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P H Y S I C S

Rotational Doppler cooling and heating
Deng Pan1*, Hongxing Xu2, F. Javier García de Abajo1,3*

Doppler cooling is a widely used technique to laser cool atoms, molecules, and nanoparticles by exploiting the 
Doppler shift associated with translational motion. The rotational Doppler effect arising from rotational coordinate 
transformation should similarly enable optical manipulation of the rotational motion of nanosystems. Here, we 
show that rotational Doppler cooling and heating (RDC and RDH) effects embody rich and unexplored physics, 
including an unexpected strong dependence on particle morphology. For geometrically constrained particles, 
cooling and heating are observed at red- or blue-detuned laser frequencies relative to particle resonances. In contrast, 
for nanosystems that can be modeled as solid particles, RDH appears close to resonant illumination, while detuned 
frequencies produce cooling of rotation. We further predict that RDH can lead to optomechanical spontaneous 
chiral symmetry breaking, where an achiral particle under linearly polarized illumination starts spontaneously 
rotating. Our results open up new exciting possibilities to control the rotational motion of nanosystems.

INTRODUCTION
The advent of lasers gave birth to various techniques for trapping 
and manipulating atoms, small particles, and macroscopic objects 
using optical forces (1–5). An important class of optical manipula-
tion methods, such as Doppler cooling, relies on control over the 
dynamics of a target by exploiting the dependence of optical pressure 
on its velocity. As a result of the Doppler shift in the laser frequency 
associated with translational motion, changes in the target velocity 
lead to increases or reductions in the optical pressure, depending on 
the frequency detuning of the laser relative to the intrinsic reso-
nances of the target. In consequence, in a particle subject to illumi-
nation by two coherent and monochromatic counter-propagating 
light beams, red- and blue-detuned laser frequencies can decelerate 
and accelerate the particle motion, respectively, thus cooling and 
heating the translational temperature of an ensemble of particles. 
The theoretical description of Doppler cooling and heating is sim-
ply a textbook result derived from classical theory. In experiments, 
Doppler cooling was first achieved for atoms (6, 7) and recently 
for molecules (8–12), and it was also generalized to cool the me-
chanical motion of a macroscopic cavity (13, 14). Compared with 
cooling, laser heating is less explored, although it can give rise to 
exciting effects such as mechanical instabilities of illuminated op-
tical cavities (14).

Optical forces can also affect the rotational motion of nano-
systems with rotational degrees of freedom, such as molecules (15–19) 
and nanoparticles (20–25). More precisely, circularly polarized light 
with intrinsic angular momentum can exert a torque on the particles, 
which is the analog of optical pressure resulting from linear mo-
mentum transfer. Compared with the optical manipulation of trans-
lational motion reviewed above, it is striking to see that the very 
fundamental question regarding how rotational motion affects the 
torque exerted by light remains unanswered. Similar to the trans-
lational counterpart, such an important piece of knowledge can be 
used to generalize the physics of Doppler cooling and heating to the 

rotational degrees of freedom. We note that, in contrast to the rela-
tively simple instances of translationally moving inertial frames, 
and although rotational cooling has been achieved using specific 
molecules (26–28) and molecular ions (29–31), a quantum-mechanical 
theoretical explanation of rotational cooling involves a complex 
geometry-dependent coupling between optical excitations, radia-
tion, internal rotations, and vibrational states in noninertial rotating 
frames (32–34); understandably, the general physics underlying 
rotational cooling is not yet well understood. It is thus crucial to 
develop a compact classical model to unveil the general physics 
underlying the rotational cooling effect without resorting to the 
internal rotational and vibrational quantum states, similar to the 
theoretical description of its translational counterpart. For a molec-
ular ensemble (15–19) that is not tightly confined close to the rota-
tional quantum ground state, the statistical average of the rotation 
dynamics can be approximately characterized by a continuous ro-
tation velocity (18), using the quantum-classical correspondence. 
Such a classical model is rigorous and illuminating for studying novel 
optical manipulations of nano- or microparticles in the rapidly 
evolving field of nanophotonics (21–25, 35–38).

Here, we generalize the theory of Doppler cooling and heating, 
usually discussed for translational motion as schematically illustrat-
ed in Fig. 1 (A and B), to deal with rotational degrees of freedom 
(see Fig. 1C), namely, rotational Doppler cooling and heating (RDC 
and RDH). We present a theory that is valid for both small particles 
and molecules rotating with classical velocities, which allows us to 
predict a marked dependence of rotational laser cooling and heat-
ing on the geometry of those particles or molecules. Specifically, for 
nanosystems that can be modeled as round solid particles, RDC and 
RDH appear in different frequency regimes compared with its 
translational Doppler counterpart. More notably, because of RDH, 
an achiral particle under linearly polarized illumination starts rotat-
ing spontaneously, manifesting a spontaneous chiral symmetry 
breaking (SCSB) effect. We also explore the dynamics of particles 
under linearly polarized illumination and find a series of stable and 
metastable configurations in which the particles maintain steady 
rotation. Our results are of fundamental importance for under-
standing the optical properties of rotating nanosystems, paving the 
way for the development of new techniques to optically manipulate 
rotations of nanosystems.
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RESULTS
Comparing translational and rotational scenarios
In Fig. 1A, we show a particle moving with velocity v and illuminated 
by two counter-propagating light waves of equal intensity and fre-
quency  (Fig. 1A, top). In the frame moving with the particle 
(Fig. 1A, bottom), the two light waves propagating parallel or anti-
parallel with v are red- or blue-Doppler–shifted, respectively, to 
(1 ± v/c). Assuming a red-detuned laser frequency  relative to a 
dominant intrinsic particle resonance 0 (Fig. 1B), compared with 
the red-shifted light wave, the blue-shifted antiparallel wave is closer 
to 0 and thus undergoes stronger scattering, resulting in decelera-
tion and cooling of the particle. Similarly, heating can be achieved 
through blue-detuned illumination.

