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Abstract

Globally, wetlands are in decline due to anthropogenic modification and climate change.

Knowledge about the spatial distribution of biodiversity and biological processes within wet-

lands provides essential baseline data for predicting and mitigating the effects of present

and future environmental change on these critical ecosystems. To explore the potential for

environmental DNA (eDNA) to provide such insights, we used 16S rRNA metabarcoding to

characterise prokaryote communities and predict the distribution of prokaryote metabolic

pathways in peats and sediments up to 4m below the surface across seven New Zealand

wetlands. Our results reveal distinct vertical structuring of prokaryote communities and met-

abolic pathways in these wetlands. We also find evidence for differences in the relative

abundance of certain metabolic pathways that may correspond to the degree of anthropo-

genic modification the wetlands have experienced. These patterns, specifically those for

pathways related to aerobic respiration and the carbon cycle, can be explained predomi-

nantly by the expected effects of wetland drainage. Our study demonstrates that eDNA has

the potential to be an important new tool for the assessment and monitoring of wetland

health.

Introduction

Wetlands are globally important ecosystems for their biodiversity, cultural, and recreational

values, and regulatory and functional roles [1–3] yet are among the most threatened by
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anthropogenic modification and global climate change. Approximately 4–6% of Earth’s land

surface area is classified as wetland [1], but since 1900 CE 64–71% of global wetlands have

been lost through drainage, infilling or agricultural conversion [4]. Moreover, increasing

atmospheric carbon dioxide (CO2) concentrations and concomitant global warming have the

potential to significantly influence biological communities, ecological functioning and pro-

cesses in wetlands [5, 6], with the potential for feedback loops via increased wetland green-

house gas emissions under a warming world [7, 8]. Anthropogenic modification of wetlands,

particularly drainage, can lead to further increases in CO2 emissions [9]. An understanding of

how biodiversity and biological processes are distributed within wetlands is therefore essential

for predicting how present and future environmental change might affect these critical

ecosystems.

Prokaryotes (archaea and bacteria) represent a large portion of the total biodiversity in wet-

lands [10]. Moreover, prokaryotes play a major role in providing wetland services and driving

function through facilitating key biogeochemical processes that contribute to nutrient cycling,

productivity and greenhouse gas cycles [11]. Over the past two decades, DNA metabarcoding

(specifically using the V4 region of the 16S rRNA gene) has allowed wetland prokaryote com-

munities (including unculturable taxa) to be studied in more detail than was previously possi-

ble. Such work has demonstrated that at broad taxonomic ranks (e.g. phyla), wetland

prokaryote communities are strongly structured by hydrological, chemical, physical and bio-

logical (i.e. vegetation) characteristics [12], and these patterns appear remarkably consistent

between landmasses irrespective of geographic distance. Prokaryote communities respond

rapidly to changes in these characteristics [13], whether caused by natural processes or anthro-

pogenic activities. Accordingly, patterns of prokaryote community composition in wetland

peats and sediments (hereafter wetland soils) may provide insights into functional differences

between distinct wetland types or may serve as useful indicators of anthropogenic impacts on

wetlands [12–16]; and moreover could provide useful indicators for assessing wetland condi-

tion and monitoring wetland restoration.

In addition to the variability observed between different wetland types and states of modifi-

cation, it is well-established that prokaryote communities change vertically within an individ-

ual wetland in response to water saturation and oxygen levels. Key wetland processes (such as

fermentation and methanogenesis) occur at depth and anthropogenic modifications to the

surface of wetlands may have repercussions at depth through lowering of the water table and

increasing oxygen levels [17]. Therefore, considering vertical profiles is a necessary aspect of

wetland microbial studies. Despite this, soil depth has so far been explored as a variable in only

a relatively small proportion of wetland prokaryote studies, with substantial variation in the

depth ranges examined by these studies. Perhaps reflecting difficulties in sampling at depth,

most have focussed on relatively shallow depth ranges (< 65 cm; e.g. [18–20]), with just a few

studies extending to depths of 1–7 m below the surface (e.g. [16, 21, 22]).

