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Abstract

Modulation of cognitive control by emotion and motivation has become a major topic in cognition 

research; however, characterizing the extent to which these influences may dissociate has proved 

challenging. Here, I examine recent advances in this literature, focusing on: (1) neuromodulator 

mechanisms underlying positive affect and reward motivation effects on cognitive control; (2) 

contingency and associative learning in interactions between affect/reward and cognitive control; 

(3) aspects of task design, unrelated to affect/reward, that may have acted as confounding 

influences on cognitive control in prior work. I suggest that positive affect and reward should not 

be considered singular in their effects on cognitive control, but instead varying on multiple 

parameters and interacting with task demands, to determine goal-directed, adaptive behavior.
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Introduction

While integral to goal-directed behavior, cognitive control has traditionally been 

characterized in terms of “cold” cognitive processes, without consideration of the role of 

emotion or motivation. This has begun to change in recent years, with burgeoning evidence 

that cognitive control is modulated by affective influences, including mood inductions, 

emotional stimuli, and reward and punishment incentives (1–7). Many studies have 

characterized these influences on cognitive control in terms of the balance between proactive 
control, engaged in a preparatory or anticipatory fashion; and reactive control, engaged as-

needed in response to changing environmental demands; this perspective, termed the Dual 

Mechanisms Framework (8,9), has proved useful in characterizing variability in control 
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processes and performance across a variety of contexts. With the growth of this literature, so 

has the need to characterize emotional and motivational influences, and the mechanisms by 

which they shape performance, with greater nuance.

Ten years ago, my colleagues and I advocated for a systematic characterization of positive 

affect versus reward1 influences on cognitive control, to clarify the extent to which these 

influences should be considered to operate via common or dissociable mechanisms (10). 

Specifically, drawing on prior accounts linking positive affect to decreased proactive control 

(and related behavioral outcomes, including increased cognitive flexibility and 

distractibility; (11,12)2) in contrast to observed increases in proactive control and cognitive 

stability with reward (2,13), we directly compared within-subjects manipulations of positive 

affect and reward motivation on cognitive control (3). To our surprise, we observed that both 
reward and positive affect increased proactive control, relative to baseline. Along with this 

observation, additional studies comparing positive affect and reward effects on cognitive 

control have yielded mixed findings, including the previously-predicted result of decreased 

proactive control with positive affect and increased proactive control with reward incentive 

(4); decreased proactive control with performance non-contingent reward and increased 

proactive control with performance-contingent reward (14); no changes in cognitive control 

with positive affective stimuli, and increases in both proactive and reactive control with 

reward incentive (15); and similar to our findings, increases in children’s proactive control 

with both positive affect and reward (16). With such inconsistencies in recent empirical 

work, the extent to which positive affect and reward motivation should be considered 

overlapping versus separable influences on cognitive control remains debated.

The present review highlights the following three research dimensions (summarized in 

Figure 1) explored in recent work on affect/reward and cognitive control: (1) the role of 

neuromodulators beyond dopamine; (2) potential contributions of contingency and 

associative learning; (3) aspects of task design, unrelated to affect/reward, that may have 

influenced performance in prior studies. I argue that advancing understanding of these 

factors is necessary for clarifying the complexity and variability of positive affect and 

reward influences on cognitive control, and ultimately, progressing towards a more 

comprehensive account of goal-directed behavior.

1While conceptualizations of affect and reward remain debated in affective science, the “working definition” distinction between 
positive affect and reward used here (following Chiew & Braver, 2011) considers positive affect to refer to a subjectively-experienced, 
psychological state that is positively valenced, while reward refers to the receipt of an outcome of value, that may or may not be the 
product of operational action (i.e., performance contingent) and that may lead to an affective response, but does not necessarily do so.
2The Dual Mechanisms Framework’s distinction between proactive versus reactive control modes is highly analogous to, but not 
completely overlapping with, the theoretical distinction that has been proposed between cognitive stability and flexibility. Both 
proactive control and cognitive stability have been associated with increased goal maintenance, maintained over time, while both 
reactive control and cognitive flexibility have been associated with reduced goal maintenance, facilitating the ability to switch actions 
and thoughts (i.e., in response to changing task demands). Arguably, however, the ability to engage and switch between proactive and 
reactive control modes could be considered a form of cognitive flexibility in and of itself, an idea being increasingly explored in 
accounts of meta-control (e.g., Dreisbach & Frober, 2019). While a full exploration of potential overlaps and distinctions between 
proactive/reactive control and cognitive stability/flexibility is beyond the scope of the present manuscript, these nuances should be 
kept in mind.
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Neuromodulators and affectively-driven control: going beyond dopamine

