual

running time depends on the choice of hyperparameters, the weight

initialization, and the size of the dataset.

Below are the choices of hyperparameters and token embed-

dings, optimized using a subset of the training set:

• Character embedding dimension: 25

• Character-based token-embedding LSTM dimension: 25

• Token embedding dimension: 100

• Label prediction LSTM dimension: 100

• Dropout probability: 0.5

As mentioned previously, token embeddings can be pre-trained,

and during training the token mapping VTð�Þ is initialized with the

pre-trained token embeddings. We tried pre-training token embed-

dings on the i2b2 2014 and MIMIC datasets (for MIMIC, we used

the entire dataset containing 2 million notes and 800 million to-

kens), using word2vec and GloVe. Both of these were trained using

a window size of 10, a minimum vocabulary count of 5, and 15 iter-

ations. Additional parameters of word2vec were negative sampling

and model type, which were set to 10 and skip-gram, respectively.

We also experimented with the publicly available token embeddings

such as GloVe (http://nlp.stanford.edu/projects/glove/) trained on

Wikipedia and Gigaword 5.58 The results were quite robust to the

choice of pre-trained token embeddings. The GloVe embeddings

trained on Wikipedia articles yielded slightly better results, and we

chose them for the rest of this work.

Results
All results were computed using the official evaluation script from

the i2b2 2014 de-identification challenge. Table 4 presents the main

results, based on binary token-based precision, recall, and F1-score

for HIPAA-defined PHI only. These PHI types are the most impor-

tant, since only these are legally required to be removed. The results

for each PHI type, dataset, and system are presented in

Supplementary Appendix 1, Tables A1 and A2.

On the i2b2 dataset, our ANN model has a higher F1-score and

recall than our CRF model and the best system from the i2b2 2014

de-identification challenge, the Nottingham system.51 The only

freely available off-the-shelf program for de-identification, called

the MITRE Identification Scrubber Toolkit (MIST),27 performed

the worst. The outputs of our ANN and CRF models can be com-

bined by considering a token to be PHI if it is identified as such by

either model. This further increases the performance in terms of F1-

score and recall. It should be noted that the Nottingham system was

specifically fine-tuned for the i2b2 dataset and the i2b2 evaluation

script. For example, the Nottingham system post-processes the de-

tected PHI terms in order to match the offset of the gold PHI tokens,

such as modifying “MR:6746781” to “6746782” and “MWFS” to

“M,” “W,” “F,” “S.”

On the MIMIC dataset, our ANN model also had a higher F1-

score and recall than our CRF model. Interestingly, combining the

outputs of our ANN and CRF models did not increase the F1-score,

because precision was negatively impacted. However, recall did ben-

efit from combining the two models. MIST was much more compet-

itive on this dataset.

We calculated the statistical significance of the differences in pre-

cision, recall, and F1-score between the CRF and ANN models using

approximate randomization with 9999 shuffles. The significance

levels of the differences in precision, recall, and F1-score were 0.37,

0.02, 0.22 for the i2b2 dataset and 0.08, 0.00, 0.00 for the MIMIC

dataset, respectively.

Error analysis
Figure 2 shows the binary token-based F1-scores for each PHI cate-

gory. The ANN model outperformed the CRF model on all catego-

ries for both datasets, with the exception of the ID category (which

mostly contains medical record numbers) in the i2b2 dataset. This is

due to the fact that the CRF model uses sophisticated regular expres-

sion features that are tailored to detect ID patterns such as

“38:Z8912708G.”

Another interesting difference between the ANN and CRF re-

sults was the PROFESSION category, where the ANN significantly

outperformed the CRF. The reason behind this is that the embed-

dings of the tokens that represent a profession tend to be close in the

Table 4. Performance (%) on the PHI as defined in HIPAA

i2b2 MIMIC

Model Precision Recall F1 Precision Recall F1

Nottingham 99.000 96.400 97.680 – – –

MIST 91.445 92.745 92.090 95.867 98.346 97.091

CRF 98.560 96.528 97.533 99.060 98.987 99.023

ANN 98.320 97.380 97.848 99.208 99.251 99.229

CRFþANN 97.920 97.835 97.877 98.820 99.398 99.108

We evaluated the systems based on detection of PHI tokens vs. non-PHI

tokens (i.e., binary HIPAA token-based evaluation). The best performance for

each metric on each dataset is highlighted in bold. Nottingham is the best per-

forming system from the 2014 i2b2/UTHealth shared task Track 1. MIST is a

freely available de-identification program. CRF is the model based on condi-

tional random fields, ANN is the model based on artificial neural networks,

and CRF+ANN is the result obtained by combining the outputs of the CRF

and ANN models. The tagsets used for training the CRF and ANN models

are the same as in Table 1, and the configuration of MIST is presented in

Supplementary Appendix 2. Note that the performance of the MIST system

cannot be directly compared to that of other systems, because the tagsets used

are different. The Nottingham system could not be run on the MIMIC data-

set, as it is not publicly available.
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token-embedding space, which allows the ANN model to generalize

well. We tried assembling various gazetteers for the PROFESSION

category, but all of them performed significantly worse than the

ANN model.