To generalize this scheme to rotational motion, we consider a 
particle trapped by a linearly polarized laser beam (Fig. 1C, top). 
Right and left circularly polarized (RCP and LCP) components of 
the incident light have then equal intensity, thus resembling the two 
counter-propagating waves in Fig. 1A. Then, they experience differ-
ent rotational Doppler shifts to ∓ =  ∓  (hereafter, upper and 
lower signs denote quantities for RCP and LCP, respectively), when 
transforming the system to the frame rotating with the particle 

(Fig. 1C, bottom), namely, a rotational Doppler effect (15, 39). Sim-
ilar to translational dynamics, the direction of the torque acting on 
the particle is then determined by the relative magnitude of the 
torque exerted by RCP and LCP components. One might naïvely 
conclude that RDC and RDH should also appear at red- and 
blue-detuned . However, as we show below, this conclusion is 
only valid for particles having certain geometries. Rotational trans-
formations are noninertial, so that the optical response of the rotat-
ing particle is more complicated and thus displays richer physics. 
The translational trapping of particles at the antinodes of standing 
waves due to gradient forces cannot be extrapolated to the rotation-
al scenario, which, as we show below, can lead to instabilities of the 
particle at rest ( = 0) for laser frequencies in the heating regime.

Circular polarizabilities of rotating nanosystems
A detailed analysis of the torque exerted by linearly polarized light 
on rotating small particles or molecules with different geometries 
requires the knowledge of their optical polarizabilities. Quantum 
theoretical treatments of this problem commonly assume a rigid 
body to discuss rotation dynamics (33). However, the coupling be-
tween optical excitations and vibrations in molecules cannot be 
neglected, and importantly, this coupling has a strong dependence 
on geometry (34), which further complicates a general quantum 
description. Besides, a naïve application of first-order quantum 
perturbation theory fails to comply with the optical theorem (40) 
and therefore neglects radiative corrections that are relevant to the 
optical torque. To avoid this complication, here we adopt a classical 
model that effectively captures all relevant physical processes and 
retains a tutorial character to explain the dependence of RDC and 
RDH on particle geometry. Our model describes the dipolar optical 
mode of the particle as a harmonically oscillating effective charge 
(mass m, charge Q) driven by the electric field of light. Such classical 
description is capable of adequately addressing transition dipole 
moments, such as those of molecules, as well as resonant modes in 
particles. Reassuringly, this model satisfies the optical theorem (see 
Supplementary text) and, therefore, it correctly accounts for scat-
tering processes. In terms of its radial position vector r, the classical 
equation of motion of the effective charge becomes

	​​ r ¨ ​  =  − ​​0​ 2​ r​ ̂  r ​ − (​r ̇ ​ − r​̂  φ​ ) + ​ r ⃛ ​ + ​ Q ─ m ​ E + ​ ​F​​ react​ ─ m  ​​	 (1)

where 0 is an intrinsic oscillator resonance frequency, we incorporate 
an internal dissipation force ​​F​​ dis​  =  − m(​r ̇ ​ − r​̂  φ​)​ proportional to 
a phenomenological damping rate  times the center-of-mass velocity, 
the Abraham-Lorentz force ​m​ r ⃛ ​​ with  = 2Q2/3mc3 introduces cor-
rections due to radiation reaction, and Freact is the force imposed by 
the boundary defined by the particle geometry. The radial component 
of Fdis describes the coupling to vibrational phonons, while Freact 
and the azimuthal components of Fdis account for the coupling be-
tween electron motion and particle rotations.

In a thin nanorod (Fig. 2A), the oscillating dipole p produced by 
the bounded charges is oriented along the rod axis, which rotates 
with the particle. Likewise, in a nanocross (Fig. 2B), two dipoles 
(one per branch) are induced, also rotating with the particle. In con-
trast, for isotropic nanoparticles containing freely moving elec-
trons, such as the nanodisk shown in Fig. 2C, we need to consider 
the coupling between the two orthogonal charge oscillators through 
the Coriolis force. At this point, it is useful to consider the electric 
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Fig. 1. Comparison between translational and rotational Doppler cooling and 
heating. (A and B) Illustration of translational Doppler cooling. In the laboratory 
frame [(A), top], a particle is moving with velocity v in the presence of two counter-
propagating light waves (wavy curves) of frequency . In the frame moving with the 
particle [(A), bottom], the extinction cross section (ext) of these two waves [see (B)] 
is affected by Doppler shifts to (1 ± v/c), leading to an optical force that pushes 
the particle to the left, thus causing particle deceleration in the laboratory frame. 
(C) We consider a particle rotating with angular velocity  and illuminated by linearly 
polarized light of frequency  (top). The incident light can be decomposed into 
right circularly polarized (RCP) and left circularly polarized (LCP) components, 
which are Doppler-shifted to  ∓  in the frame rotating with the particle (bottom). 
Black circular arrows denote the directions of the electric field rotation on the 
plane perpendicular to the wave vector.
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field ​​E​ ±​​  =  (​   x ​ ± i​   y ​ ) ​E​ ±​​ ​e​​ −it​ / ​√ 
_

 2 ​​ of RCP (+) and LCP (−) light and 
relate the induced elastic dipole moment ​​p​±​ ​  = ​ ​ ±​​ ​E​ ±​​​ (oscillating at 
frequency  in the laboratory frame) to the circular polarizability of 
the particle ±. In this work, the particle rotation axis is assumed to 
be along the z direction and only the electric field component in the 
x-y plane is relevant to the physics, so we define the chirality of the 
light field (i.e., LCP and RCP) according to the rotation direction of 
Epm (see Fig. 1C), regardless of the direction of the photon wave vector. 
We note that ​​p​±​ ​​ is formed by two orthogonal degenerate compo-
nents. Applying Eq. 1 to these three representative types of particles 
(see Methods, Supplementary text, and fig. S1), we find

	​​ ​ ±​​( ) = ​Q​​ 2​ / mA​	 (2)

with

	​​
​A​ rod​​  =  2 [ ​​0​ 2​ − ​​​ 2​ − ​​∓​ 2 ​ − i ​​ ∓​​( + ​​∓​ 2 ​ + 3 ​​​ 2​ )]

​    ​A​ cross​​  = ​ ​0​ 2​ − ​​​ 2​ − ​​∓​ 2 ​ − i(​​ ∓​​ + ​​​ 3​)​   

​A​ disk​​  = ​ ​0​ 2​ − ​​​ 2​ − ​​​ 2​ − i(​​ ∓​​ + ​​​ 3​)

  ​​	

where Q denotes the total effective charge in the nanorod, while the 
cross and disk have a charge of Q oscillating along each of the two 
orthogonal directions. Such theory can be rigorous in classical sce-
narios, such as nanoparticles and molecules consisting of larger 
numbers of atoms, with rotation energy not tightly confined close 
to the rotational ground state.

