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Abstract

BACKGROUND—Hospitalized adults whose condition deteriorates while they are in wards 

(outside the intensive care unit [ICU]) have considerable morbidity and mortality. Early 

identification of patients at risk for clinical deterioration has relied on manually calculated scores. 

Outcomes after an automated detection of impending clinical deterioration have not been widely 

reported.

METHODS—On the basis of a validated model that uses information from electronic medical 

records to identify hospitalized patients at high risk for clinical deterioration (which permits 

automated, real-time risk-score calculation), we developed an intervention program involving 

remote monitoring by nurses who reviewed records of patients who had been identified as being at 

high risk; results of this monitoring were then communicated to rapid-response teams at hospitals. 

We compared outcomes (including the primary outcome, mortality within 30 days after an alert) 

among hospitalized patients (excluding those in the ICU) whose condition reached the alert 

threshold at hospitals where the system was operational (intervention sites, where alerts led to a 

clinical response) with outcomes among patients at hospitals where the system had not yet been 

deployed (comparison sites, where a patient’s condition would have triggered a clinical response 
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after an alert had the system been operational). Multivariate analyses adjusted for demographic 

characteristics, severity of illness, and burden of coexisting conditions.

RESULTS—The program was deployed in a staggered fashion at 19 hospitals between August 1, 

2016, and February 28, 2019. We identified 548,838 non-ICU hospitalizations involving 326,816 

patients. A total of 43,949 hospitalizations (involving 35,669 patients) involved a patient whose 

condition reached the alert threshold; 15,487 hospitalizations were included in the intervention 

cohort, and 28,462 hospitalizations in the comparison cohort. Mortality within 30 days after an 

alert was lower in the intervention cohort than in the comparison cohort (adjusted relative risk, 

0.84, 95% confidence interval, 0.78 to 0.90; P<0.001).

CONCLUSIONS—The use of an automated predictive model to identify high-risk patients for 

whom interventions by rapid-response teams could be implemented was associated with decreased 

mortality. (Funded by the Gordon and Betty Moore Foundation and others.)

ADULTS WHOSE CONDITION DETERIOrates in general medical–surgical wards have considerable 

morbidity and mortality.1-5 Efforts at early detection of clinical deterioration in inpatients 

who are outside the intensive care unit (ICU) have used manually calculated scores (e.g., the 

National Early Warning Score6) in which chart abstraction of vital signs and point 

assignment that is based on these values are performed manually; if a patient’s score exceeds 

a threshold, a rapid-response team is called. Some studies have described automated vital-

signs triggers7 and automated versions of the National Early Warning Score8 or similar9 

scores. Several investigators have developed complex predictive models, suitable for real-

time use with electronic health records (EHRs), for early detection of deterioration in a 

patient’s condition,10-12 including one model that was tested in a randomized trial.13 These 

EHR-based models include laboratory tests and information about coexisting conditions; 

they can involve complex calculations.

We previously described an automated early warning system that identifies patients at high 

risk for clinical deterioration. Detection is achieved with the use of a predictive model (the 

Advance Alert Monitor [AAM] program)14 that identifies such patients. Beginning in 

November 2013, we conducted a pilot test of this program in 2 hospitals in Kaiser 

Permanente Northern California (KPNC), an integrated health care delivery system that 

owns 21 hospitals.15-18 The system generates AAM scores that predict the risk of unplanned 

transfer to the ICU or death in a hospital ward among patients who have “full code” orders 

(i.e., patients who wish to have cardiopulmonary resuscitation performed in the event that 

they have a cardiac arrest). The alerts provide 12-hour warnings14 and do not require an 

immediate response from clinicians. Given encouraging results from this program,18,19 the 

KPNC leadership deployed the AAM program in its 19 remaining hospitals on a staggered 

schedule.

