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A N T H R O P O L O G Y

Human population dynamics and Yersinia pestis 
in ancient northeast Asia
Gülşah Merve Kılınç1,2*†, Natalija Kashuba1,3†, Dilek Koptekin4, Nora Bergfeldt5,6,  
Handan Melike Dönertaş7, Ricardo Rodríguez-Varela1,6, Dmitrij Shergin8, Grigorij Ivanov9, 
Dmitrii Kichigin10, Kjunnej Pestereva11, Denis Volkov12, Pavel Mandryka13, Artur Kharinskii10, 
Alexey Tishkin14, Evgenij Ineshin8, Evgeniy Kovychev15, Aleksandr Stepanov16, Love Dalén5,6, 
Torsten Günther17, Emrah Kırdök6,18, Mattias Jakobsson17, Mehmet Somel19, Maja Krzewińska1,6, 
Jan Storå20*, Anders Götherström1,6*

We present genome-wide data from 40 individuals dating to c.16,900 to 550 years ago in northeast Asia. We 
describe hitherto unknown gene flow and admixture events in the region, revealing a complex population history. 
While populations east of Lake Baikal remained relatively stable from the Mesolithic to the Bronze Age, those 
from Yakutia and west of Lake Baikal witnessed major population transformations, from the Late Upper Paleolithic 
to the Neolithic, and during the Bronze Age, respectively. We further locate the Asian ancestors of Paleo-Inuits, 
using direct genetic evidence. Last, we report the most northeastern ancient occurrence of the plague-related 
bacterium, Yersinia pestis. Our findings indicate the highly connected and dynamic nature of northeast Asia popula-
tions throughout the Holocene.

INTRODUCTION
Siberia covers an extensive area in northeast Asia, stretching east-
ward from the Ural Mountains to the Pacific Ocean and northward 
from the Altai Saian Mountains to the Arctic Ocean. Despite being 
one of the most sparsely populated regions on Earth (1), this large 
territory has an intriguing human history as home to multiple ethnic 
groups and a source area for the peopling of Americas (2).

Anatomically modern humans pioneered the northeastern part 
of Siberia ~38,000 years ago, in parallel with the dispersal of the 
parts of megafauna, i.e., mammoth, woolly rhino, and cave lion 
(3–5). These dispersals took place before the beginning of the Last 
Glacial Maximum (LGM) ~33,000 years ago. By the time the glaci-
ation came to an end, ~20,000 to 18,000 years ago, both humans 
and the megafauna in the area had suffered the consequences of the 
LGM, but new data have contradicted earlier speculations of a 
marked settlement decline in the area (5–7). Traces of LGM and 
post-LGM human activity in northeast Asia, as evidenced by the 
presence of lithic technologies and pre-Neolithic pottery, are found 
across the east Siberian plateau as well as the Trans-Baikal area, 
east of Lake Baikal (2, 8–11). Throughout the Holocene, multiple 
cultural complexes emerged gradually across the northeast Asia, 
some of which spread eastward through northern Alaska and reached 
the previously uninhabited Greenland around 4500 years ago 
(11–13).

Recent genetic studies have revealed complex and dynamic pop-
ulation histories in northeast Asia, shaped by multiple admixture 
and gene flow events. These studies reported substantial changes 
in human population genetic structure associated with migrations 
across the area (5, 14–17). Still, further investigation is required 
to fully assess the population dynamics of this vast geographical 
territory across a broad time span. Increased resolution can be 
achieved by analyzing ancient genetic data from unexplored re-
gions and archaeological sites of northeast Asia. For example, ge-
netic data from sites in the Trans-Baikal area carrying the earliest 
traces of post-LGM human occupation and from sites in Yakutia 
associated with the ancestors of the Paleo-Inuit Saqqaq cultural 
complex can provide new investigative venues. Here, focusing on 
these regions, we explore the population history of northeast 
Asia, particularly throughout the Lena, Angara, and Kolyma river 
basins and the Lake Baikal area. In studying a comprehensive 
sample of ancient genomes, we infer to what extent mobility, ad-
mixture processes, or even pandemics have affected northeast Asia 
over the Holocene.