Neuromodulator activity has been implicated as playing a key role in emotional and 

motivational processes as well as the influences of those processes on cognitive 

performance. In particular, the role of mesolimbic dopamine (DA) in reward and positive 

affect has been extensively studied. Decades of research indicates that DA is integral to 

incentive salience and reward processing (17,18): building on this work, the dopamine 
theory of positive affect (19) posited that positive affect is associated with enhanced DA 

activity, leading to its observed effects on cognition. While evidence for DA’s role in 

positive affect and mood has been inconsistent (20–22), robust evidence indicates that DA 

activity underlies reward modulation of cognitive control (1,23–25). In particular, DA 

activity at D1 receptors in prefrontal cortex might support cognitive stability and proactive 

control, while activity at striatal D2 receptors might support cognitive flexibility (26).

Despite these observations, many open questions remain regarding neuromodulator 

influences on cognitive control. Characterizing these influences has been challenging given 

both the complexity of potential effects neuromodulators can exert, as well as the diverse 

methodological approaches used (including pharmacological, imaging, and genetics 

investigations, in both human and animal models). Further, in contrast to dopamine, limited 

research has examined the potential contributions of other neuromodulator systems, such as 

the opioid system and the norepinephrine system, to interactions between positive affect or 

reward and cognitive control. Despite the fact that the opioid system is well-known to 

mediate hedonic experiences of pleasure and pain integral to affect (27,28), only recently has 

manipulation of the opioid system and its effect on human cognitive control been 

investigated (29,30). In line with recent assertions that aversive emotional arousal can trigger 

adaptive cognitive control and that such arousal may be counteracted by opioids (31), 

blocking the opioid system with naltrexone increased cognitive control (specifically, 

increased post-error slowing) in a Stroop-like task (29). Many open questions remain when 

interpreting these results in the context of prior findings comparing positive affect and 

reward effects on proactive and reactive control, especially given that naltrexone did not 

significantly alter self-reported affect in this study, and given that the paradigm used was not 

explicitly designed to separate proactive and reactive control processes. However, given 

involvement of opioids in modulating both hedonic experience and cognitive control, 

characterizing the effect of the opioid system in interactions between cognitive control and 

affect remains an important direction for future work.

Additionally, norepinephrine (NE) has been implicated in cognitive performance, both in 

terms of modulating neural gain and response selection during cognitive control 

performance (32,33), as well as in terms of modulating emotional arousal and arousal-

related effects on perception and memory: in particular, the prioritization of highly-salient 

stimuli (34,35)3. A growing literature suggests that NE and DA systems overlap and interact 

(36,37) and a recently proposed theory argues for distinct and interacting roles for NE and 

DA systems in shaping affective influences on memory (38). To my knowledge, 

3Note that NE-related increases in neural gain and arousal sometimes co-occur, but not always; a recent study reported increases in 
neural gain and arousal co-occurring in younger, but not older, adults. (34).
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characterizations of positive affect/reward influences on cognitive control have primarily 

been considered in the context of DA activity, without accounting for potential interactions 

with NE. Additionally, it has been suggested that the balance between cognitive flexibility 

and stability might differ under low- versus high-arousal emotion (39), but the role of 

arousal in affectively-driven control has yet to be systematically investigated. Given NE’s 

multiple influences on affect, arousal, and cognitive performance, as well as potential 

interactions with DA, clarifying the potential contributions of this neuromodulator system 

may help elucidate the neural mechanisms by which emotion and motivation modulate 

cognitive control performance.

Contingency and associative learning in affectively-driven control

An important point that has emerged from recent empirical evidence is that the effects of 

reward manipulations on cognitive control may depend on their performance contingency 

(i.e., whether reward receipt is contingent on performance success or not). Studies that have 

compared the effects of contingent and non-contingent reward on cognitive performance 

suggest that contingent rewards may increase proactive control, while non-contingent 

rewards have been associated with unchanged performance as well as reduced proactive 

control (4,14,40). It has been argued that in the absence of performance contingency, reward 

manipulations are largely analogous to positive affect manipulations and lead to similar 

outcomes (i.e., reduced proactive control; (14)).