Wetlands represented approximately 10% of New Zealand’s total land area at the time of

initial human settlement (13th Century AD) (~ 2.5 million ha), but fires, reclamation, nutrient

runoff from agricultural land and drainage have since contributed to extensive (~ 90%) loss of

natural wetlands [23, 24]. Calculated ongoing regional rates of wetland area loss in New Zea-

land are equivalent to global averages (0.5% yr-1) [4, 25]. In this study we use 16S rRNA meta-

barcoding to characterise the vertical stratification of prokaryote communities in wetland soils

between 1 and 4 m below the surface at seven New Zealand wetlands. Further, we use pre-

dicted metabolic pathways from three wetlands of the same physical and vegetation character-

istics (restiad ombrotrophic bogs) that span a condition gradient to explore whether

prokaryote driven processes occurring at depth might be impacted by anthropogenic modifi-

cation of wetlands. Our study also helps overcome a strong geographic bias in wetland
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prokaryote studies towards wetlands from Europe, Asia and the Americas, and provides new

data on prokaryote community composition within Southern Hemisphere wetlands.

Materials and methods

Study sites and sampling

We collected soil cores from seven different wetlands in New Zealand (S1 Fig). Within our

sampling design we incorporated both a variety of different wetland types (ombrotrophic

bogs, valley-floor fen, a coastal spring-fed wetland and an infilled calcareous lagoon) and repli-

cates of a single wetland type (ombrotrophic bogs) across a degradation spectrum, as defined

by wetland condition index scores between 0 (most degraded) and 25 (intact) (S2 Fig). A wide

range of factors are considered in the calculation of the wetland condition index, including

hydrological integrity, physio-chemical parameters, ecosystem intactness, browsing, predation

and harvesting regimes and dominance of native plants (see [26] for full description of meth-

ods). Cores were taken at the centre of 10 x 10 m plots, in which vegetation was assessed fol-

lowing Hurst & Allen [27]. Measurements of surface pH, conductivity and depth to the water

table were also recorded. Two wetlands (Glendhu and Hinekatorangi) transitioned from peat

to mainly non-peat sediment at ~40 cm and 85 cm depths respectively. At these sites additional

pH measurements were recorded at depth (205 cm and 112 cm respectively) and were applied

to samples taken from these different substrate types. Plant nomenclature follows the New

Zealand Plant Conservation Network (https://www.nzpcn.org.nz/; May 2020). Details of the

sampled wetlands and cores are presented in Table 1, with core stratigraphies and locations in

S1 Fig.

Cores were stored frozen at Manaaki Whenua Landcare Research, Lincoln, New Zealand,

until subsampling was undertaken. The subsampling procedure involved partly thawing the

core at room temperature, removing the surface of the core by scraping with a sterile scalpel

blade, then UV irradiating the freshly exposed surface for 30 minutes to reduce potential con-

tamination. Samples were then cut from the core using sterile scalpel blades. All subsampling

was performed within a still-air benchtop sampling hood, designed following Wood and

Wilmshurst [28] but widened to accommodate 50 cm long cores. The sampling hood was

cleaned between cores using a 10% Decon 90TM solution, 10% sodium hypochlorite solution

and UV light (minimum 30 minutes). Subsampling depth intervals for each core are shown in

S1 Fig.

DNA extraction and 16S rRNA library construction

DNA extractions and barcoding PCR setups were performed in an ultra-clean laboratory at

Manaaki Whenua Landcare Research, Lincoln, New Zealand. PCR, indexing PCR setup and

downstream procedures were performed in a standard molecular laboratory at the same facil-

ity. DNA was extracted from peat samples (0.4–0.89 g; mean = 0.47 g) from the Awarua, Bays-

water and Dunearn cores using a Qiagen Dneasy PowerSoil Kit, with bead beating undertaken

using a vortex adapter. DNA was extracted from peat/sediment samples (0.46–3.46 g;

mean = 1.66) from Glendhu, Hinekatorangi, Eweburn 1 and Eweburn 2 cores using a Qiagen

Dneasy PowerMax Soil kit, with bead beating undertaken using an Omni Bead Ruptor set at

3.1ms-1 for 30 sec. The solution C3 incubation step was performed at 4˚C for ~20 hours

(overnight).

Metabarcoding amplicons were generated using primers 515F [29] and 806R [30] for the

V4 region of the 16S rRNA gene with Illumina linker sequences added to the 5’ ends (i5:

TCGTCGGCAGCGTC; i7: GTCTCGTGGGCTCGG). These PCRs were performed in 12.5 μl vol-

umes containing 1 μg/mL BSA, 1x PCR buffer, 2 mM MgSO4, 10 μM each dNTP, 0.4 μM each
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Table 1. Characteristics and descriptions of study sites.