In this article, we describe the effect of the program deployment in these 19 hospitals over a 

3.5-year period. We compared outcomes at sites where the program was operational 

(intervention population) with outcomes at sites where it had not yet been deployed 

(comparison population, which involved patients whose conditions would have triggered 

alerts had the system been operational).
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METHODS

PREDICTIVE MODEL TO IDENTIFY PATIENTS AT HIGH RISK FOR CLINICAL 
DETERIORATION

Our study included all 21 hospitals (including the 2 pilot sites) in the KPNC system2,4,20-23 

that had been using the Epic EHR system (www.epic.com) since mid-2010. We used a 

discrete-time, logistic-regression model to generate hourly AAM scores.14 The model was 

based on 649,418 hospitalizations (including 19,153 hospitalizations in which the patients’ 

condition deteriorated) involving 374,838 patients 18 years of age or older who had been 

admitted to KPNC hospitals between January 1, 2010, and December 31, 2013. Predictors 

included laboratory tests, individual vital signs, neurologic status, severity of illness and 

longitudinal indexes of coexisting conditions, care directives, and health services indicators 

(e.g., length of stay). As instantiated in the Epic EHR system, an AAM score of 5 (alert 

threshold) indicates a 12-hour risk of clinical deterioration of 8% or more. At this threshold, 

the model generates one new alert per day per 35 patients, with a C statistic of 0.82 and 49% 

sensitivity.

STUDY POPULATION AND INTERVENTION

The eligible population consisted of adults 18 years of age or older who had initially been 

admitted to a general medical–surgical ward or step-down unit, including patients who had 

initially been admitted to a surgical area and who were then subsequently admitted to one of 

these units. The target population included eligible patients whose condition reached the 

alert threshold at sites where the program was operational (intervention cohort; alerts led to a 

clinical response) or not (comparison cohort; usual care, with no alerts). The comparison 

cohort also included all the patients who had been admitted to any of the study hospitals in 

the 1 year before the introduction of the intervention in the first hospital (historical controls). 

The nontarget population included all the patients whose condition did not reach the alert 

threshold.

The automated system scanned a patient’s data and assigned separate scores for the 

following three variables: vital signs and laboratory test results (assessed at admission and 

hourly with the Laboratory-based Acute Physiology Score, version 2 [LAPS2], on a scale 

from 0 to 414, with higher scores indicating greater physiologic instability), chronic 

coexisting conditions at admission (Comorbidity Point Score, version 2 [COPS2], on which 

12-month scores range from 0 to 1014, with higher scores indicating a worse burden of 

coexisting conditions), and deterioration risk (according to the AAM, with risk scores 

ranging from 0 to 100%, and higher scores indicating a greater risk of clinical deterioration).
14,21 The LAPS2 and COPS2 scores, which are assigned to all hospitalized adults, are scalar 

values that facilitate the characterization and description of patients’ vital signs plus 

laboratory test results and their coexisting conditions separately. Patients with the care 

directives “full code,” “partial code” (i.e., patients allow some, but not all, resuscitation 

procedures), and “do not resuscitate” are assigned AAM scores; AAM scores are not 

assigned to patients in the ICU or to patients who have a care directive of “comfort care 

only,” who were excluded from our main analyses.
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In order to minimize alert fatigue, automated-system results were not shown directly to 

hospital staff. Specially trained registered nurses monitored alerts remotely. If the AAM 

score reached the threshold, the nurses working remotely performed an initial chart review 

and contacted the rapid-response nurse on the ward or step-down unit, who then initiated a 

structured assessment and contacted the patient’s physician. The physician then could 

initiate a clinical rescue protocol (which could include proactive transfer to the ICU), an 

urgent palliative care consultation, or both. Subsequently, the nurses working remotely 

monitored patients’ status, ensuring adherence to the performance standards of the AAM 

program.24 At active sites, registered nurses on the rapid-response team were staffed 24 

hours a day, 7 days a week, and did not have regular patient assignments. Implementation 

teams ensured that the clinical staff at the study sites received training on all the components 

of the program (Section S1 in the Supplementary Appendix, available with the full text of 

this article at NEJM.org).15-18,24 This study was approved by the KPNC Institutional 

Review Board for the Protection of Human Subjects.