What accounts for this effect of contingency? Arguably, previously-observed shifts towards 

enhanced proactive control under performance-contingent reward may be understood as a 

product of learning processes. While associative learning was originally conceptualized in 

terms of stimulus-response (S-R) relationships, Abrahamse and colleagues recently 

suggested that associations can also be learned between stimuli and higher-level cognitive 

features, such as goal representations and control settings, and that such learning is critical 

to successful controlled performance (41). In support of this proposal, associative and 

reinforcement learning models have been shown to account for cognitive control 

performance and its flexible adjustment in response to control demands, such as manipulated 

proportions of conflicting versus non-conflicting trials (42–44). Contingent reward 

reinforces S-R associations (45) and, it is suggested, may likewise reinforce associations 

between stimuli and control demands in cognitive tasks (41). Complementary to this 

account, the Expected Value of Control (EVC) framework (46) proposes that cognitive 

control is allocated based on evaluation of the anticipated rewards (versus costs) of control 

implementation, itself argued to be partly determined by the outcomes of reinforcement 

learning. Many characterizations of proactive/reactive control and its modulation by affect 

and reward use tasks where performance is optimized by a reliance on proactive control (i.e., 

cue-probe paradigms such as the AX Continuous Performance Task [AX-CPT], where cue-

based preparation typically enhances performance). Observed shifts towards proactive 

control with contingent reward in such tasks might reflect enhanced associative learning of 

control demands and increased allocation of control, given the expected rewards of that 

increased control, within the task context. Learning accounts might also account for the 

finding that, in addition to increasing proactive control and cognitive stability, reward 

incentives have also been linked to cognitive flexibility but specifically under circumstances 
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where reward prospects are changing (47,48). Such flexibility might support adaptive 

performance in uncertain environments (49); like other aspects of task context, uncertainty 

might be learned and used to shape controlled performance. Despite these findings, as well 

as suggestions that both incidental and contingency-based affect may influence learning rate 

and other parameters in modeling the expected value of control (50), reward and affective 

influences on cognitive control are, to my knowledge, as of yet largely uncharacterized 

through formal associative learning models. This represents an important direction for future 

research.

Importantly, not all effects of reward motivation on cognition should be attributed to 

contingency and related learning. Manohar and colleagues recently demonstrated that both 

contingent and non-contingent rewards led to heightened motivational vigor in an 

oculomotor task (51), and argued that increased motivation with non-contingent reward 

reflected an increase in expected reward rate, occurring independently from contingency 

effects. Given that non-contingent reward has been suggested as largely analogous to 

positive affect in its effect on controlled performance, investigating whether other 

manipulations of positive affect (e.g., mood inductions, emotional stimuli) also increase 

expected reward rate may also help clarify the mechanisms by which such affective 

influences take their effect.

Aspects of task design influencing observed cognitive control performance

In addition to being modulated by emotional and motivational influences, the balance 

between proactive and reactive control can vary as a function of multiple task-level, 

individual-level, and population-level factors (9). These sources of potential variability may 

have contributed to inconsistent findings across studies regarding effects of positive affect 

and reward on cognitive performance. In particular, recent work has begun to characterize 

how aspects of task design in studies examining emotional and motivational influences on 

cognitive control may have acted as confounds impacting performance. I highlight some of 

these potential variables here.

Isolating the effect of emotional or motivational influences on cognitive control typically 

requires a comparison condition, ideally within-subjects, that does not manipulate emotion 

or motivation. However, this has led to designs where performance with and without the 

affective manipulation of interest are measured in separate blocks; when task blocks are not 

counterbalanced, different affective conditions may vary as a function of time on task. My 

colleagues and I utilized this approach in our own studies (2,3,52), where a baseline task 

block preceded a task block with either a positive affect or reward motivation manipulation 

(thus, our baseline and affect/reward task conditions differed in time on task). Recently, 

Hefer and Dreisbach (53) investigated whether increasing time on task was associated with 

increased proactive control in the AX-CPT, in three conditions: positive affect induction, 

neutral affect induction, and alternating positive and neutral affect. They observed that in all 

three conditions, participants became more proactive with increasing time on task. Self-

report measures verified that this shift in cognitive performance was independent of possible 

changes in affect over time (i.e., decreasing efficacy of the positive affect induction over 

time, due to fatigue or boredom). Hefer and Dreisbach also suggest that increases in 
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proactive control with increasing time on task may indicate participants’ learning over time 

that a proactive control strategy is intrinsically rewarding in this task context. Arguably, this 

prediction could be investigated using associative learning models that, as discussed 

previously, formally quantify the learning of stimulus-control mode relationships over time 

and relate such learning to performance. In the meantime, time on task should be kept in 

mind as a potential moderator when considering inconsistencies between observed results in 

this literature.