Site name Core

id

Maximum

core depth

(cm)

Latitude/

Longitude

Site type Wetland

condition

(ombrotrophic

bogs only)

Current

extent

(ha)

pH Water table

depth at

time of

sampling

(cm)

Conductivity

(uS)

Dominant vegetation

cover and notes

Awarua X17/

1

138 46.5102˚ S,

168.7160˚

E

Ombotrophic

bog

21.67 12,000 3.77 30 194.5 Empodisma minus
(Restionaceae) and

Gleichenia dicarpa
(Gleichenaceae), with

occasional Leptospermum
scoparium and

Machaerina tenax.

Bayswater X17/

2

200 46.1345˚ S,

168.0627˚

E

Ombotrophic

bog

19.05 520 4.16 18 88.3 Empodisma minus and

Gleichenia dicarpa.

Drainage exists around

wetland margins and

exotic tree encroachment

was occurring near to the

core site.

Dunearn X17/

3

200 46.0011˚ S,

168.1963˚

E

Ombotrophic

bog

15.25 60 4.03 28 71.6 Empodisma minus (~40%

dead plants), with some

bare peat patches, lichens

and exotic Rumex
acetosella. Drainage has

occurred over many

years and the peat surface

is intensely hummocked.

Eweburn1 X18/

8

120 45.3325˚ S,

167.8058˚

E

Bog 0.75 4.32 7 59.2 Empodisma minus,
Dracophyllum oliveri and

Sphagnum mosses.

Gravel ridges along the

margins of the wetland

contained Leptospermum
scoparium and

Halocarpus bidwillii.
Eweburn2 X18/

9

100 45.3350˚ S,

167.8097˚

E

Valley-floor

fen

220 6.39 8 47.5 Mosses and Carex sedges,

with burnt trees

(Leptospermum
scoparium). Situated

within the Dome Mire/

Dismal Swamp wetland

complex [54].

Hinekatorangi X17/

17

300 39.3667˚ S,

176.8942˚

E

Coastal

spring-fed

wetland

3 6.82

(peat);

7.39

(silt)

Not

measured

Not measured Relatively dry part of

wetland dominated by

Juncus rushes. Preserved

gastropod shells within

the deeper silts.

Glendhu X18/

89

400 44.6639˚ S,

169.0450˚

E

Infilled

alkaline

lagoon

12.5 6.75

(peat);

7.44

(silt)

Not

measured

Not measured Grassed wetland ~10 m

from edge of Typha
orientalis stand at eastern

margin of Glendhu. Dark

organic peat at least 2.9

m thick recorded near

the core site by Trotter

[56]. Gastropod shells

and extinct bird bones

[55] within deeper

calcareous silts.

https://doi.org/10.1371/journal.pone.0243363.t001
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primer, 1U Platinum HiFi Taq (Invitrogen) and 1 μL of eluted DNA. Thermocycling condi-

tions were as follows: 94˚C for 2 min; 40 cycles of 94˚C for 30 sec, 50˚C for 30 sec and 68˚C for

40 sec; with a final step of 68˚C for 10 min.

Sample-specific dual indexed sequencing adapters were added in a second-round of

PCR (20 μL volumes) consisting of 0.25 μL of iTaq DNA polymerase (Intron) and the manu-

facturer’s reaction mix, 0.75 μL of each adapter (2 μM working stocks) and 1 μL of amplified

library. Indexing PCRs were cycled at 94˚C for 2 min; 7 cycles of 94˚C for 20 sec, 55˚C for 10

sec and 72˚C for 30 sec; with a final step of 72˚C for 10 min. Low yield libraries were repeated

with additional cycles. Quantity and fragment size distribution of indexed libraries were

checked using a LabChip (PerkinElmer), and these were then pooled in equal amounts for

sequencing.