1Archaeological Research Laboratory, Department of Archaeology and Classical 
Studies, Stockholm University, 10691 Stockholm, Sweden. 2Department of Bioinformatics, 
Graduate School of Health Sciences, Hacettepe University, 06100 Ankara, Turkey. 
3Department of Archaeology and Ancient History, Uppsala University, 75126 Uppsala, 
Sweden. 4Department of Health Informatics, Middle East Technical University, 06800 
Ankara, Turkey. 5Department of Zoology, Stockholm University, 10691 Stockholm, 
Sweden. 6Centre for Palaeogenetics, 10691 Stockholm, Sweden. 7European Molec-
ular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome 
Campus, Hinxton, CB10 1SD Cambridge, UK. 8Laboratory of Archaeology and Eth-
nography, Faculty of History and Methods, Department of Humanitarian and Aes-
thetic Education, Pedagogical Institute, Irkutsk State University, Irkutsk, 664011 
Irkutsk Oblast, Russia. 9Irkutsk Museum of Regional Studies, Irkutsk, 664003 Irkutsk 
Oblast, Russia. 10Irkutsk National Research Technical University, Laboratory of Archaeol-
ogy, Paleoecology and the Subsistence Strategies of the Peoples of Northern Asia, 
Irkutsk State Technical University, Irkutsk, 664074 Irkutsk Oblast, Russia. 11Faculty 
of History, Federal State Autonomous Educational Institution of Higher Education 
“M. K. Ammosov North-Eastern Federal University,” Yakutsk, 677000 Sakha Repub-
lic, Russia. 12The Center for Preservation of Historical and Cultural Heritage of the 
Amur Region, Blagoveshchensk, 675000 Amur Oblast, Russia. 13Siberian Federal 
University, Krasnoyarsk, 660041 Krasnoyarskiy Kray, Russia. 14Department of 
Archaeology, Ethnography and Museology, Altai State University, Barnaul, Altaiskiy 
Kray, Russia. 15Faculty of History, Transbaikal State University, Chita, 672039 Zabaykalsky 
Kray, Russia. 16Museum of Archaeology and Ethnography, Federal State Autono-
mous Educational Institution of Higher Education “M. K. Ammosov North-Eastern 
Federal University,” Yakutsk, 677000 Sakha Republic, Russia. 17Department of Or-
ganismal Biology and SciLife Lab, Uppsala University, Norbyvägen 18 A, SE-752 36 
Uppsala, Sweden. 18Department of Biotechnology, Mersin University, 33343 
Mersin, Turkey. 19Department of Biological Sciences, Middle East Technical Univer-
sity, 06800 Ankara, Turkey. 20Osteoarchaeological Research Laboratory, Depart-
ment of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, 
Sweden.
*Corresponding author. Email: anders.gotherstrom@arklab.su.se (A.G.); jan.stora@
ofl.su.se (J.S.); gulsahkilinc@hacettepe.edu.tr (G.M.K.)
†These authors contributed equally to this work.

Copyright © 2021 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).



Kılınç et al., Sci. Adv. 2021; 7 : eabc4587     6 January 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 13

RESULTS AND DISCUSSION
Genome-wide ancient DNA data
We produced whole-genome sequence data from 40 ancient indi-
viduals spanning from the Late Upper Paleolithic to the Medieval 
era (table S1) and representing five distinct administrative regions 
in the Russian Federation encompassing Yakutia, Trans-Baikal, 
Cis-Baikal, Krasnoyarsk Krai, and Amur Oblast (Fig. 1). Genome 
sequence data from Yakutia include 10 individuals spanning a time 
period between c.16,900 and 2490 calibrated years before the present 
(cal BP) (0.03×–8.9× genome coverage); data from the Trans-Baikal 
area consist of 8 individuals dated to between c.8515 and 3000 cal 
BP (0.1×–4.7×); data from the Cis-Baikal area encompass 20 indi-

viduals spanning a time period between c.8980 and 550 cal BP 
(0.1×–14.5×); data from Krasnoyarsk Krai encompass an individual 
dated to c.4280 to 4085 cal BP (13.6×); and data from Amur Oblast 
cover an individual dated to c.1345 to 1270 cal BP (0.7×) (fig. S1 
and table S1). Fifteen individuals were classified as biologically 
female, and 25 individuals were found to be male (table S1). All in-
dividuals were accredited to either Y macro-haplogroup Q or N and 
non-African mitochondrial macrohaplogroups of M, N, and R (18). 
We excluded biologically related individuals from the frequency-
based analyses (table S1 and see Supplementary Text).