In addition to time on task effects, different cognitive control paradigms used across studies 

may vary in task difficulty, which may potentially interact with emotional or motivational 

influences. Many studies examining the effects of positive affect and reward motivation on 

proactive/reactive control have used the AX-CPT, but this paradigm itself can be modified to 

vary its difficulty. Classic studies using the AX-CPT manipulated the delay between cue and 

probe from <1 second to as much as 8 seconds (54): by increasing the time that cue 

information must be maintained in working memory on each trial before probe and 

participant response, proactive control demands of the task also increase (9). Across six 

recent studies using the AX-CPT to examine positive affect and reward influences on 

cognitive control (3,4,12,14,15,53), cue-probe intervals have generally been consistent in 

time length (typically between 1 and 2 seconds), but some studies presented distracter 

stimuli during that interval (4,14,53), which arguably increase proactive control demands. 

Interestingly, these studies employing distractors during cue maintenance observed 

decreases in proactive control under positive affect, while other studies without distractors 

reported increased proactive control or no significant changes in performance under positive 

affect (3,12,15). Although proactive control is often thought of as a high-effort strategy (9), 

it is possible that participants may tend more strongly towards its use in contexts where a 

proactive mode both supports successful performance (such as the AX-CPT), and where it is 

not too difficult to employ (i.e., where working memory demands are not too high to begin 

with), potentially altering or lessening the impact of affective manipulations promoting 

reactive control on performance. To my knowledge, potential interactions between cognitive 

control task difficulty and affective/motivational influences have yet to be investigated in this 

fashion.

Conclusions

Recognizing and accounting for the role of emotional and motivational influences in 

cognitive control has represented an important advancement in our characterizations of 

controlled processes and their contributions to adaptive behavior. However, findings within 

this literature have been inconsistent – in particular, the effect of positive affect on cognitive 

control and the extent to which it should be considered similar to or diverging from the 

effect of reward motivation has proven challenging to pin down. In the present review, I 

highlighted three important factors that may act as potential sources of variability in 

determining the effects of affect and reward on cognitive control. While not an exhaustive 

list, these factors illustrate the complexity inherent in characterizing affective influences on 

cognitive control: both affect and cognitive control may vary on many potential parameters, 

and performance outcomes may differ as a product of these parameters interacting with one 

another. Beyond the factors outlined here, additional sources of variation, such as individual 
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differences in response to affective and motivational inductions, may also contribute to 

variation in subsequent cognitive outcomes (55) and should be explored further. Taken 

together, while growing evidence indicates that positive affect and reward motivation can 

have diverging effects on the balance between proactive and reactive cognitive control, 

several important dimensions of these interactions have yet to be systematically 

characterized. Further, accounting for these dimensions might help explain previously-

observed inconsistencies in performance outcomes. This interplay between affective and 

cognitive processes is key to goal-directed, adaptive behavior: deepening our understanding 

of it promises to offer new insights into goal-directed behavior in educational and 

occupational contexts, as well as offering potential intervention targets when these processes 

are disrupted, as in psychopathology (56).
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Highlights

• Inconsistencies in observed positive affect/reward effects on cognitive control

• Multiple neuromodulators may be involved in affectively-driven cognitive 

control

• Reward contingency may influence associative learning of control modes

• Task design confounds may have led to inconsistencies in prior results

• Future work should account for these and other potential sources of variability
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Figure 1. 
Summary of putative neuromodulatory mechanisms, psychological mechanisms, and task 

design factors that may contribute to effects of positive affect and reward on cognitive 

control (specifically, increasing or decreasing proactive control) and that, when not 

controlled for, may have acted as potential sources of variability in previously observed 

results.

Chiew Page 12

Curr Opin Behav Sci. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Neuromodulators and affectively-driven control: going beyond dopamine
	Contingency and associative learning in affectively-driven control
	Aspects of task design influencing observed cognitive control performance
	Conclusions
	References
	Figure 1.