Sequencing and bioinformatics

The combined libraries were sequenced using a 250 bp paired-end kit on an Illumina MiSeq at

Macrogen (South Korea) (Awarua, Bayswater, Dunearn) and Auckland University (New Zea-

land) (Eweburn, Hinekatorangi, Glendhu). Demultiplexed reads were processed using

QIIME2 and associated plugins [31]. Denoising was performed following the DADA2 pipeline

[32]. Taxonomic classification was performed using QIIME2’s Naive Bayes classifier trained

on the Greengenes 13_8 99% operational taxonomic units (OTUs) (trimmed to the V4 region

flanked by the 515F/806R primers) [33]. Taxa identified as present in blank controls (S1

Table) were filtered from the sample data, except where they were> 10 times more abundant

in a sample compared to a control or were present in > 10 times as many samples as controls.

OTUs present in< 3 samples were filtered from the dataset, as were low diversity samples

(those with< 20 OTUs). Richness and diversity indices (Faith’s Phylogenetic Diversity and

Shannon Diversity) were calculated using QIIME2. We used linear mixed-effects models to

determine the effect of pH on richness and each of the two diversity metrics. We fitted a qua-

dratic model and compared this to a linear model, and an intecept-only (null) model without a

term for pH. All models included sample depth as a covariate. In all instances, the quadratic

model had the lowest AIC value relative to the linear and intercept-only models (delta AIC

was always >5). We used the effects package [34] to obtain fitted values for each quadratic

model and used these to plot relationships with 95% confidence intervals. Model fit was

assessed using the coefficient of determination (r2).The relative abundance of MetaCyc [35]

metabolic pathways were predicted for each sample using PICRUSt2 [36]; a tool that provides

metagenome predictions based on prokaryote 16S rRNA amplicon sequencing data. The

PICRUSt approach provides a tool for cost-effective scanning for functional patterns across

large sample size 16S rRNA metabarcoding datasets, though as a predictive method it has

some known limitations compared with shotgun metagenomic data [36]. We compared the

composition of the metabolic pathways visually, across sites and depth, using non-metric mul-

tidimensional scaling ordination (NMDS) in R version 3.6.0 [37]. We transformed the data by

taking a log base 2 transformation for values greater than 0, and the alternative Gower distance

as proposed by Anderson et al. [38]. To assess changes in predicted metabolic pathway compo-

sition related to depth, we clustered samples using the Ward’s criterion hierarchical clustering

with the log transformation and alternative Gower distance described above, and cut the den-

drogram at k = 7, which would have allowed our sites (n = 7) to fall into entirely separate clus-

ters, if strong between-site compositional differences occurred. We analysed how the resulting

clusters varied with depth in each site. Indicator value scores were calculated using the R

labdsv package [39] and function indval, reflecting a combination of relative abundance within

a cluster and fidelity to that cluster.
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Results

Richness and diversity

The rarefaction curves for relative richness (number of observed OTUs), Faith’s phylogenetic

diversity and Shannon diversity were relatively consistent between wetlands (Fig 1), except for

Fig 1. Richness and diversity of prokaryote 16S rRNA communities in New Zealand wetlands. a) Rarefied richness and diversity curves; b) range of richness and

diversity values for individual samples from each core (small circles) plotted against pH. Large circles represent mean values for each site or distinct soil/sediment unit

within a site. Solid lines represent fitted quadratic curves with dashed lines representing the lower and upper bounds of 95% confidence intervals. Note that values in B

are based on a sequencing depth of 4000 reads.

https://doi.org/10.1371/journal.pone.0243363.g001
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Eweburn 2 which exhibited notably greater values for each metric (Fig 1). Among wetland

types, bogs tended to have greater OTU richness and diversity than the other wetland types,

except for Dunearn, which had the lowest richness and phylogenetic diversity values. Qua-

dratic relationships had strong statistical support relative to either linear, or intercept-only

models (see Methods), suggesting that intermediate levels of pH promote the highest microbial

richness and diversity across wetlands (OTU model r2 = 0.63; Faith’s PD model r2 = 0.70;

Shannon model r2 = 0.81). Although prokaryote reads were obtained from the extraction

blanks and PCR blanks, the blanks were characterised by very low observed OTUs, phyloge-

netic diversity and Shannon diversity compared to the wetland soil samples (Fig 1).

Community composition

Archaea were rare or absent in the surface layers of all wetlands but increased with depth.