The degree of modern DNA contamination was negligible for all 
data (table S1). Principal components analysis (PCA) using present-day 
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Fig. 1. Geographical and chronological information concerning the ancient individuals. (A) Geographical map showing the locations of the individuals sequenced 
in this study (orange, blue, and red). Genomes published elsewhere are shown as black (see table S2 for information about all published individuals used in comparative 
analysis). (B) Timeline showing the ages of the ancient individuals as calibrated years before the present.
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world populations (table S2) displayed a genetic gradient extending 
from west Eurasia to Central and East Asia (Fig. 2A). Projecting 
ancient individuals onto the space defined by the first two compo-
nents indicated that the analyzed ancient northeast Asian individu-
als harbored genetic affinities to present-day populations of Central 
and East Asia (Fig. 2A). To infer post-LGM human population 
dynamics in northeast Asia, we first analyzed the oldest individual 
in our data and then investigated the population transformations in 
time until the Medieval era.

Population dynamics during and after the LGM in  
northeast Asia
The Khaiyrgas Cave on the middle Lena is one of the earliest loca-
tions of post-LGM human occupation in northeast Asia (8, 19, 20). 
However, origin and legacy of people who settled this part of north-
east Asia remain unknown. We sequenced ancient DNA from a 
deciduous tooth of a c.16,900-year-old subadult female (Khaiyrgas-1) 
excavated from the upper layer of the Paleolithic horizon of the 
Khaiyrgas Cave to investigate the post-LGM population dynamics 
in northeast Asia. This individual is one the first known post-LGM 
representatives of the settlers of the Central Siberian Plateau. Hu-
man groups geographically represented by this individual retracted 

from the area during the Bølling-Allerød warming period dated to 
c.15,000 to 13,000 cal BP (8).

Khaiyrgas-1 exhibited genetic affinity toward present-day 
Selkups, a north Siberian Uralic-speaking population, on the PCA 
(Fig. 2A). This individual shared more alleles with indigenous pop-
ulations of Native America, i.e., Chane, Guarani, and Karitiana, but 
to a lesser degree with Selkups compared with other world popula-
tions as measured by outgroup f3-statistics (fig. S2 and table S3). We 
estimated ancestral clusters in the genome of Khaiyrgas-1 using 
ADMIXTURE (21) (Fig. 2B and fig. S3). On the basis of K = 14 an-
cestral components, a genetic component that is maximized in the 
present-day Nganasan population from northeast Asia (yellow) and 
another component that is maximized in the present-day Native 
America populations (purple) were present at high levels in the 
genome of Khaiyrgas-1 compared to other Upper Paleolithic indi-
viduals from Eurasia and Asia (Fig. 2, figs. S3 and S4, and table S4).

According to the PCA, Khaiyrgas-1 marked the first major 
genetic shift throughout the region upon the end of the LGM. This 
individual representing a distinct line of ancestry in a maximum 
likelihood tree fitted using TreeMix (22) (fig. S5) was positioned on 
the PCA between two distinct lineages from Siberia encompassing 
Ancient North Siberians (ANS), the first inhabitants of northeast 

West Eurasia
populations

UP, Upper Palaeolithic
M, Mesolithic
N, Neolithic
MN, Middle Neolithic
LN, Late Neolithic
BA, Bronze Age
IA, Iron Age
Med, Medieval
FBC, Funnel Beaker Culture
HG, Hunter-gatherer