Table 5 presents some examples of gold PHI instances correctly

predicted by the ANN model that the CRF model failed to predict,

and conversely. This illustrates that the ANN model efficiently copes

with the diversity of contexts in which tokens appear, whereas the

CRF model can only address contexts that are manually encoded as

features. In other words, the ANN model’s intrinsic flexibility al-

lows it to better capture the variances in human language than the

CRF model. For example, it would be challenging and time-

consuming to engineer features for all possible contexts, such as

“had a stroke at 80,” “quit smoking in 08,” “on the 29th of this

month,” and “his friend Epstein.” The ANN model is also very ro-

bust to variations in surface forms, such as misspellings (e.g., “in teh

late 60s,” “Khazakhstani,” “01/19/:0”), tokenizations (e.g.,

“Results02/20/2087,” “MC # 0937884Date”), and different phrases

referring to the same semantic meaning (e.g., “San Rafael Mount

Hospital,” “Rafael Mount,” “Rafael Hospital”). Furthermore, the

ANN model is able to detect many PHI instances despite not

having explicit gazetteers, as examples in the LOCATION and

PROFESSION categories illustrate. We conjecture that character-

enhanced token embeddings contain rich enough information to ef-

fectively function as gazetteers, as tokens with similar semantics are

closely located in the vector representation.26,27,41

On the other hand, CRF is good at capturing rarely occurring

patterns that are written in highly specialized regular expression pat-

terns (e.g., “38:Z8912708G,” “53RHM”) or tokens that are in-

cluded in the gazetteers (e.g., “Christmas,” “WPH,” “rosenberg,”

“Motor Vehicle Body Repairer”). For example, the PHI token

“Christmas” only occurs in the test set, and unless the context gives

a strong indication, the ANN model cannot detect it, whereas the

CRF model can, as long as it is included in the gazetteers.

Table 6 presents examples of PHI instances that are false nega-

tives in the system that combines CRF and ANN outputs. In other

words, these PHI instances are detected by neither CRF nor ANN.

The sources of errors can be classified into four main categories:

• Abbreviations: Some PHI instances are abbreviations, which are

sometimes challenging to detect, especially when they are short

and ambiguous.

• Ambiguities: A human reader may not be able to tell whether a

token is PHI. Examples include names involving common words,

or numbers that could be dates or test results. Ambiguities can

stem from the token itself or its context.

• Data sparsity: The training samples do not contain enough PHI

instances similar to the ones that are missed in the test set. Also,

some PHI instances are more difficult to detect than others and

subsequently require more training samples.

• Debatable annotations: Some tokens are questionably marked as

PHI instances.

Abbreviations and ambiguities are among the most challenging

sources of errors to address in order to further improve the perfor-

mance. We anticipate that the data sparsity issues may partly be re-

solved by increasing the size of the training set to contain more

instances of difficult PHI types.

Effect of training set size
Figure 3 shows the impact of the training set size on the performance

of the models on the MIMIC dataset. When the training set size is

very limited, CRF performs slightly better than ANN, since the CRF

model can leverage handcrafted features without much training

data. As the training set size increases, the ANN model starts to

significantly outperform the CRF model, since the parameters in-

cluding the embeddings are automatically fine-tuned with more

data, and therefore the features learned by the ANN model become

increasingly more refined than the manually handcrafted features.

As a result, combining the outputs of the CRF and ANN models in-

creases the F1-score over the ANN model for only small training set

sizes and yields a less competitive F1-score than the ANN model for

bigger training set sizes.

Figure 4 details the impact of the number of labeled PHI in-

stances in the training set on the model’s performance for a given

PHI type in the i2b2 dataset. As expected, PHI types with a large

number of labeled PHI instances tend to be detected more accurately

than rarer types. However, the correlation is far from perfect: some

PHI types with a lower number of labeled instances are detected

more accurately than some types with a higher number of labeled in-

stances. This indicates that some PHI types are harder to detect than

others. For example, although the PHI type “PHONE” has fewer la-

beled PHI instances than the type “PROFESSION” (310 vs 425 in-

stances), the former is much more accurately detected than the latter

(F1-score of 99.272 vs 86.642); this result is expected, since tokens

containing a phone number are typically very similar, whereas pro-

fessions can appear in many different forms.