This classical model treats the rotation of particles as a continuum 
of states characterized by a rotation frequency , which we remark 
can always be considered as a rigorous approach for nanoparticles and 
molecules consisting of a large number of atoms. For an ensemble of 
small molecules containing only a few atoms (e.g., diatomic molecules) 
and rotating with high angular velocity, according to the quantum-
classical correspondence guaranteed by the Ehrenfest theorem, the 
statistical average of the rotational dynamics can then also be char-
acterized by the rotation frequency , so the molecular dynamics is 
adequately described through our classical model. For example, the 
rotational Raman scattering observed in molecules (15, 39) with a 
high rotation frequency is captured by our model without resorting 
to quantized rotational modes (see results below). When small 
molecules are gradually cooled down to extremely low tempera-
tures and the rotation energy is lowered near the quantum rotational 
ground state, the quantization of the rotational states becomes 
increasingly more important. However, since the general physical 
description should be consistent in both classical and quantum 
scenarios, as already demonstrated in the translational Doppler 
cooling, our model and the results obtained from it below still offer 
qualitative understanding to estimate the behavior of electron-phonon/
rotations interaction in the quantum limit. As reviewed in Intro-
duction, the complicated morphology-dependent coupling between 
electrons and phonon/rotations in molecules conceals the essential 
physics underlying rotational cooling. As we show below, our simple 
model is capable of intuitively capturing the geometry dependence 
of the coupling between material electrons and rotational modes.
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Fig. 2. Optical torque acting on rotating particles. (A to C) Optical response of rotating particles of different geometries, namely, nanorod (A), nanocross (B), and nanodisk 
(C), to RCP (red) and LCP (blue) incident light. We plot the imaginary part of the polarizability, which is related to the extinction cross section according to ext = (4/c) Im {}. 
A solid particle such as the nanodisk (C) exhibits different circular dichroism relative to particles with confined electron motion, such as the nanorod (A) and nanocross 
(B). (D to F) Time-averaged torque Mdr acting on the rotating particles considered in (A) to (C) under linearly polarized illumination. Insets: Mdr versus particle rotating 
frequency  for two typical light frequencies in the cooling and heating regimes. In all cases, damping rates are assumed to be  = 0.20 and −1 = 0.020. Apart from the insets, 
particles are rotating with angular velocity  = 0.10. All frequencies are normalized to the particle resonance frequency 0, the polarizability is normalized to ​​​ 0​​  = ​ Q​​ 2​ / m ​​0​ 2​​, 
and the torque is normalized to M0 = 0∣E±∣2/2. We assume a large resonance linewidth for illustration.
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Optical torque exerted by linearly polarized light
The polarizabilities given by Eq. 2 can fully describe the optical response 
of small rotating particles and the optical torque produced under 
external illumination. According to the optical theorem, the extinc-
tion cross sections of these particles are given by ​​​ext​ 

± ​   =  4kIm { ​​ ±​​}​, 
where k = /c. However, elastic scattering processes, as described 
by the cross section ​​​​ ± ​  =  8 ​k​​ 4​ ​∣​​ ±​​∣​​ 2​ / 3​, maintain the angular 
momentum of light and thus do not lead to a torque on the particle. 
In contrast, each absorbed circularly polarized photon directly trans-
fers angular momentum ħ to the particle, so we are interested in the 
absorption cross section ​​​abs​ 

± ​   = ​ ​ext​ 
± ​  − ​​​ ± ​ − ​​∓2​ ± ​​ . Here, ​​​∓2​ ± ​​  is 

the cross section of inelastic scattering at output frequency  ∓ 2 
[the so-called rotational Doppler scattering or rotational Raman 
scattering (15, 39); see Supplementary text], which is only present in ro-
tating anisotropic particles and comes accompanied by an exchange 
of angular momentum 2ħ and energy 2ħ for each scattered pho-
ton. For the nanorod, we find ​​​∓2​ ± ​   =  8 ​( ∓ 2)​​ 4​ ​∣​​ ±​​∣​​ 2​ / 3 ​c​​ 4​​, 
while this cross section vanishes for the cross and the disk. Last, the 
total torque exerted on the particle by RCP and LCP components 
reduces to

	​​ M​ ±​​  =  ± (2 ​​∓2​ ±  ​ + ​​abs​ 
±  ​ ) I / ​	 (3)

where I = c∣E±∣2/8 is the incident light intensity, and  = ∓/( ∓ 2) 
accounts for the energy shifts of inelastically scattered photons.

Figure 2 (A to C) shows the imaginary part of the circular polar-
izabilities Im{±} for the three types of rotating particles described 
by Eq. 2, whose internal losses dominate over radiative losses ( ≫ 
−1). We observe a strong circular dichroism (CD) in the rotating 
thin nanorod and nanocross, characterized by a splitting of 2 in 
the resonance peaks. Similar dichroism can also be observed in 
particles without internal dissipation (i.e., for  = 0, see fig. S2). 
In contrast, the polarizability of the rotating disk with freely moving 
electrons inside it does not exhibit any resonance splitting. However, 
the factor Adisk in Eq. 2 predicts a difference in the decay rate for 
different circular polarizations, which leads to a weak CD, manifested 
by the discrepancy in the linewidth and magnitude of the resonance 
peaks in Fig. 2C.

Provided with the CD response of these rotating particles, we 
can readily conclude that linearly polarized illumination should ex-
ert optical torques on the particles because this type of light can be 
decomposed into RCP and LCP components with equal amplitudes, 
which contribute with opposite and imbalanced torques. Figure 2 
(D to F) shows rigorous results for the total optical torque experi-
enced by the particles described in Fig. 2 (A to C) under linearly 
polarized light, calculated from Eq. 3 according to Mdr = M+ + M−. 
For particles with  ≫ −1, such as those considered in Fig. 2, Eq. 3 
can be approximated as M± ≈ 2 Im {±}∣E±∣2, so that the torques in 
Fig. 2 (D to F) are proportional to Im{±}, as shown in Fig. 2 (A to C). 
For example, for rotating nanorods and nanocrosses under red-
detuned laser illumination ( < 0; Fig. 2, A and B), absorption of 
the LCP component should be strong compared with that of the 
RCP component (Im{−} > Im {+}), so that the total torque exerted 
by linearly polarized light should decelerate the particle rotation, 
leading to an RDC effect (blue shaded area in Fig. 2, D and E; see 
Supplementary text for discussions on the RDC limit). Similarly, 
rotational acceleration (red shaded area in Fig. 2, D and E) is ob-
served for blue-detuned illumination ( > 0). The RDC and RDH 
effects are also confirmed by the dependence of Mdr on  (insets in 