Fig. 2. PCA and ADMIXTURE analysis. (A) PCA calculated using a set of world populations. Ancient individuals were projected onto the inferred PC space (see table S2 
for information about individuals). Arrows indicate the direction of population changes in time. Asterisk denotes being published in (16). (B) A subset of ADMIXTURE result 
for K = 14 clusters showing the ancestral composition of investigated ancient individuals.
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Siberia, represented by a ~38,000-year-old Upper Paleolithic indi-
vidual from the Yana RHS (Rhinoceros Horn Site) (Yana_UP), 
and Ancient Paleo-Siberians (AP), the Siberian ancestors of Native 
Americans, represented by a ~9800-year-old individual from the Kolyma 
region (Kolyma_M) (5). To test whether there was a local continuity 
during and after the LGM, i.e., genetic continuity between the 
~38,000-year-old Yana_UP (5), the ~16,900-year-old Khaiyrgas-1, 
and the ~9800-year-old Kolyma_M (5), or whether there was a pos-
sible gene flow from distant sources into the region, we performed 
formal tests of shared genetic drift through f4-statistics for different 
tree-like topologies. F4-statistics in the form of f4(Yoruba, Popx; 
Yana_UP, Khaiyrghas-1) where Popx is either the ~24,000-year-old 
MA1 (23) or the ~16,000-year-old AfontovaGora3 (24) [Ancient 
North Eurasians (ANEs)] revealed that Khaiyrgas-1 shares more 
genetic drift with ANE lineage than Yana_UP (ANS), thus implying 
a possible gene flow from west Eurasia into the region during the LGM 
(table S5). F4-statistics in the form of f4(Yoruba, Khaiyrghas-1; Popx, 
Kolyma_M) and f4(Yoruba, Kolyma_M; Popx, Khaiyrghas-1) (figs. S6 
and S7 and table S6) revealed that Khaiyrgas-1 and Kolyma_M share 
more drift with each other compared to Yana_UP and other Upper 
Paleolithic individuals from Eurasia and Asia including MA1 (23) and 
AfontovaGora3 (24), the ~45,000-year-old Ust’ Ishim (25), the 
~37,000-year-old Kostenki14 (26) and the ~34,000-year-old Sunghir 
from Russia (27), and the ~40,000-year-old Tianyuan from China 
(28). The only exceptions were the ~12,000-year-old Anzick-1 from 
North America (29) and the ~4000-year-old Saqqaq from Greenland 
(30), both of which shared more drift with Kolyma_M (5) (fig. S8). 
Recently, a 14,500-year-old Upper Paleolithic individual from the 
south of Lake Baikal (UKY) (17) was found to be closely related with 
Kolyma_M (5). These two individuals (UKY and Kolyma_M) have 
genetic affinity toward Native American populations. In addition, 
f4(Yoruba, Anzick-1; Khaiyrghas-1, UKY) revealed that Anzick-1 shared 
more alleles with the UKY compared to the Khaiyrgas-1 (Z = 2.1). 
To further assess the complex relationship between Khaiyrgas-1, UKY, 
and Kolyma_M, we calculated f4-statistics in the form of f4(Yoruba, 
UKY; Khaiyrghas-1, Kolyma_M); unexpectedly, Khaiyrgas-1 and 
Kolyma_M appeared symmetrically related to the UKY individual 
(Z = 0.2). Furthermore, f4(Yoruba, Khaiyrghas-1; Kolyma_M, UKY) 
also suggested that UKY and Kolyma_M were symmetrically related 
to Khaiyrgas-1 (Z = 0.01). These results, likely due to a lack of power 
since these tests are based on a relatively low number of single-
nucleotide polymorphisms (SNPs) (9366), leave multiple scenarios 
consistent with the data. Last, we modeled the Kolyma_M as a two-
way mixture of Khaiyrgas-1 (80 ± 19%) and Devils_Cave_N (19 ± 19%) 
using qpAdm (P = 0.28). Our results show the presence of a new 
post-LGM lineage in northeast Asia, represented by Khaiyrgas-1, 
which is distinct from the older ANS who settled the region around 
38,000 years ago. This lineage contributed directly to the later groups 
in the region, the AP who settled the area around 9800 years ago.

Population transformations across Yakutia and the origins 
of the Paleo-Inuits
To further investigate population dynamics in northeast Asia be-
tween ~13,000 and 2500 years ago, a period of substantial cultural 
and social changes marked by transition from the Paleolithic to the 
Neolithic (31), we analyzed chronological genome sequence data 
from the Lena and Kolyma river regions of Yakutia. These data 
included a ~6800-year-old individual associated with the Syalakh 
cultural complex (Matta-1), a ~6200-year-old individual associated 

with the Belkachi cultural complex (Onnyos-1), and seven individ-
uals dated to c.4780 to 2490 cal BP (Fig. 1 and table S1). The PCA 
revealed a west-east genetic cline extending from the Late Upper Paleo-
lithic to the Iron Age and the presence of three major genetic changes 
during this period throughout Lena and Kolyma regions (Fig. 2A). 
These include a shift ~9800 years ago between the Late Upper Paleo-
lithic and Mesolithic (5), another one ~6800 years ago between the 
Mesolithic and Early/Middle Neolithic, and ~4700 years ago between 
Early/Middle Neolithic and Late Neolithic/Iron Age (Fig. 2A).