Overall, there was a positive correlation between archaea:bacteria ratios and depth (Pearson’s

correlation coefficient r = 0.779, p>0.0001). However, the strength and significance of correla-

tions between these two variables differed between sites (Fig 2). Significant (p<0.001) correla-

tions were seen at Awarua, Bayswater, Eweburn2 and Glendhu, with the strongest positive r

values (>0.9) at Eweburn2, Glendhu and Awarua (Fig 2). Within the three ombrotrophic bog

sites both the strength (r value) and significance of the correlations declined with decreasing

wetland condition index. The two longest cores, Hinekatorangi and Glendhu, exhibited quite

Fig 2. Relationship between Archaea: Bacteria ratio (assigned reads) and depth within seven New Zealand wetlands. For ombrotrophic bogs, colours reflect wetland

condition: Red, Dunearn (most modified condition); Orange, Bayswater (moderate condition); Green, Awarua (most intact condition).

https://doi.org/10.1371/journal.pone.0243363.g002
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different trends in archaea:bacteria ratios. At Hinekatorangi, prokaryote communities were

dominated by bacteria and there was little increase in the relative proportion of archaea with

changing depth (Fig 2). By contrast, at Glendhu the ratio of archaea:bacteria increased consis-

tently with depth until archaeal reads numerically dominated bacterial reads between 3 and

4m depth (Fig 2).

Archaeal community composition was assessed at the level of class, as this was the lowest

taxonomic rank to which most archaeal reads were successfully classified. Archaeal communi-

ties varied between localities (Fig 3). Communities in the three ombrotrophic bogs (Awarua,

Bayswater and Dunearn) had high proportions of the Crenarchaeota classes MBGA and MCG,

which together represented >50% of archaea reads in all but two samples (Fig 3). Three of the

other wetlands (Eweburn 2, Hinekatorangi and Glendhu) exhibited relatively high proportions

of MCG and the Parvarchaeota class Parvarchaea (Fig 3). In these wetlands Parvarchaea and

MCG had differing responses to increasing depth, decreasing and increasing in relative

Fig 3. Archaea community composition at the taxonomic level of class.

https://doi.org/10.1371/journal.pone.0243363.g003
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abundance respectively (Fig 3). Archaea communities in Eweburn 1 appeared to be intermedi-

ate between these two groups, with high proportions of MBGA and MCG like the ombro-

trophic bogs, and proportions of Parvarchaea comparable to those seen in Eweburn 2,

Hinekatorangi and Glendhu (Fig 3).

Due to the large number of bacterial taxa resolved, bacterial communities were assessed at

the level of phyla. Acidobacteria dominated bacterial communities in the ombrotrophic bogs

(Awarua, Bayswater, Dunearn) and Eweburn 1; sites characterised by their low pH values

(< 4.5). There was no clear trend in the relative abundance of Acidobacteria with depth (Fig

4). By contrast, Acidobacteria were a relatively minor component of the bacterial communities

at the highest pH sites, Hinekatorangi and Glendhu, where they occurred mainly at low abun-

dance within surface peats and were rare in deeper silts (S1 Fig; Fig 4).

Fig 4. Bacteria community composition at the taxonomic level of phyla.

https://doi.org/10.1371/journal.pone.0243363.g004
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Proteobacteria were also a major component of the wetland bacterial communities. Proteo-

bacteria was the most abundant phyla at Hinekatorangi and Glendhu but was also relatively

common at other sites (Fig 4). Other phyla that occurred in notable abundances included Ver-

rucomicrobia, Bacteroidetes, Chloroflexi, Planctomycetes, Firmicutes, Nitrospirae, Chlorobi,

Spirochaetes and Actinobacteria (Fig 4). Some of these phyla appeared to exhibit patterns of

relative abundance related to depth. For example, Planctomycetes occurred more commonly

at greater depths in Awarua and Glendhu (Fig 4). However, these patterns were not always

consistent between sites. For example, Chlorobi declined with depth in Eweburn 1 but

increased with depth in Dunearn, Bayswater and Eweburn 2 (Fig 4). Within the ombrotrophic

bogs, the relative abundance of Veruccomicrobia increased with declining wetland condition

score (Fig 4).

Bray-Curtis dissimilarity PCA axis 1 scores for Archaea and Bacteria combined at all sites

were similar at the surface but diverged with depth (Fig 5). The surface samples separated

along axes 2 and 3 (Fig 5).

Predicted metabolic pathways

The PICRUSt2 analysis predicted the presence of 6,760 functional gene orthologs, 2,115

enzymes and 410 metabolic pathways across all wetland samples.