Fig. 2, D and E), which is similar to the velocity dependence of op-
tical pressure in optical molasses. The conditions for RDC and 
RDH in rotating nanorods and nanodisks are also similar to those 
for their translational counterparts. This similarity originates in the 
fact that the polarizability observed in the rotating frame is equal to 
that of the motionless particle, +(+) = −(−) ≈ (,  = 0), so 
that the discussions for translational cooling based on Fig. 1B are 
equivalently applied to rotating particles with these types of geome-
tries. However, for a rotating solid particle, such as the disk shown 
in Fig. 2F, because of its different CD shown in Fig. 2C, an RDH 
effect is observed for a nearly resonant laser frequency , while 
RDC is found at off-resonance laser frequencies in both blue- and 
red-detuned regimes. We also note that the dissipationless limit 
( = 0), in which the torque acting on isotropic particles disappears 
according to Eq. 3, is generally unphysical because dissipation 
channels are generally present in molecules and nanoparticles that 
can quench optical excitations. Even in the limit  = 0 (rigid mole-
cules), RDC and RDH effects can be observed in anisotropic parti-
cles because of the torque arising in rotational Raman scattering 
(see Eq. 3 and fig. S2).

Rotational stability and dynamics
Besides the optical torque discussed in Fig. 2, light absorption can 
also increase the temperature of a particle or the vibration energy of 
a molecule, and the subsequent thermal emission can produce a 
frictional torque on the particle if it is rotating (41–43). This thermal 
frictional torque arises because the two circularly polarized dipoles 
p± have different thermal populations and, therefore, there is an 
imbalance in the angular momentum released through thermal 
emission, leading to a frictional torque (see Methods)

	​​ M​ fr​​  =  − cħ​ Σ​ 
=±​​​∫0​ 

∞
 ​​d ​​​ 0​( ) ​σ​abs​ 

  ​ ​N​ ​​()​	 (4)

where N±() = n1(∓) − n0() is the thermal imbalance of particle 
modes with vacuum, and 0() = 2/32c3 is the projected local den-
sity of optical states in free space. For rotating particles, when the 
light frequency falls into the cooling regime, both thermal friction 
and optical cooling lead to slowing down of rotation; consequently, 
provided the light frequency is in the heating regime, the driving 
torque Mdr exerted by the external illumination needs to exceed the 
thermal friction Mfr to produce acceleration.

An interesting phenomenon can be intuitively foreseen for a 
particle at rest under linearly polarized illumination when the light 
frequency is in the heating regime: If the condition ∂Mdr > ∂Mfr 
is satisfied at  = 0, a small particle rotation induced by any fluctu-
ation can be amplified by RDH. This effect implies an instability of 
the particle at rest, and considering the chiral symmetry of the sys-
tem Hamiltonian, such instability manifests as an SCSB process. We 
note that the SCSB term relates to the dynamics of a single particle, 
while for an ensemble, the statistical average cancels the macro-
scopic chirality. To further analyze the particle stability at  = 0, we 
need to find the steady state of the particle temperature under light 
irradiation, which is reached when the power absorbed from the laser, 
​​P​ abs​​  = ​ ​ ±​​ ​I​ ±​​ ​​abs​ 

± ​​ , is exactly compensated by the thermal-emission 
power. At arbitrary , the latter is given by (42) (see Methods)

	​​ P​ ems​​  =  cħ​ Σ​ 
=±​​​∫0​ 

∞
 ​​d ​ ​​ 0​( ) ​σ​abs​ 

  ​ ​N​ ​​()​	 (5)
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The stability of the particle can be investigated by taking the fol-
lowing aspects into account: (i) given the environment temperature 
T0, under stationary conditions, the laser intensity is uniquely de-
termined by the particle temperature I(T1); (ii) the driving torque 
∂Mdr is then uniquely related to T1 through I(T1); (iii) ∂Mfr de-
pends on T0 and T1, and its magnitude compared with ∂Mdr determines 
the stability. Following these considerations, at a given incident 
frequency , the rotational stability of the particle can be mapped 
into a T0 versus T1 plot.

In Fig. 3A, we choose the nanocross of Fig. 2B at rest ( = 0) as 
an example to illustrate the stability in the (T0, T1) plane, and in fact, 
this diagram of stability also represents the nanorod in Fig. 2A (see 
discussion on the nanodisk in Fig. 2C and fig. S3). This plot consti-
tutes a universal phase diagram, considering that phase transitions 
are featured by spontaneous symmetry breaking—in the normal phase, 
the motionless state is stable; when increasing the intensity of illumi-
nation I to heat the particle above the critical temperature dictated 
by the phase boundary in Fig. 3A (black curves), the particle starts 
rotating spontaneously and the system enters into an SCSB phase.

To clearly reveal the features of the SCSB phase and find the final 
stable configuration, we simulate the evolution of  and T1 as 
governed by the dynamical equations of motion ​​ ̇ ​  = ​ M​ tot​​ / J​ and 

​​​T ̇ ​​ 1​​  =  (​P​ abs​​ − ​P​ ems​​ − ​M​ tot​​  ) / C​, where Mtot = Mdr − Mfr, and J and C 
are the moment of inertia and thermal capacity of the particle, re-
spectively. The evolution of the system for a vacuum temperature 
T0 = 0.40, where 0 = ħω0/kB, is shown in Fig. 3 (B and C), taking 
the laser intensities to be either I(0.410) or I(0.50), corresponding 
to points I and II in Fig. 3A, respectively. Here, we discuss the general 
behavior of rotational heating based on normalized quantities, so 
we can easily obtain absolute values for specific particles based on 
Fig. 3 (an example is shown in fig. S4).