STAGGERED DEPLOYMENT

After implementing the program at 2 hospitals (pilot sites), we ranked the remaining 19 

hospitals according to expected numbers of outcomes. The health system leadership agreed 

that the 3 hospitals with the highest expected numbers would go first, using a random 

sequence. The staggered deployment sequence for the 16 other hospitals was based on 

operational and geographic criteria, which were dictated by the limited availability of the 

implementation teams. All 21 hospitals ultimately adopted the program.

ANALYTIC STRATEGY

We estimated that the study would have power to detect a decrease in 90-day mortality 

attributed to the program, assuming that two or three hospitals (excluding the two pilot sites) 

would adopt the program on the same date every 2 months. We calculated the study power to 

detect 90-day mortality that was 10% and 20% lower in the target population at the 

intervention sites than in the population at the comparison sites. Assuming the deployment 

of a new pair or triad of hospitals every 2 months, we estimated that the study would have 

more than 80% power to detect an effect size of more than 20% with a 10-month follow-up. 

Subsequently, because of internal requests to evaluate the program as soon as possible, we 

elected to use a 30-day time frame for outcomes.

The study period (August 1, 2015, to February 28, 2019) included the year before the 

intervention was deployed (August 1, 2015, to July 31, 2016). The principal independent 

variable was the status of the AAM program (operational or not) at a hospital. The unit of 

analysis was a patient’s hospitalization, which in some cases involved linking multiple 

hospital stays within KPNC, in which interhospital transport is common.21,23

OUTCOMES

The principal dependent variable was mortality within 30 days after an AAM alert. We also 

analyzed the following secondary outcomes: ICU admission; length of stay in the hospital; 

30-day mortality after admission; and favorable status at 30 days (defined as the patient 
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being alive, not in the hospital, and not having been rehospitalized), which was analyzed 

post hoc.

Attention that was given to patients whose condition triggered an alert could harm other 

patients.25 Given resource limitations, our ability to quantify unintended harm was limited to 

analyzing mortality and length of stay in the hospital among patients in a ward or step-down 

unit whose condition did not trigger an alert (eligible, nontarget population) and among 

patients who had initially been admitted to the ICU. For these analyses involving patients 

without alerts, we used the time of hospital admission as the starting point (T0).

DATA COLLECTION

We captured data regarding the demographic characteristics of the patients (including Kaiser 

Foundation Health Plan [KFHP] coverage), sequence of hospital units (ward, ICU, etc.) 

where the patients stayed, length of stay in the hospital, mortality, and rehospitalization.
2,4,20-23 We grouped patients’ diagnoses into 30 primary conditions according to the 

International Classification of Diseases, 9th and 10th Revisions,21,22 using classification 

software from the Healthcare Cost and Utilization Project (www.ahrq.gov/data/hcup). We 

classified patients’ care directives as “full code” or “not full code” (which included the 

directives “partial code,” “do not resuscitate,” and “comfort care only”)21 and assigned 

Charlson comorbidity index scores to patients.26 We excluded hospital records that did not 

include data on stays in a ward or step-down unit; missing or clearly erroneous data for the 

AAM score, LAPS2, and COPS2 were imputed or truncated (Section S5).14,21

At the pilot sites, scores that were calculated on an external server were displayed every 6 

hours on EHR dashboards that were visible to clinicians.16 After the decision was made to 

use hourly remote monitoring that would not be displayed to hospital clinicians, score 

calculation was moved to different servers and then to the predictive modeling module of the 

Epic EHR system. This meant that, although the predicted risk was the same, the apparent 

threshold that was used by the nurses working remotely changed. Moreover, before the 

activation of the AAM program at the first hospital, AAM scores were not available, nor 

were they available at any site before the activation of the program. To ensure uniform 

measurement in the periods before and after deployment of the program, we based analyses 

on retrospective data from the Epic Clarity data warehouse, not on scores assigned by the 

system. We assigned all the patients at all the sites retrospective LAPS2, COPS2, and AAM 

scores on admission, every hour, any time a hospital unit change occurred, and (for patients 

at active sites) any time an alert was issued. For our principal analyses, T0 was the time of 

the first retrospective or actual alert for a patient during a hospitalization. For outcomes 

among patients in the nontarget population and among those admitted directly to the ICU, T0 

was the time of hospital admission.