In the NMDS the hulls of the three acidic ombrotrophic bogs overlapped, while other locali-

ties formed distinct hulls (Fig 6A). However, there was also a pattern related to depth, where

surface samples from each locality plotted relatively close together, and deeper samples became

more dispersed (Fig 6B).

Fig 5. Bray-Curtis PCA (total prokaryote community composition) scores plotted against depth. a) axis 1 (15.14% variation explained); b) axis 2 (8.77% variation

explained); c) axis 3 (6.48% variation explained).

https://doi.org/10.1371/journal.pone.0243363.g005
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Samples were assigned to seven clusters based on the composition of predicted metabolic

pathways (S3 Fig). As seen in the NMDS, surface samples from all wetlands fell into the same

cluster (A), with differentiation of wetland sites occurring mostly at depths below ~50 cm (Fig

6C). By 100 cm depth most wetland sites had segregated into distinct clusters as follows: Clus-

ter B, Awarua and Bayswater; Cluster C, Dunearn; Cluster D, Eweburn 1 and Eweburn 2; Clus-

ter E and G, Glendhu; Cluster F, Hinekatorangi (Fig 6C). The metabolic pathways with the

highest indicator value scores in each cluster are shown in S2 Table.

Effects of anthropogenic modification on function

The relative abundance of selected metabolic pathways, including those contributing to key

prokaryote-driven processes in wetlands, showed varying degrees of separation along the res-

tiad ombrotrophic bog condition gradient. There were no clear patterns associated with wet-

land condition for denitrification or sulfate reduction pathways (Fig 7). For the aerobic

respiration pathway, the three bogs had similar relative abundance values in the upper 75 cm,

but below this depth the sites separated, with higher values seen in the lower condition sites

(Fig 7). This pattern of site separation, either above or below ~75 cm depth, was also evident

for microbial-driven processes involved in the carbon cycle. Specifically, the relative abun-

dance of pathways contributing to carbon fixation, fermentation and methanogenesis

decreased below 75 cm depth in the more degraded sites, while oxidation of methanol to CO2

increased in the upper 75 cm in the more degraded sites (Fig 8).

Discussion

Richness, diversity and community composition

Our results support a quadratic relationship between pH and prokaryote richness and diversity

in New Zealand wetlands (Fig 1). Eweburn 2 and the surface peats of Glendhu and Hinekator-

angihad the greatest mean richness and diversity, and had pH values ranging from 6.39–6.82.

The other samples had relatively low pH (<4.5) (Awarua, Bayswater, Dunearn and Eweburn

1) or high pH (>7.39 in silts at Hinekatorangi and Glendhu) (Fig 1). The shape of the observed

relationship closely matches that reported by Lauber et al. [40], who found that the highest

bacterial diversity occurs in soils of pH around 6, with much lower values in soils with pH of

<4.5 or >8.

Compositional patterns across New Zealand wetland sites were consistent with existing

knowledge about key drivers of prokaryote community composition. For example, the increas-

ing ratios of archaea:bacteria with depth are consistent with the findings of previous studies

that have looked at a range of different soil types, including peats [41–43]. Soil pH plays a

major role in structuring both archaeal [44] and bacterial communities [40]. Within our wet-

lands this is evident in the separation of sites in the PCA based on prokaryote communities.

The pattern of separation along all three main axes formed an approximate pH gradient (from

the acidic ombrotrophic bog peats through to the neutral to alkaline Hinekatorangi and

Glendhu silts), with low pH sites having more positive scores (Fig 5). Patterns related to pH

were also evident within both archaeal (Fig 3) and bacterial (Fig 4) communities. The high

proportion of Acidobacteria in low pH wetlands (pH< 5) and increase in Firmicutes and Bac-

teroidetes with increasing pH were all consistent with the pH-driven patterns in soil bacterial

community composition reported by Lauber et al. [40].

Fig 6. NMDS ordination of samples based on metabolic pathway composition. Coloured by a) locality and b) depth.

c) Clusters assigned using hierarchical cluster analysis (cut at k = 7) plotted against depth.

https://doi.org/10.1371/journal.pone.0243363.g006
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Interestingly, the bacterial community depth profiles of the acidic ombrotrophic bogs are

consistent with those recorded from a similar site in southwestern Finland, where bacterial

communities comprised mostly Acidobacteria, Proteobacteria, Veruccomicrobia and Chloro-

flexi [21]. This similarity demonstrates the remarkable consistency of bacterial community

composition at high taxonomic ranks between wetlands of similar environmental conditions,

even across large geographic distances [12].