For an incident frequency  = 1.10, the two points in Fig. 3A 
fall into normal and SCSB phases, respectively (see boundary shown as 
a black solid curve in Fig. 3A). When the system is in the normal phase, 
as shown in Fig. 3B, regardless of the initial conditions for  and 
T1, the system evolves toward a trivial stable equilibrium point 
(black dot) at  = 0 and T1 = 0.410, since the laser intensity used is 
I(0.410). By increasing the laser intensity to I(0.50), the equilib-
rium point located at  = 0 is shifted to higher temperature at T1 = 
0.50 (gray dot). As expected, this equilibrium point becomes 
unstable, and the particle then starts rotating toward a random 
direction, which eventually reaches one of the two new stable equi-
librium states (black dots, Fig. 3C). The characteristics of the nor-
mal and SCSB phases revealed by these dynamical evolutions are 
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Fig. 3. Rotational dynamics of particles under linearly polarized illumination. (A) Stability of the nanocross considered in Fig. 2 (B and E) at rest under linearly polarized 
illumination of frequency  = 1.10 (solid curve) and 1.30 (dashed curve), as a function of vacuum and particle temperatures T0 and T1 normalized to 0 = ħ0/kB. 
For each value of T0, a steady particle temperature T1 is reached at a laser intensity I(T1). The black solid and dashed curves denote phase boundaries for frequencies 
 = 1.10 and 1.30, respectively. (B and C) Evolution of the nanocross at arbitrary initial T1 and  for light frequency  = 1.10, with vacuum temperature T0 = 0.40 and laser 
intensities I(0.410) (B) or I(0.50) (C), which correspond to the black dots I and II in (A). (D) Illustration of the particle state in different phases. Top: The equilibrium state 
at  = 0 is stable [black dot, also in (B)]. Middle: The equilibrium state at  = 0 is unstable for high light intensity [gray dot, also in (C)]. Bottom: A metastable configuration 
(see below). (E) Driving torque acting on the particle rotating at different velocities  for light frequencies  = 1.10 and 1.30. (F) Same as (C) for light frequency  = 1.30. 
Two metastable configurations are observed, yielding the equilibrium at  = 0 stable [point II in (A) is in the normal phase for  = 1.30], which is intuitively illustrated in 
the bottom panel of (D).
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intuitively illustrated in Fig. 3D (top and middle), where the black 
and gray dots correspond to the stable and unstable equilibrium 
states in Fig. 3 (B and C).

In Fig. 3A, the phase boundary for  = 1.30 is also indicated 
through a dashed curve, which lies above the phase boundary for 
 = 1.10. As shown in Fig. 3E, given a fixed laser intensity, the particle 
acquires a large optical torque from a laser at  = 1.10 at a small 
rotation frequency  ≈ 0 compared to  = 1.30, so a laser with 
frequency  = 1.10 can more easily break the stability at  = 0. Point 
II for  = 1.30 lies within the normal phase, and the corresponding 
dynamical evolution is shown in Fig. 3F. Although the equilibrium 
state at  = 0 in Fig. 3F is stable, we also observe two metastable 
configurations (red dots) at relatively high rotation frequency, which 
arise because a larger driving torque can be exerted at a far-detuned 
frequency  = 1.30 for higher  (Fig. 3E). In the metastable state, 
the particle can maintain its rotation, and only a large perturba-
tion comparable to the energy barrier surrounding the metastable 
region can break the stability and induce the particle to return to 
equilibrium at  = 0, as illustrated in Fig. 3D (bottom). The stable 
and metastable states for finite rotation velocity revealed in Fig. 3 
(C and F) should also be observed in a nanocross with small anisotropy, 
since the time-averaged torque acting on the rotating particle should 
then vanish. However, for  ≈ 0, such torque tends to align the long 
axis of the particle with the direction of linear polarization, which 
can increase the threshold temperature T1 shown by the curve in 
Fig. 3A and, consequently, also the corresponding laser intensity.

DISCUSSION
In Figs. 2 and 3, we choose a large linewidth to illustrate the mech-
anisms involved in RDC and RDH. For small particles with  > −1, 
according to ∂Mdr ∝ ∂ Im {()} (near  = 0), the predicted phe-
nomena are more easily attainable in particles with sharp resonances. 
We also note that a high rotation frequency  comparable with 0 
is adopted here also for intuitive illustrations, whereas RDC and RDH 
are readily observed for lower rotation frequency, as can be seen in 
Fig. 2 (insets in D to F). Detailed calculations also show that the 
predicted RDC and RDH in this work can be achieved for plasmonic 
nanoparticles, where all necessary conditions are feasible using cur-
rently available experimental techniques (see fig. S5).

Regarding various new materials emerging in nanophotonics, 
we argue that graphene particles with high electron mobility are 
good candidates to test the predicted phenomena, since they sustain 
ultranarrow plasmon resonances at long wavelength, which also 
help reduce thermal friction. Optomechanical SCSB should be 
achievable in graphene, since the electron temperature of this mate-
rial (i.e., T1) can easily reach ∼103 K and exceed 0 under external 
illumination. Sparse particles or molecules trapped in a high vacuum 
could be used to avoid gas friction and coupling between rotational 
and translational degrees of freedom originating in these scattering 
events. In experiments, concepts and techniques that are well devel-
oped in current optical cooling setups, such as Zeeman splitting 
and chirping of the light frequency, could be combined with the 
mechanism here revealed to explore actual applications. We also 
note that the optical response of a rotating nanoring is similar to 
a nanocross (34). Considering a ring particle with high electron 
mobility, with its lattice fixed in the laboratory frame and exposed 
to linearly polarized illumination, we expect a spontaneous electron 
current to arise, mimicking the mechanical rotation in our model. 

However, we argue that such spontaneous electron current cannot 
be achieved in a nanodisk according to our model dealing only 
with the linear response (44), because CD as in Fig. 2C cannot be 
observed in such case. Our work unveils fundamental mechanisms 
enabling new approaches toward optical trapping and also offers 
unexplored insights into the optical response of out-of-equilibrium 
rotating systems.

METHODS
Modeling circular polarizabilities
Our model extends a previously formulated approach (see details in 
Supplementary text) (45). To find the circular polarizability of a 
rotating nanosystem, we need to solve the motion of the effective 
charge inside the particle (position vector r±), which is governed by Eq. 1 
for a circularly polarized optical electric field ​​E​ ±​​  =  (​   x ​ ± i​   y ​ ) ​E​ ±​​ ​e​​ −it​ / ​√ 

_
 2 ​​. 