Matta-1 and Onnyos-1 formed a distinct group (Yakutia_Lena_ 
6850_6190_BP) on the PCA between Khaiyrgas-1, Kolyma_M (5), 
and a group of succeeding individuals (Yakutia_Lena_Kolyma_ 
4780_2490_BP) (Fig. 2A and fig. S9). The Bronze Age (c.4280 to 
4085 BP) individual (kra001) from the Krasnoyarsk Krai (Fig. 1A) 
grouped with Yakutia_Lena_Kolyma_4780_2490_BP. Yakutia_
Lena_6850_6190_BP (table S7 and fig. S10) and Yakutia_Lena_
Kolyma_4780_2490_BP (table S8 and fig. S11) exhibited genetic 
affinities toward present-day northeast Asia populations (32). AD-
MIXTURE analysis revealed a pattern of increase in northeast 
Asia–related and a pattern of decrease in Native America–related 
genetic ancestry from the Late Upper Paleolithic to the Iron Age 
(Fig. 2B, figs. S4 and S12, and table S4). Consistently, Devil’s Cave 
individuals representing the East Asian ancestry and the Anzick-1 
individual representing the Native American ancestry shared more 
alleles with the succeeding and preceding groups, respectively, 
implying the presence of gene flow into the Lena and Kolyma re-
gions from Far Eastern sources during the Neolithic and the Bronze 
Age (figs. S13 and S14 and table S9).

During the Neolithic, various cultural complexes emerged through-
out Yakutia, notably represented by large Neolithic cemeteries in 
the Angara and Lena river basins. Of these, the Belkachi lithic com-
plex is of particular interest since it has been hypothesized that the 
people associated with it might be ancestral to the Paleo-Inuit 
Saqqaq cultural complex, albeit without genetic evidence (12, 13). 
Here, Matta-1 and Onnyos-1 (Yakutia_Lena_6850_6190_BP) ex-
hibited genetic affinities toward the Paleo-Inuit Saqqaq individual 
(Fig. 2A), which was confirmed by f4-statistics in which Yakutia_
Lena_6850_6190_BP and Saqqaq shared more drift with each other 
compared to other ancient groups (figs. S15 and S16 and table S10). 
Consistently, distribution of ancestral components in the genomes 
of Yakutia_Lena_6850_6190_BP and Saqqaq was similar (Fig. 2B). 
Genetic affinities between Paleo-Inuit and Chukotko-Kamchatkan 
speakers have been reported previously (33). Here, outgroup f3-
statistics in the form of f3(Yakutia_Lena_6850_6190_BP, PopX, Yoruba) 
further revealed that Yakutia_Lena_6850_6190_BP shares more 
alleles with Chukotko-Kamchatkan speakers, i.e., Itelmen and 
Koryak populations (33) (table S7 and fig. S10). To confirm the an-
cestry proportions in the genome of the Saqqaq, we used qpAdm 
(34) estimating the Saqqaq as a mixture of 90  ±  10% Yakutia_
Lena_6850_6190_BP and 10 ± 10% west Eurasians (K14) (P = 0.40) 
(table S11). These results provide the first direct evidence of Belkachi-
related genetic ancestry of the Paleo-Inuits.

Origins and interactions of the Baikal populations
The region around Lake Baikal, particularly the Trans-Baikal, 
serves as another unique area to study post-LGM human popula-
tion dynamics in northeast Asia since the region carries the earliest 
evidence of post-LGM human activity indicated by pre-Neolithic 
pottery (8). The appearance of pre-Neolithic ceramics ~13,000 to 
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11,000 years ago in this area was associated with possible migration 
from southeast Asia (35). Genetic studies revealed population 
transitions during the Holocene west of Lake Baikal (Cis-Baikal) 
(16), although the Trans-Baikal remained unexplored. Here, to fully 
understand the dynamics behind the post-LGM peopling of north-
east Asia and to address the ancestry and interactions of Baikal pop-
ulations, we analyzed genome sequence data from 8 Trans-Baikal 
individuals spanning c.8515 to 3000 cal BP and from 20 Cis-Baikal 
individuals spanning c.8980 to 560 cal BP (Fig. 1 and table S1).

In the PCA, an ~8515-year-old individual from the Trans-Baikal 
region, Dzyhlinda-1, appeared in close proximity to the Yakutia_
Lena_6850_6190_BP. Dzyhlinda-1 exhibited genetic affinities to-
ward the Saqqaq and Kolyma_M (Fig. 2A) and shared alleles with 
present-day Itelmen, Chukchi, and Inuits (fig. S17 and table S12). 
Dzyhlinda-1 shared more drift with Yakutia_Lena_6850_6190_BP 
compared to other ancient groups (Fig. 3A, figs. S18 and S19, and 
table S13), which might implicate that people who settled the 
Trans-Baikal area ~8515 years ago would be ancestral to those who 
settled the Lena region.