STATISTICAL ANALYSIS

Our primary analysis assessed the effect of the intervention in the target cohort (with regard 

to ICU admission, mortality, length of stay, and favorable status after discharge). Using the 

same approach, we also evaluated the intervention effect in the nontarget population and the 

ICU cohort to assess for possible harm. Hospitalizations were assigned to intervention or 
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comparison status according to their first alert date (for hospitalizations in the target cohort) 

or admission date (for those in the nontarget population and the ICU cohort).

We used generalized linear models to estimate the intervention effect with a fixed estimate 

for the intervention and fixed hospital effects, controlling for secular trends27 and patient 

covariates for the target, nontarget, and ICU cohorts separately. We modeled secular time 

trends as restricted cubic spline functions with five knots placed at equally spaced 

percentiles of time and a truncated-power-function basis.28-30

All the models were adjusted for age, sex, season (whether admission occurred in December 

through March), KFHP coverage, care directive (at the time of first alert for the target cohort 

and on admission for the eligible and entire hospitalized cohorts), COPS2, LAPS2 at 

admission, and diagnosis. The target-population models also include the first alert value and 

elapsed hours from admission to the first alert.

We modeled binary outcomes (mortality, ICU admission, and favorable status within 30 

days) using a Poisson distribution with a log link to estimate the adjusted relative risk of the 

intervention episodes, as compared with the no-intervention episodes.31 Missing or censored 

values were set to the favorable event for binary outcomes. We used a competing-risk Cox 

proportional-hazards model to assess the effect of the intervention on the length of stay in 

the hospital (time to hospital discharge), with death as a competing risk.32,33 In this model, 

the hazard rate ratio refers to the intervention instantaneous rate of discharge from the 

hospital divided by the instantaneous rate of discharge from the hospital in the comparison 

group. Thus, a rate ratio of more than 1 indicates that the intervention shortened the time to 

discharge. Cox proportional-hazards models were used in a post hoc analysis of the effect of 

the intervention on mortality over the course of the entire study period.34-37 We assessed the 

proportional-hazards assumption by testing whether the Schoenfeld residuals were 

associated with time.38

We applied these models to 1000 bootstrap samples that were generated in two stages. First, 

we obtained a random sample of ni patients (where ni is the number of unique patients in 

hospital i) with replacement within each hospital; we then retained all hospitalizations for 

selected patients who had multiple hospitalizations.39 We constructed 95% confidence 

intervals by taking the 2.5th and 97.5th percentiles as the lower and upper boundaries. We 

did not adjust the confidence intervals for multiple comparisons, and we report a two-sided P 

value only for the primary outcome.

Since the intervention protocols differed from the protocol that was used in the 2 pilot-site 

hospitals, we elected to conduct our analyses using only the other 19 hospitals. As a 

sensitivity analysis, we replicated our analyses using data from all 21 hospitals starting in 

November 2012, which was 1 year before the program began at the first pilot site.

The analyses were conducted with the use of R software, version 3.5.2, and SAS software, 

version 9.4 (SAS Institute). Quantification of the process measures is described in Section 

S6.
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RESULTS

STUDY POPULATION

We identified 633,430 hospitalizations during the study period. After excluding 17,042 

hospitalizations for which the hospital location could not be determined and 769 

hospitalizations for obstetric reasons, 615,619 hospitalizations (548,838 in the eligible 

population and 66,781 in the ICU cohort) involving 354,489 patients were included in the 

analysis (Fig. 1). Events for which a patient’s condition triggered an alert at a hospital 

different from the one at which the patient had been admitted were rare (<1%).