This directly leads to an induced electric dipole moment p± = Qr±. 
In the laboratory frame, the electric dipole moment in a rotating 
particle of arbitrary symmetry should include in general two Fourier 
components, ​​p​ ±​​  = ​ p​±​ ​ + ​p​±​ ∓2​​, where ​​p​±​ ​​ and ​​p​±​ ∓2​​ are associated 
with frequencies  and  ∓ 2, respectively. Here, we define the 
circular polarizability through the elastic electric dipole relation ​​
p​±​ ​  = ​ ​ ±​​ ​E​ ±​​​.

In a thin nanorod (Fig. 2A), the oscillating dipole p produced by 
the bounded charge is oriented along the rod axis, which rotates with 
the particle. We assume that the rod axis is fixed to x′ in the Cartesian 
coordinate system rotating with the nanorod (x′ − y′, see fig. S1A), 
so that Eq. 1 reduces to one-dimensional motion in the rotating frame. 
For RCP (+) and LCP (−) light, the electric field E±() in the rotating 
frame is Doppler-shifted to frequency  ∓  (see Fig. 1C), which 
forces the charge to oscillate also at the same frequency  ∓ . 
However, when observed in the laboratory frame, the charge oscil-
lation in the nanorod includes Fourier components at frequencies  
and  ∓ 2, which correspond to elastic and inelastic scattering 
processes, respectively. For an optically isotropic nanoparticle, the 
total dipole moment p± is the sum of two orthogonal degenerate 
rotating dipole moments, p±,1 and p±,2. An example of an optically 
isotropic particle is formed by connecting two orthogonal nanorods 
at their centers with two branches fixed along x′ and y′ (see Fig. 2B 
and fig. S1B), where we assume a charge Q oscillating along each of 
the two orthogonal directions. Another example of an optically iso-
tropic particle is a nanodisk (see Fig. 2C and fig. S1C), which contains 
freely moving electrons. In these optically isotropic particles, the 
superposition of the elastic dipole moments from the two orthogonal 
oscillations ​​p​±,1​   ​ + ​p​±,2​   ​​ add up constructively, while the inelastic dipole 
moments ​​p​±,1​ ∓2​ + ​p​±,2​ ∓2​​ cancel out. In contrast, inelastic scattering 
is present in optically anisotropic nanorods, which manifests as a dis-
crepancy in the losses captured by the imaginary parts of Arod and 
Across, disk in Eq. 2. The real parts of Arod and Across are the same because 
the electron motions in these two types of particles are both confined to 
the radial directions, thus leading to similar resonance frequency shifts 
(see Fig. 2, A and B). However, a disk shows different resonance be-
havior, as shown by the real part of Adisk and Fig. 2C, because its internal 
electrons can move freely in the absence of a reaction force Freact in Eq. 1.

Optical cross sections
The time-averaged powers associated with the different physical 
processes, described by the force terms in Eq. 1, can be easily calculated 
as ​P  =  ⟨F · ​r ̇ ​⟩​. By inserting here the force terms of Eq. 1, including 
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the light field force QE, the Abraham-Lorentz force ​m​ r ⃛ ​​, the dissi-
pation force Fdis, and the reaction force Freact (solved according 
to the force balance in Eq. 1), we can find the extinction (Pext), 
scattering (Psca), dissipation (Pdis), and mechanical power (Preact) con-
tributions to P, respectively. The extinction and scattering powers 
are consistent with conventional definitions for motionless parti-
cles, which describe the powers of the total input energy and the 
re-emission of the dipole moments. The dissipation and mechanical 
power are associated with the energy converted to heat and rota-
tional energy, respectively, and these two components constitute 
the absorption energy that is stored in the particle, Pabs = Psca + Pdis. 
Likewise, these four force terms also allow us to find the corre-
sponding time-averaged optical torques according to M = ⟨r × F⟩ 
(see details in Supplementary text). In particular, the sum of the 
torques exerted by Fdis and Freact stand for the net torque acting on 
the particle.

As mentioned in previous sections, the time-averaged powers 
and optical torques permit us to define the optical cross section as 
 = P/I. From the partial powers found above, we further obtain the 
extinction (ext), scattering (sca), dissipation (dis), and mechanical 
(react) cross sections. As the absorption power Pabs is the sum of Psca 
and Pdis, the absorption cross section corresponds to the sum abs = 
dis + react. Energy conservation is thus stated in terms of these 
cross sections as ext = sca + abs. In addition, by separating the 
scattering power into elastic and inelastic components, corresponding 
to the emission powers associated with p and p ∓ p2, we can de-
fine the elastic and inelastic scattering cross sections  and  ∓ 

2. Now, we can recast the net optical torque acting on the particle 
in a compact form using these cross sections, as shown in Eq. 3.

Torque due to exchanges with the thermal field
To determine the optical torque acting on rotating particles due to 
thermal radiation, we consider optical absorption from the vacuum 
thermal field, as well as radiation emission (i.e., the reciprocal pro-
cess). Vacuum photon modes can be represented by a complete set 
of plane waves, each of them characterized by a wave vector k and a 
polarization vector ​​​   e​​ i​​​, where ​​​   e​​ i​​​ can be chosen to run over two or-
thogonal linear polarizations. For the thin nanoparticles considered 
in Fig. 2, only the electric field components in the x-y plane perpen-
dicular to the rotation axis (see fig. S1) are relevant to light absorp-
tion and emission. By further projecting the polarization vector onto 
the in-plane circular polarization unit vectors ​​​  u​​ ±​​  =  (​   x ​ ± i​   y ​ ) / ​√ 

_
 2 ​​, 

we find the effective number of photons absorbed from each incident 
plane wave mode to be ​c ​​abs​ 

± ​ ​ ∣​​   e​​ i​​ · ​​  u​​ ±​​∣​​ 2​ / V​, where V is the quanti-
zation volume; each of these photons transfers an angular momen-
tum ±ħ to the particle. Now, the number of photons in each plane 
wave mode of frequency  is given by n0(), the Bose-Einstein 
distribution evaluated at the vacuum temperature T0. By summing 
contributions from modes with all possible wave vectors k and taking 
into account the photon population, we find the total absorption 
rate of thermal photons to be