The other Trans-Baikal individuals formed a distinct genetic 
group, suggesting a genetic continuity without major demographic 
shifts in the region between ~8345 and ~3000 years ago (Fig. 2A). 
This group (Trans-Baikal_8345_3000_BP) was genetically close to 
the Neolithic individuals from the Devil’s Cave (5, 36) and exhibited 
genetic affinities toward present-day Central and East Asian popu-
lations (fig. S20 and table S14). In contrast to Dzyhlinda-1, individuals 
in this group carried comparably more northeast and southeast 
Asia–related and fewer Native America–related genetic compo-
nents (Fig. 2B, fig. S4, and table S4) revealed by ADMIXTURE analysis 
and supported by f4-statistics (table S15). A ~1345-year-old individual 
from Amur Oblast had genetic affinities toward Trans-Baikal_ 
8345_3000_BP (Fig. 2, fig. S21, and table S16). Thus, the results 
yield further support of genetic continuity over time and over vast 
geographical area reaching from Trans-Baikal to Far East, contrast-
ing the pattern of population changes throughout Yakutia.

On the contrary, our data revealed multiple population transfor-
mations across the Cis-Baikal area spanning a time transect be-
tween ~8980 and  ~560 years ago (Fig.  2): An  ~8980-year-old 
Cis-Baikal individual, Popovskij-1, falls within the genetic variation 
of the Trans-Baikal_8345_3000_BP (Fig. 2). Popovskij-1 shared 
more drift with the Trans-Baikal_8345_3000_BP compared to the 
other ancient groups (Fig. 3, B and C, and table S17), suggesting the 
presence of a uniform gene pool across the area ~8900 years ago. 
A ~7900-year-old individual (Cyclodrome-1) marked the first ge-

netic shift around the Cis-Baikal region, and this individual together 
with individuals spanning from ~7200 to ~6200 years ago (Cis-
Baikal_7200_6200_BP) formed a distinct genetic group on the PCA 
(16). Yet, Cis-Baikal individuals spanning 6100 to 3700 years ago 
formed another group (Cis-Baikal_6100_3700_BP), carrying com-
parably high amount of west Eurasia–related and low amount of 
northeast Asia–related components (Fig. 2, fig. S4, and table S4). A 
Medieval Cis-Baikal individual (c.670 to 550 cal BP) was genetically 
distinct from the other individuals with increased genetic affinities 
toward East Asia populations (Fig. 2). Y haplogroup distribution 
was in agreement with the observed genetic groupings (table S18).

In a recent study (17) analyzing ancient human genomes from 
the Lake Baikal area, Cis-Baikal individuals spanning approximately 
6700 to 3700 BP formed a genetic group that exhibits a genetic pro-
file similar to our Cis-Baikal_6100_3700_BP group. However, two 
approximately 4300-year-old Cis-Baikal individuals (GLZ001 and 
GLZ002) formed another group, which we refer to as GLZ. These 
two individuals had genetic affinities toward Neolithic individuals 
from the Devil’s Cave (5, 36) similar to our Trans-Baikal_8345_3000_BP 
group that also has East Asian genetic affinities. To test mutual 
relations between these individuals and our Trans-Baikal_8345_3000_
BP group, we performed f4-statistics in the form of f4(Yoruba, 
GLZ001; Cis-Baikal_6100_3700_BP, Trans-Baikal_8345_3000_BP) 
and f4(Yoruba, GLZ002; Cis-Baikal_6100_3700_BP, Trans-Baikal_8345_ 
3000_BP). The tests revealed that these two individuals share more 
alleles with the Trans-Baikal_8345_3000_BP group. F4-statistics in 
the form of f4 (Yoruba, Devils_Cave_N; GLZ_individuals, Trans-Baikal_ 
8345_3000_BP) further revealed that GLZ individuals and 
Trans-Baikal_8345_3000_BP were symmetrically related to the 
Devil’s Cave Neolithic individual (table S17). These results might 
implicate Trans-Baikal_8345_3000_BP as one of the source popula-
tions for these two individuals.

Our findings indicate a complex pattern of demographic change 
throughout the Baikal area consistent with (17), which revealed 
dynamic changes in population structure around Lake Baikal area. 
Before ~8500 years ago, people inhabited the Trans-Baikal region. 
They became ancestral to the human groups settled in Lena basin in 
Yakutia. About 8300 years ago, a major genetic shift happened in 
the Trans-Baikal area. This new group with East Asian genetic an-
cestry (Fig. 2B) populated the west and east side of Lake Baikal 
during the Mesolithic. Although they remained in the Trans-Baikal 
region until ~3000 years ago, an extensive gene flow from distant 
sources affected the Cis-Baikal region ~7900 years ago and then 
~6100 years ago.

