Skip to main content
. 2021 Jan 6;7(2):eabd6705. doi: 10.1126/sciadv.abd6705

Fig. 2. Optical torque acting on rotating particles.

Fig. 2

(A to C) Optical response of rotating particles of different geometries, namely, nanorod (A), nanocross (B), and nanodisk (C), to RCP (red) and LCP (blue) incident light. We plot the imaginary part of the polarizability, which is related to the extinction cross section according to σext = (4πω/c) Im {α}. A solid particle such as the nanodisk (C) exhibits different circular dichroism relative to particles with confined electron motion, such as the nanorod (A) and nanocross (B). (D to F) Time-averaged torque Mdr acting on the rotating particles considered in (A) to (C) under linearly polarized illumination. Insets: Mdr versus particle rotating frequency Ω for two typical light frequencies in the cooling and heating regimes. In all cases, damping rates are assumed to be γ = 0.2ω0 and τ−1 = 0.02ω0. Apart from the insets, particles are rotating with angular velocity Ω = 0.1ω0. All frequencies are normalized to the particle resonance frequency ω0, the polarizability is normalized to α0=Q2/mω02, and the torque is normalized to M0 = α0E±2/2. We assume a large resonance linewidth for illustration.