Depth also affected prokaryote community composition, with separation of sites along

PCA axis 1 occurring at between ~50-75cm depth (Fig 5). However, this was not especially evi-

dent in the plots of archaeal classes (Fig 3) or bacterial phyla (Fig 4), and so may reflect turn-

over at lower taxonomic ranks. This depth threshold may relate to local depths of the

boundary between the upper aerobic layer (i.e. acrotelm) and the water-saturated anaerobic

layer (i.e. catotelm). Although highly variable, the threshold is typically around 50cm deep in

bogs [45], but can extend down to at least 70cm in New Zealand bogs with high seasonal water

table variations [46].

The detection of DNA from dead cells can be a potential concern when characterising living

microbial communities [47]. Although the contribution of legacy DNA to the environmental

DNA (eDNA) signal retrieved from wetlands remains to be quantified it is likely to be mini-

mal. DNA is unstable in acidic conditions such as peat bogs and degrades relatively rapidly in

such environments [48, 49], and there has been limited success in retrieving old DNA from

wetlands [50].

Predicted metabolic pathways

Our results indicate an effect of both site and depth on the composition of predicted metabolic

pathways (Fig 6). The top indicator pathways for each cluster can provide some insights into

what might be driving this structuring (S2 Table). The ten best indicators for cluster A (which

included surface samples from all wetlands) were all pathways that occur in bacteria, and also

included the aerobic pathway (toluene degradation IV (aerobic) (via catechol)). This reflects

the dominance of bacteria in the upper peat (Fig 2) where water-table fluctuations expose this

layer to aerobic conditions. The deeper layers (>75cm) in Awarua and Bayswater both fall into

cluster B. The two best indicator pathways for this cluster are found in methanogenic bacteria

(Methylobacteriaceae) and archaea (Methanobacteria, Methanococci, Methanomicrobia) (S2

Table). By contrast, Dunearn flips between clusters B and C, the latter clusterbeing dominated

by pathways found in bacteria including a couple that are specifically aerobic (purine nucleo-

tides degradation II and heme b biosynthesis I). This pattern among the three ombrotrophic

bogs appears to suggest higher rates of methanogenesis in the deeper layers at Awarua and

Bayswater (Fig 8C), and higher rates of aerobic respiration in deeper layers of Dunearn, a rela-

tively degraded site (Fig 7A). Deeper samples in Glendhu flip between clusters E and G, both

of which include archaeal-specific pathways within the top ten indicators for each cluster (S2

Table). This likely reflects the higher archaea:bacteria ratios of these sediments (Fig 2).

Effects of anthropogenic modification on wetland function

With data from just three ombrotrophic bogs it is not possible to make any definitive conclu-

sions as to whether anthropogenic modification has consistent effects on microbial function

Fig 7. Differences in the relative abundance of metabolic pathways in three New Zealand ombrotrophic bogs

along a wetland condition gradient. a) aerobic respiration; b) denitrification; c) sulfate reduction. Red, Dunearn

(most modified condition); Orange, Bayswater (moderate condition); Green, Awarua (most intact condition).

Horizontal line marks 75 cm depth.

https://doi.org/10.1371/journal.pone.0243363.g007
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within wetlands. However, we observed that thehe relative abundance of predicted metabolic

pathways contributing to several key microbial processes exhibited patterns of differences

between ombrotrophic bogs that were consistent with the condition gradient. We interpret

these as all being indicators of wetland drainage, and suggest that testing the consistency of

these patterns with data from additional sites would be a worthy avenue for future investiga-

tion. For example, the greater relative abundance of the aerobic respiration pathway below

~75cm depth in lower condition sites (Fig 7A) is consistent with deeper aerobic limits in

drained wetlands [17]. Moreover, patterns observed in the relative abundance of metabolic

pathways relating to the carbon cycle (Fig 8) also reflect the expected impacts of drainage on

wetland soils. For example, the decrease in relative abundance of methanogenesis (Fig 8C) is

consistent with reductions in methane (CH4) emissions from drained wetlands [51], while an

increase in the oxidation of methanol to CO2 (Fig 8D) is consistent with drainage leading to

increased production of CO2 via increased aeration of peats causing decomposition of organic

matter [52]. The differences in the relative abundance of these metabolic pathways occurred

down to the base of the cores (138cm in Awarua and 200cm in Bayswater and Dunearn) (Figs

7 and 8), indicating that the impacts of drainage on microbial processes may extend well below

water table and deep into the water-saturated anaerobic layers. This is of concern for drying

peatlands, and demonstrates that changes within microbial communities are of primary

importance to CO2 and CH4 exchange.