Fig. 3. Key f4-statistics summarizing the population transitions across the Lake Baikal area. (A) f4(Yoruba, Trans-Baikal_8515_8380_BP; PopX, Yakutia_Lena_6850_6190_BP). 
(B) f4(Yoruba, Trans-Baikal_8345_3000_BP; PopX, Cis-Baikal_8980_8640_BP). (C) f4(Yoruba, Cis-Baikal_8980_8640_BP; PopX, Trans-Baikal_8345_3000_BP).
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Genetic diversity of ancient northeast Asia populations
We further evaluated the degree of genetic diversity of the human 
groups in ancient northeast Asia. We restricted these analyses to 
individuals with coverages >4.5× including nine individuals (6.9×–14.5×) 
from Cis-Baikal_6100_3700_BP, one individual (4.7×) from Trans-Baikal_ 
8345_3000_BP, and three individuals (5.5×–13.6×) from Yakutia_
Lena_Kolyma_4780_2490_BP. For comparison, we included two 
west European individuals, i.e., Loschbour (Mesolithic) and Stuttgart 
(Neolithic) (37). Heterozygosity estimates revealed that genetic di-
versity in all groups ranged between the diversity of west European 
Mesolithic and Neolithic populations (Fig.  4A). Yakutia_Lena_
Kolyma_4780_2490_BP had the lowest genetic diversity followed by 
the Trans-Baikal_8345_3000_BP (Fig. 4A). Cis-Baikal_6100_3700_BP 
had the highest estimates of heterozygosity with the exception of 
two individuals dating to ~4400 years ago. Consistently, Cis-Baikal_6100_ 
3700_BP had low levels of short runs of homozygosity (RoH) im-
plying a high ancestral population size compared to the geographi-
cally more isolated Trans-Baikal_8345_3000_BP and Yakutia_
Lena_Kolyma_4780_2490_BP (Fig. 4B). Long RoH levels were high 
in Yakutia_Lena_Kolyma_4780_2490_BP and in three ~4400-year-old 

Cis-Baikal individuals pointing toward more limited mobility in 
recent times (fig. S22). A multiple sequentially Markovian coales-
cent (MSMC) analysis revealed that the effective population size of 
Yakutia_Lena_Kolyma_4780_2490_BP was low ~4700 years ago, 
consistent with the low genetic diversity observed in this group. 
Although effective population size estimates of human groups in 
Cis-Baikal ~6100 to 5600 years ago were comparably high, they de-
creased ~4400 years ago (Fig. 4C). Similarity between the observed 
low effective population sizes in Cis-Baikal and Yakutia 4700 to 
4400 years ago could mirror global climatic changes, i.e., cooling of 
the Subboreal Period (38), and might indicate a possible population 
collapse ~4700 to 4000 years ago.

Yersinia pestis in ancient northeast Asia
We examined the functional SNPs (table S19 and see Supplementary 
Text) and the possible presence of a plague-related bacterium that 
was involved in historical pandemics, Y. pestis, in the genomes of 
ancient northeast Asian individuals. The earliest evidence of Y. pestis 
was found in Late Neolithic and Bronze Age Eurasia ~5000 years 
ago (39). To assess the presence of this bacterium in northeast Asia 
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Fig. 4. Estimating the level of genetic diversity and population size changes in time. (A) Heterozygosity estimates. (B) Amount of short RoH in the genomes of Lake 
Baikal and Yakutia individuals. Mb, megabase. (C) Effective population size change in time estimated using MSMC.
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and its possible effect on population dynamics throughout the 
region, we analyzed sequence data of all 40 individuals. We identified 
9395 Y. pestis–specific sequencing reads (3.66% genome coverage 
for CO92) in a ~4400-year-old individual from Cis-Baikal, Anosovo-1, 
and 4176 Y. pestis–specific sequencing reads (1.65% genome 
coverage for CO92) in a ~3800-year-old individual from Yakutia, 
Kamenka-2. The Kamenka burial contained three young individuals, 
all related to each other including a parent-child kin (table S1).