Figure 2. Binary token-based F1-scores for each PHI category. The evaluation

is based on PHI types that are defined by HIPAA as well as additional types

specific to each dataset. Each PHI category and the corresponding types are

defined in Table 1. The “All” category refers to the F1-score micro-averaged

over all PHI categories. The PROFESSION category exists only in the i2b2

dataset and was plotted separately to avoid distorting the y-axis. For the

same reason, the AGE category in MIMIC was drawn separately.
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Ablation analysis
In order to quantify the importance of various elements of the ANN

model, we tried four variations of the model, eliminating different

elements one at a time. Figure 5 presents the results of the ablation

tests. Removing either the label sequence optimization layer, pre-

trained token embeddings, or token embeddings slightly decreased

the performance. Surprisingly, the ANN performed pretty well with

only character embeddings and without token embeddings, and

eliminating character embeddings was more detrimental than elimi-

nating token embeddings. This suggests that character-based token

embeddings may be capturing not only sub-token level features,

but also the semantics of the tokens themselves.

CONCLUSION

We proposed the first system based on ANN for patient note de-

identification. It outperforms state-of-the-art systems based on CRF on

two datasets, while requiring no handcrafted features. Utilizing both

token and character embeddings, the system can automatically learn ef-

fective features from data by fine-tuning the parameters. It jointly

learns the parameters for the embeddings, the bidirectional LSTMs,

and the label sequence optimization, and can make use of token em-

beddings pre-trained on large unlabeled datasets. Quantitative and

qualitative analysis of the ANN and CRF models indicates that the

ANN model better incorporates context and is more flexible to varia-

tions inherent in human languages than the CRF model.

From the viewpoint of deploying an off-the-shelf de-identifica-

tion system, our results in Table 4 demonstrate recall on the MIMIC

discharge summaries of over 99%, which is quite encouraging.

Figure 2, however, shows that the F1-score on the NAME category,

probably the most sensitive PHI type, falls just below 98% for the

ANN model. We anticipate that adding gazetteer features based on

the local institution’s patient and staff census should improve this re-

sult, which will be explored in future work.
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Table 5. Examples of correctly detected PHI instances (in bold) by the ANN and CRF models for the i2b2 dataset

PHI category ANN CRF

AGE Father had a stroke at 80 and died of?another stroke at age HPI: 53RHM who going to bed Wednesday was in usoh, but

Personal data and overall health: Now 63, despite his Tobacco: Quit at 38 y/o; ETOH: 1-2 beers/week;

FH: Father: Died @ 52 from EtOH abuse (unclear exact etiology)

Tobacco: smoked from age 7 to 15, has not smoked since 15.

History of Present Illness 86F reports worsening b/l leg pain.

CONTACT by phone, Dr. Ivan Guy. Call w/ questions 86383. Keith Gilbert,

H/O paroxysmal afib VNA 171-311-7974 ¼¼¼¼¼¼¼Medications

DATE During his May hospitalization he had dysphagia She is looking forward to a good Christmas. She is here

Social history: divorced, quit smoking in 08, sober x 10 yrs,

She is to see him on the 29th of this month at 1:00 p.m.

He did have a renal biopsy in teh late 60s adn thus will look for results,

Results02/20/2087 NA 135, K 3.2 (L), CL 96 (L), CO2 30.6, BUN 1

Jose Church, M.D. /ray DD: 01/18/20 DT: 01/19/:0 DV: 01/18/20

ID placed 3/23 for bradycardia. P/G model # 5435, serial # 4712198, DD:05/05/2095 DT:05/05/2095 WK:65255 :4653

Consult NotePt: Ulysses Ogrady MC # 0937884Date: 10/07/69 NO GROWTH TO DATE Specimen: 38:Z8912708G

LOCATION Works in programming at Audiovox. Formerly at BrightPoint. 2nd set biomarkers (WPH): Creatine Kinase Isoenzymes

He has remote travel hx to the Rockefeller Centre, more recent global Hospitalized 2115 TCH for ROMI 2120 TCH new

History of Present Illness: Pt is a 59 yo Khazakhstani male, with

who was admitted to San Rafael Mount Hospital following a syncopal

nauseas and was brought to Rafael Mount ED. Five weeks ago prior

Anemia: On admission to Rafael Hospital, Hb/Hct: 11.6/35.5.

NAME ATCH: 655-75-45 Dear Harry and Yair: My thanks for your kind Lab Tests Amador: the lab results show good levels of

Patient lives in Flint with his friend Epstein. He has 3 children. 05/10/2066 - 04/15/2068 ACT: rosenberg

Health care proxy-Yes, son (West) Allergies DUTASTERIDE - cough, 128 Williams Ct M OSCAR, JOHNNY Hyderabad, WI

PROFESSION Social history: Married, glazier, 3 grown adult children He is retried Motor Vehicle Body Repairer.