We suggest that the observed decrease in archaea:bacteria ratios at depth in ombrotrophic

bogs relative to declining wetland condition (Fig 2) may partly play a role in driving some of

these observed patterns in wetland function. For example, the reduced relative abundance of

methanogenic pathways in degraded bogs may reflect the fact that methanogenesis in wetlands

occurs in anaerobic conditions and is driven by methanogenic archaea [53]. Conversely, an

increase in methane oxidation was observed in more degraded bogs, a process that in aerobic

conditions is driven by nitrifying and methane oxidising bacteria [53].

eDNA as a tool for wetland monitoring

Effects of anthropogenic modification and protection on wetland prokaryote communities

have previously been reported by studies using environmental DNA (eDNA) (e.g. [15, 54]).

Our results further demonstrate that it is possible to obtain indicators of wetland condition

and function from 16S rRNA metabarcoding data, and support the idea that eDNA sequencing

could be developed as a useful tool for assessing the degree of wetland degradation due to

anthropogenic modifications and global climate change, or monitoring wetland restoration.

Importantly, our results indicate that some effects of anthropogenic modification of wetlands,

especially drainage, may be expressed at depth rather than being confined to the surface of the

wetland. Sampling regimes that are limited to surface soils may therefore miss some of these

critical changes occurring in wetlands as a result of anthropogenic impact. The fact that, with

the appropriate equipment, soil cores can readily be obtained from wetlands and eDNA can be

obtained from these cores, provides an approach for assessing these changes in microbial com-

munities and processes occurring at depth.

Although the results of our study support the idea that 16S rRNA metabarcoding can pro-

vide a useful tool for wetland assessment and monitoring, they have also opened up several

Fig 8. Differences in the relative abundance of metabolic pathways related to the carbon cycle in three New

Zealand ombrotrophic bogs along a wetland condition gradient. a) carbon fixation; b) fermentation; c)

methanogenesis; d) methanol to CO2. Red, Dunearn (most modified condition); Orange, Bayswater (moderate

condition); Green, Awarua (most intact condition). Horizontal line marks 75 cm depth.

https://doi.org/10.1371/journal.pone.0243363.g008
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avenues for further study that will help improve the potential of this tool. These aspects

include: 1) identification of sensitive indicators (whether these are presence of certain prokary-

ote taxa, shifts in prokaryote community composition or changes in metabolic pathways) for

discriminating different types of anthropogenic disturbance (e.g. drainage, eutrophication); 2)

demonstrating consistency of indicator responses across different wetlands and wetland types;

and 3) using temporal sampling to show whether reverse trends in indicators of anthropogenic

disturbance are detectable in wetlands undergoing restoration.
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5. Žalakevičius M and Švažas S. Global climate change and its impact on wetlands and waterbird popula-

tions. Acta Zoologica Lituanica 2005; 15: 211–271.

6. Caplan JS, Hager RN, Megonigal JP, Mozdzer TJ. Global change accelerates carbon assimilation by a

wetland ecosystem engineer. Environ Res Lett. 2015; 10: 115006.

7. Zhang Z, Zimmerman NE, Stenke A, Li X, Hodson EL, Zhu G, et al. Emerging role of wetland methane

emissions in driving 21st century climate change. Proc Natl Acad Sci USA 2017; 114: 9647–9652.

https://doi.org/10.1073/pnas.1618765114 PMID: 28827347

8. Comyn-Platt E, Haynman G, Huntingford C, Chadburn SE, Burke EJ, Harper AB, et al. Carbon budgets

for 1.5 and 2˚C targets lowered by natural wetland and permafrost feedbacks. Nature Geosci. 2018; 11:

568–573.

9. Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, et al. Current and future CO2 emis-
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