UNADJUSTED ANALYSES

Table 1 shows the eligible population, divided into the target and nontarget populations, with 

the intervention and comparison cohorts in the target population (Section S3). Patients who 

reached the alert threshold were sicker than patients in the ward or step-down unit who did 

not reach the alert threshold. Table 1 also shows the unadjusted comparisons between 15,487 

hospitalizations (involving 13,274 patients) in the intervention cohort and 28,462 

hospitalizations (involving 23,797 patients) in the comparison cohort. Patients in the 

intervention cohort, as compared with those in the comparison cohort, had a lower 

unadjusted incidence of ICU admission (17.7% vs. 20.9%), a shorter length of stay among 

survivors (6.5 days vs. 7.2 days), and lower mortality within 30 days after an event reaching 

the alert threshold (15.8% vs. 20.4%).

ADJUSTED ANALYSES

Figure 2 shows the staggered deployment sequence of the hospitals, the numbers of patients 

in the target population, and unadjusted mortality within 30 days after an event reaching the 

alert threshold. Table 2 shows adjusted results for the target population and the nontarget 

population. The intervention condition (alerts led to a clinical response) was associated with 

lower mortality within 30 days after an event reaching the alert threshold than the 

comparison condition (usual care, with no alerts) (adjusted relative risk, 0.84; 95% 

confidence interval [CI], 0.78 to 0.90; P<0.001), without worse outcomes in the nontarget 

population. We estimated an absolute difference of 3.8 percentage points in mortality within 

30 days after an event reaching the alert threshold between the intervention cohort and the 

comparison cohort. This difference translated into 3.0 deaths (95% CI, 1.2 to 4.8) avoided 

per 1000 eligible patients or to 520 deaths (95% CI, 209 to 831) per year over the 3.5-year 

study period among approximately 153,000 annual hospitalizations. The intervention was 

also associated with a lower incidence of ICU admission, a higher percentage of patients 

with a favorable status 30 days after the alert, a shorter length of stay, and longer survival.

Examination of individual hospital coefficients showed limited variation in mortality 

outcomes across the study hospitals (Table S8). The individual hospital risk ratios for 

mortality within 30 days after an alert relative to the first hospital at which the AAM 

program became active varied between 0.9 and 1.5.
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SENSITIVITY ANALYSES AND PROCESS MEASURES

Results from our sensitivity analyses were similar to those of the primary analyses and were 

also favorable in the intervention cohort. Patients in the intervention cohort were less likely 

than those in the comparison cohort to die without a referral for palliative care. We did not 

observe clinically significant differences in vital-sign measurements, therapies, and changes 

in care directives between the intervention cohort and the comparison cohort (Tables S11 

through S15). This result indicates that we were not able to identify changes in process 

measures that may have led to the observed improvements in outcomes associated with the 

intervention.

DISCUSSION

In this study, we quantified beneficial hospital outcomes — lower mortality, a lower 

incidence of ICU admission, and a shorter length of hospital stay — that were associated 

with staggered deployment of an automated predictive model that identifies patients at high 

risk for clinical deterioration. Unlike many scores currently in use, AAM is fully automated, 

takes advantage of detailed EHR data, and does not require an immediate response by 

hospital staff. These factors facilitated its incorporation into a rapid-response system that 

uses remote monitoring, thus shielding providers from alert fatigue. The AAM program is 

based on standardized workflows for all aspects of care of patients whose condition is 

deteriorating in wards, including aspects of care involving clinical rescue, palliative care, 

provider education, and system administration.24

The magnitude of the effects we found are consistent with other studies of rapid-response 

systems. With respect to complex automated scores, it is important to consider the rigorously 

executed randomized trial conducted by Kollef et al.13 Those authors found a shorter length 

of stay in the hospital among patients who had an early-warning-system alert displayed to 

clinicians than among patients for whom alerts were not displayed, but they also found no 

change in the incidence of ICU admission or in in-hospital mortality. In a very large study of 

a rapid-response system that used manual scores, Chen et al.40 found that preexisting 

favorable trends in mortality in 292 Australian hospitals continued, with additional 

improvement among low-risk patients. Priestley et al.41 compared outcomes in a single 

hospital before and after the implementation of a rapid-response system that used manual 

scoring. They found lower inpatient mortality than we did but did not report 30-day 

mortality and had equivocal findings regarding the length of stay in the hospital. Bedoya et 

al.8 used an automated version of the National Early Warning Score and found no change in 

the incidence of ICU admission or in in-hospital mortality. Bedoya et al. also found that 

there was clinician frustration with excessive alerts and noted that the score was largely 

ignored by frontline nursing staff.