	​​
​​±​ abs​  = ​  c ─ V ​ ​ ​ 

i,k
​​ ​​abs​ 

± ​  ​n​ 0​​( ) [​n​ 1​​(​​ ∓​​ ) + 1] ​∣​​   e​​ i​​ ⋅ ​​  u​​ ±​​∣​​ 2​
​    

    = ​  1 ─ 
3 ​​​ 2​ ​c​​ 2​

 ​ ​∫
0

​ 
∞

 ​​ ​​​ 2​ d ​​abs​ 
± ​  ​n​ 0​​( ) [​n​ 1​​(​​ ∓​​ ) + 1]

  ​​	

where we have carried out the sum over modes using the relations ​​​
V​​ −1​ ​Σ​ i,k​​ ​∣ ​​    e​​ i​​ · ​​  u​​ ±​​ ∣​​ 2​ = ​ (2π)​​ −3​∫ dk ​Σ​ i​​ ​∣ ​​    e​​ i​​ · ​​  u​​ ±​​ ∣​​ 2​ =  ∫ ​ω​​ 2​ ​d​​ ω​​⁄​​3 ​π​​ 2​ ​c​​ 3​​​, and we 

have introduced a factor n1(∓) + 1 to represent the fact that a 
(bosonic) particle polarization mode of Doppler-shifted frequency 
∓ has increased its population from n1(∓) (the Bose-Einstein 
distribution at the particle temperature T1) to n1(∓) + 1. Similarly, 
the thermal photon emission rate only differs from the absorption 
rate in the changes incurred on the thermal distributions, with a 
particle mode and a photon mode decreasing and increasing their 
populations by 1, respectively. We find

	​​ ​±​ emi​  = ​   1 ─ 
3 ​​​ 2​ ​c​​ 2​

 ​ ​∫0​ 
∞

 ​​ ​​​ 2​ d ​​abs​ 
±  ​ [​n​ 0​​( ) + 1 ] ​n​ 1​​(​​ ∓​​ ) .​	

The absorption and emission of each photon are accompanied 
by a transfer of angular momentum ±ħ, so the net torque on the 
rotating particle is

	​​ M​ fri​​  = ​ ​ ±​ ​(± ħ ) (​​±​ abs​ − ​​±​ emi​)​	

which readily leads to Eq. 4. Likewise, the absorption and emission 
of each photon are accompanied by an energy exchange ħ, so we 
find that the net emission power from a rotating particle reduces to

​​P​ emi​​  = ​ Σ​ ±​ ​ ħω(​Γ​±​ emi​ − ​Γ​±​ abs​)​

which directly leads to Eq. 5. Incidentally, there is no contribution 
to the net power that does not experience a rotational Doppler shift 
because the particle is assumed to be thin along the rotation direc-
tion and, therefore, the emission associated with polarization along 
that axis can be neglected.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/2/eabd6705/DC1

REFERENCES AND NOTES
	 1.	 A. Ashkin, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 

156–159 (1970).
	 2.	 A. Ashkin, J. M. Dziedzic, Optical levitation by radiation pressure. Appl. Phys. Lett. 19, 

283–285 (1971).
	 3.	 A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, Observation of a single-beam gradient 

force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).
	 4.	 P. F. Cohadon, A. Heidmann, M. Pinard, Cooling of a mirror by radiation pressure. 

Phys. Rev. Lett. 83, 3174 (1999).
	 5.	 O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, 

L. Pinard, O. Français, L. Rousseau, High-sensitivity optical monitoring of a micromechanical 
resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006).

	 6.	 D. J. Wineland, R. E. Drullinger, F. L. Walls, Radiation-pressure cooling of bound resonant 
absorbers. Phys. Rev. Lett. 40, 1639 (1978).

	 7.	 S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Three-dimensional viscous 
confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett. 55, 48 
(1985).

	 8.	 E. S. Shuman, J. F. Barry, D. DeMille, Laser cooling of a diatomic molecule. Nature 467, 820 
(2010).

	 9.	 M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, J. Ye, 2D magneto-optical trapping 
of diatomic molecules. Phys. Rev. Lett. 110, 143001 (2013).

	 10.	 J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, D. DeMille, Magneto-optical 
trapping of a diatomic molecule. Nature 512, 286 (2014).

	 11.	 S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, 
M. R. Tarbutt, Molecules cooled below the Doppler limit. Nat. Phys. 13, 1173–1176 (2017).

	 12.	 L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, L. W. Cheuk, W. Ketterle, J. M. Doyle, 
Laser cooling of optically trapped molecules. Nat. Phys. 14, 890–893 (2018).

	 13.	 J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, 
M. Aspelmeyer, O. Painter, Laser cooling of a nanomechanical oscillator into its quantum 
ground state. Nature 478, 89–92 (2011).

http://advances.sciencemag.org/cgi/content/full/7/2/eabd6705/DC1
http://advances.sciencemag.org/cgi/content/full/7/2/eabd6705/DC1


Pan et al., Sci. Adv. 2021; 7 : eabd6705     6 January 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 8

	 14.	 O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, A. Heidmann, Radiation-pressure cooling 
and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

	 15.	 O. Korech, U. Steinitz, R. J. Gordon, I. S. Averbukh, Y. Prior, Observing molecular spinning 
via the rotational Doppler effect. Nat. Photonics 7, 711–714 (2013).

	 16.	 G. Karras, M. Ndong, E. Hertz, D. Sugny, F. Billard, B. Lavorel, O. Faucher, Polarization 
shaping for unidirectional rotational motion of molecules. Phys. Rev. Lett. 114, 103001 
(2015).

	 17.	 K. Lin, Q. Song, X. Gong, Q. Ji, H. Pan, J. Ding, H. Zeng, J. Wu, Visualizing molecular 
unidirectional rotation. Phys. Rev. A 92, 013410 (2015).

	 18.	 K. Lin, P. Lu, J. Ma, X. Gong, Q. Song, Q. Ji, W. Zhang, H. Zeng, J. Wu, G. Karras, G. Siour, 
J. M. Hartmann, O. Faucher, E. Gershnabel, Y. Prior, I. S. Averbukh, Echoes in space 
and time. Phys. Rev. X 6, 041056 (2016).

	 19.	 D. Céolin, J.-C. Liu, V. Vaz da Cruz, H. Ågren, L. Journel, R. Guillemin, T. Marchenko, 
R. K. Kushawaha, M. N. Piancastelli, R. Püttner, M. Simon, F. Gel’mukhanov, Recoil-induced 
ultrafast molecular rotation probed by dynamical rotational Doppler effect. Proc. Natl. 
Acad. Sci. U.S.A. 116, 4877–4882, 2019 

	 20.	 N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett, Mechanical equivalence of spin 
and orbital angular momentum of light: An optical spanner. Opt. Lett. 22, 52–54 (1997).