Has VNA. Former civil engineer, supervisor, consultant.

He was formerly self-employed as a CPA and would often travel

Communications senior manager, marketing, worked for Brinker

and Concrete Finisher (25yrs). He is a veteran.

Former tobacco user, works part time in securities.

The examples in the ANN column are only predicted by the ANN model and not by the CRF model, and conversely. Typographical errors are from the original text.
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Table 6. Examples of PHI instances undetected by CRFþANN (i.e., undetected by both CRF and ANN) for the i2b2 dataset

PHI categories PHI type Examples Reason FN Support

AGE AGE A seventy-one-year-old woman with multiple medical S 19 790

died of sudden death in their 82nd year. Brother had SCD at 66. S

smoked from age 7 to 15, has not smoked since 15. S

d 80s?cause, MGF d90 age, MGM d73 CVAM d 73 S

stomach Ca, OA, obeseF d 84 multi-infarct dementiaS b66 S

CONTACT PHONE Wheatland Manor: 154-734-1487, x557 (4th floor) S 1 410

FAX Phone: (091)920-5569 Fax: (251)628-xxxx S 3 6

EMAIL E-Mail: iparedes@oachosp.org S 3 3

DATE DATE PARONYCHIAL INFECTION: LEFT HAND 78jjEctopic pregnancy: 74 Am 60 12534

alb 4.2jfe 50, tibc 204, ferritin 878 8/27jinr 1.1jpth 115 8/27 Am

Prior HDL 19.8/67 TC 170, TG 162, H40, L98 Am

Referral submitted to GI6/65: saw GI - going for scope to eval pancreas Am

DMSon b93D b94 GC due22D Fran b03 Abn S

last seen in clinic in jj11-70 after which time she left for S

ID IDNUM Influenza vaccine jj Received 11/95 MLLjjjj Am 9 382

disp #100 order number 38/48jjALLERGYjjNKDA S

MEDICALRECORD Patient: Vincent Ware (71417347 2Y) S 1 732

DEVICE Interrogation today of his Medtronic Kappa QQ 626 pacemaker S 4 12

LOCATION STREET – 0 416

CITY Oriented to “LCC” in “Galena,” “March 2095.” Speech fluent in Dutch. S 8 344

ZIP – 0 144

STATE BP has been well-controlled in VA, usually in the 128 systolic range. Ab/Am 9 205

COUNTRY is here with her husband who is translating from columbian. S 13 130

LOCATION-OTHER travel hx to the Rockefeller Centre, more recent global travel D 12 20

and has infrequently visited Storting and Acropolis. S

ORGANIZATION diabetes diet - he enjoys a blueberry muffin from RR Donnelley daily. S 42 147

his level of fatigue. He continues to go to the library daily. He continues D

HOSPITAL were placed at Pomeroy Care Center (Big Rapids, AC) and also he Ab/Am 44 1595

Medication List for QUICK,ISABELLE Y 6557545 (ATCH) 52 F Ab

2. DM, stable, Glyburide increased at MS. Dietary rec’sjjreviewed. Ab/Am

NAME PATIENT DMSon b93D b94 GC due22D Fran b03 Abn pap24 Nephropathy 3/25 Am 6 1450

(HCP, daughter) 625-248-3647; Flowers (son) 705-690-8475 Am

Patient Name: JIMENEZ,YOUSSEF I [0554733(LCH)] Ab/Am

DOCTOR Insley/Endocrinology - End 6jjLane/Neurology - NEU 265 Am 35 3297

Script: Amt: 30 Refill: 3 Date: 03/11/2074: um Am

If the latter, will change it.jjOjjjjPlasma Sodium 138 Ab/Am

USERNAME – 0 92

PROFESSION PROFESSION however he would like to try to intern, when he feels up to it. D 69 340

Patient lives in Lake Pocotopaug with wife. Justice of the peace. S

On disability. Volunteers - animal rescue. No current or previous tobacco S

Social HistoryjjNP in Laplace - waiting for researcher job. Ab/Am

He has continued actively managing production and is planning a trip to Italy next S/D

Each row presents one or two false negatives (marked in bold and underlined). The “Reason” column specifies what we believe is the main factor that caused

CRFþANN to fail to detect tokens as PHI instances. Ab: abbreviation; Am: ambiguity; D: debatable annotation; S: data sparsity. The “FN” column indicates

how many tokens of a given PHI type are false negatives. The “Support” column indicates the number of tokens of a given PHI type in the test set.
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