Our study has various strengths. It was based on a large, multicenter cohort and included 

multiple outcomes. We adjusted the analyses for severity of illness, which is assessed hourly 

with the LAPS2 in KPNC. Our results are statistically robust, with all the sensitivity 

analyses trending in the same direction. Furthermore, KPNC has made a major effort to 

ensure consistent implementation of the program.24
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Our study also has important limitations. It does not have the methodologic rigor of the 

randomized, controlled trial conducted by Kollef et al.; that trial had a much smaller sample 

size, however.13 It is not possible for us to identify the exact timing and nature of the 

clinicians’ actions that occurred after an alert.24 Although it has recently become feasible,42 

we did not have the technical capability or organizational approval for patient-level 

randomization. Moreover, given data limitations, technical obstacles, and a complex 

intervention with multiple components, we cannot determine the exact causes of the 

observed associations. This limitation is also a result of the fact that iterative improvements 

in computing infrastructure, documentation practices, and workflows were needed to ensure 

sustainable rollout. Furthermore, process-measure analyses did not show consistent 

significant associations with the intervention. Thus, we cannot rule out the possibility that 

improved outcomes were the result of broad institutional cultural change rather than the 

intervention per se.

Another limitation to generalizability is the study cohort, which consisted of a population of 

insured patients who were cared for in a highly integrated system in which baseline 

hospitalization rates were decreasing.23 Given an increasing threshold for admission, our 

population of patients may differ from those in other hospital cohorts.

Reflection on our findings suggests future directions for research. One direction is to 

quantify the relative contributions of the predictive model and the clinical rescue and 

palliative care processes. Automated scores have statistical performance that is superior to 

scores such as the National Early Warning Score,43 but it is unclear whether scores that use 

newer approaches (e.g., so-called bespoke models44) will necessarily result in better 

outcomes. This is because, as Bedoya et al.8 point out, clinicians might not use the 

predictions. A second area relates to how notifications are handled. Although the use of 

remote monitoring in KPNC appears to have been successful, it is not the only way in which 

one might ensure compliance without alert fatigue. The program is amortized across 21 

hospitals, which permits economies of scale, such as the use of nurses working remotely 

who attempt to mitigate alert fatigue as well as monitor compliance with clinical rescue and 

palliative care workflows. This approach may not be feasible for many hospitals.

In this study, we found that in conjunction with careful implementation, the use of 

automated predictive models was associated with lower hospital mortality, a lower incidence 

of ICU admission, and a shorter length of stay in the hospital.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study Cohorts.
Eligible patients were those whose initial hospital unit after admission was the ward or step-

down unit and those who had initially been admitted to a surgical area and whose first 

postsurgical unit was the ward or step-down unit. Patients with direct admission to the 

intensive care unit (ICU) were not eligible. (Information about patients who had been 

admitted to the ICU is provided in Section S3.) Eligible hospitalizations were assigned to the 

target or nontarget population on the basis of the study definitions. The target population 

consisted of patients who had a hospitalization in which the patient’s condition reached the 

alert threshold of the Advance Alert Monitor program. If the alert occurred at a hospital 

where the program was active, the hospitalization was included in the intervention cohort; if 

the program was not active at the hospital, the hospitalization was included in the 

comparison cohort.
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Figure 2. Staggered Deployment of the Advance Alert Monitor Program.
The left column shows the deployment sequence number of each hospital. The next columns 

show the numbers of hospitalizations in which the patient reached the alert threshold (target 

hospitalizations) before and after the activation of the program; the numbers in parentheses 

show mortality within 30 days after an alert that occurred in a given hospitalization. The bar 

graph shows the dates on which the program became active at each hospital. The study 

period began on August, 1, 2015, which was 1 year before the deployment of the program at 

the first hospital.
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