	 21.	 Y. Arita, M. Mazilu, K. Dholakia, Laser-induced rotation and cooling of a trapped 
microgyroscope in vacuum. Nat. Commun. 4, 2374 (2013).

	 22.	 S. Kuhn, A. Kosloff, B. A. Stickler, F. Patolsky, K. Hornberger, M. Arndt, J. Millen, Full 
rotational control of levitated silicon nanorods. Optica 4, 356–360 (2017).

	 23.	 R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, 
L. Novotny, GHz rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett. 
121, 033602 (2018).

	 24.	 J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, T. Li, Optically levitated 
nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett. 121, 
033603 (2018).

	 25.	 J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, T. Li, Ultrasensitive torque detection with an optically 
levitated nanorotor. Nat. Nanotechnol. 15, 89–93 (2020).

	 26.	 S. Ospelkaus, K.-K. Ni, G. Quéméner, B. Neyenhuis, D. Wang, M. H. G. Miranda, J. L. Bohn, 
J. Ye, D. S. Jin, Controlling the hyperfine state of rovibronic ground-state polar molecules. 
Phys. Rev. Lett. 104, 030402 (2010).

	 27.	 J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, 
H.-C. Nägerl, An ultracold high-density sample of rovibronic ground-state molecules 
in an optical lattice. Nat. Phys. 6, 265 (2010).

	 28.	 R. Glöckner, A. Prehn, B. G. U. Englert, G. Rempe, M. Zeppenfeld, Rotational cooling 
of trapped polyatomic molecules. Phys. Rev. Lett. 115, 233001 (2015).

	 29.	 I. S. Vogelius, L. B. Madsen, M. Drewsen, Blackbody-radiation–assisted laser cooling 
of molecular ions. Phys. Rev. Lett. 89, 173003 (2002).

	 30.	 P. F. Staanum, K. Højbjerre, P. S. Skyt, A. K. Hansen, Rotational laser cooling 
of vibrationally and translationally cold molecular ions. Nat. Phys. 6, 271 (2010).

	 31.	 T. Schneider, B. Roth, H. Duncker, I. Ernsting, S. Schiller, All-optical preparation 
of molecular ions in the rovibrational ground state. Nat. Phys. 6, 275 (2010).

	 32.	 R. V. Krems, Molecules in Electromagnetic Fields: From Ultracold Physics to Controlled 
Chemistry (Wiley, 2018).

	 33.	 C. P. Koch, M. Lemeshko, D. Sugny, Quantum control of molecular rotation. Rev. Mod. 
Phys. 91, 035005 (2019).

	 34.	 D. Pan, H. Xu, F. J. García de Abajo, Circular dichroism in rotating particles. Phys. Rev. Lett. 
123, 066803 (2019).

	 35.	 L. M. Zhou, K. W. Xiao, J. Chen, N. Zhao, Optical levitation of nanodiamonds by doughnut 
beams in vacuum. Laser Photon. Rev. 11, 1600284 (2017).

	 36.	 H. Li, Y. Cao, L. M. Zhou, X. Xu, T. Zhu, Y. Shi, C. W. Qiu, W. Ding, Optical pulling forces 
and their applications. Adv. Opt. Photonics 12, 288–366 (2020).

	 37.	 Y. Zheng, L. M. Zhou, Y. Dong, C. W. Qiu, X. D. Chen, G. C. Guo, F. W. Sun, Robust 
optical-levitation-based metrology of nanoparticle’s position and mass. Phys. Rev. Lett. 
124, 223603 (2020).

	 38.	 T. Zhu, Y. Shi, W. Ding, D. P. Tsai, T. Cao, A. Q. Liu, M. Nieto-Vesperinas, J. J. Sáenz, P. C. Wu, 
C. W. Qiu, Extraordinary multipole modes and ultra-enhanced optical lateral force by 
chirality. Phys. Rev. Lett. 125, 043901 (2020).

	 39.	 B. A. Garetz, Angular Doppler effect. J. Opt. Soc. Am. 71, 609–611 (1981).
	 40.	 P. R. Berman, R. W. Boyd, P. W. Milonni, Polarizability and the optical theorem 

for a two-level atom with radiative broadening. Phys. Rev. A 74, 053816 (2006).
	 41.	 A. Manjavacas, F. J. García de Abajo, Vacuum friction in rotating particles. Phys. Rev. Lett. 

105, 113601 (2010).
	 42.	 D. Pan, H. Xu, F. J. García de Abajo, Magnetically activated rotational vacuum friction. 

Phys. Rev. A 99, 062509 (2019).
	 43.	 F. Intravaia, M. Oelschläger, D. Reiche, D. A. R. Dalvit, K. Busch, Quantum rolling friction. 

Phys. Rev. Lett. 123, 120401 (2019).
	 44.	 M. S. Rudner, J. C. W. Song, Self-induced Berry flux and spontaneous non-equilibrium 

magnetism. Nat. Phys. 15, 1017–1021 (2019).
	 45.	 A. Asenjo-García, A. Manjavacas, F. J. García de Abajo, Stimulated light emission 

and inelastic scattering by a classical linear system of rotating particles. Phys. Rev. Lett. 
106, 213601 (2011).

Acknowledgments 
Funding: This work has been supported, in part, by the European Research Council (ERC Advanced 
Grant 789104-eNANO), the Spanish MINECO (MAT2017-88492-R and no. SEV2015-0522), the 
Catalan CERCA Program, Fundació Privada Cellex, and Fundació Mir-Puig. Author contributions: 
D.P. conceived the research and carried out the calculations. D.P. and F.J.G.d.A. developed the 
theory and wrote the paper. H.X. discussed the results. Competing interests: The authors 
declare that they have no competing interests. Data and materials availability: All data needed 
to evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials. Additional data related to this paper may be requested from the authors.

Submitted 4 July 2020
Accepted 13 November 2020
Published 6 January 2021
10.1126/sciadv.abd6705

Citation: D. Pan, H. Xu, F. J. García de Abajo, Rotational Doppler cooling and heating. Sci. Adv. 7, 
eabd6705 (2021).