Conclusions
Northeast Asia, particularly the Baikal adjacent area and the entire 
Russian Far East, presents a complex demographic picture with 
hitherto unknown genetic shifts since the post-LGM. The Trans-
Baikal area displays few genetic turnovers with an extended period 
of genetic continuity over a period of c.6000 years. This unique 
demographical pattern throughout the Holocene stands in sharp 
contrast to the recurrent gene flow events of Cis-Baikal and Yakutia. 
We document that the human group that was represented by 
Khaiyrgas-1 must have dispersed to Yakutia after the LGM. This 
group was genetically distinct from the first inhabitants of the Siberia 
who settled the area before the LGM. The genetic legacy of this 
group is visible among human groups in the area ~6000 years later. 
Our data fit well with Belkachi groups as having key position in the 
ancestry of Paleo-Inuits who launched the second wave of gene flow 
into the Americas c.5000 years ago. We also document the presence 
of the most northeastern occurrence of ancient Y. pestis in the less 
populated Yakutia region and in the highly connected Cis-Baikal 
area. The bacterium may well have had consequences in shaping 
human population dynamics in both regions, visible in the reduc-
tion in the effective population size and the genetic diversity levels 
~4400 years ago. Consistent with the finding of the same bacterium 
in the Lake Baikal region during the Bronze Age (17), this finding 
suggests that a plague pandemic in this part of northeast Asia could 
be a hypothesis worth exploring with more data. Our results 
demonstrate a complex demography in northeast Asia from the 
Late Upper Paleolithic up until the Medieval era in which Siberian 
populations expanded interacting with each other and with popu-
lations from distant geographical areas.

MATERIALS AND METHODS
Ancient DNA extraction and sequencing
DNA extractions from prehistoric bone and teeth and all further 
laboratory work including library preparation were performed at 
the ancient DNA laboratory facilities at the Archeological Research 
Laboratory at Stockholm University. We cleaned the samples from 
earth and potential contaminants using 1 to 3% NaOCl solution 
and ddH2O mechanical cleansing. We thereafter subjected the sam-
ples to ultraviolet radiation at about 6 J/cm2 at 254 nm to further 
decontaminate the surfaces. Bone powder or bone fragments were 
obtained using a Dremel drill. Weight of taken sample ranged from 
50 to 400 mg. The samples were digested in 1 M urea, EDTA (0.5 M), 
and proteinase K (10 mg/ml) at temperatures between 37° and 
55°C. A blank negative control was added for every 8 to 10 samples 
at this step. Upon dissolving, we concentrated the DNA extract 
using Amicon filters (Millipore) and purified it with silica-based 
MinElute spin columns (Qiagen) (40–42), eluting the DNA in 110 l 
of elution buffer (Qiagen). Double-stranded blunt-end–repaired Il-
lumina libraries were prepared from 20 l of DNA. Each library was 

amplified in at least five replicates using 0.5 l of 10 M index primer 
per library. The thermocycling conditions used were as in (42), and 
the number of cycles was estimated individually for each library 
using quantitative polymerase chain reaction (qPCR). For some 
samples, damage-repaired double-stranded libraries (table S1) were 
prepared with USER enzyme (NEB/BioNordika) to remove deami-
nated cytosines (43). All libraries were sequenced using Illumina 
HiSeq X platform at the SciLife sequencing center at Stockholm.

Sequencing data processing
Paired-end sequencing reads were merged using MergeReads-
FastQ_cc.py requiring a minimum 11–base pair (bp) overlap, and 
residual adapter sequences were trimmed (44). Merged reads were 
mapped to the human reference genome (version hs37d5) using 
BWA (version 0.7.13) aln algorithm (45) in single end mode (samse) 
with parameters “-n 0.01 -o 2 -l 16500” (37). PCR duplicates were 
filtered using a modified version of FilterUniqSAMCons_cc.py (44) 
to prevent the biased choice of the nucleotides. Reads mapped to 
the reference genome with more than 10% mismatches and shorter 
than 35 bp and with mapping quality below 30 were filtered. For 
each sample, all libraries including the damage-repair and non–
damage-repair libraries were merged into a single bam file using 
SAMtools (46) merge module. These files were used for further variant 
discovery (C/T-type transitions excluded) to be used in population 
genetics analysis. We also merged only damage-repair libraries for 
the samples to be used in diversity analysis.

Evaluation of authenticity
We assessed the authenticity of all sequencing reads based on three 
different approaches including (i) evaluation of cytosine (C)-to 
thymine (T)-type transitions at the 5′ ends of all sequencing reads, 
(ii) mitochondrial DNA (mtDNA)–based estimation of contamination 
for all samples, and (iii) X chromosome–based estimation of con-
tamination for male samples (table S1). All sequences showed in-
creased frequency of C/T-type transitions at 5′ ends (up to 37% at 
the last five bases) (table S1). To estimate contamination levels 
based on mtDNA, we used two different methods: (i) According to 
the method developed in (47), proportion of contamination per 
sample ranged between 1.8 and 20.5% (table S1). In this method, 
private alleles that have a frequency of less than 5% in 311 modern 
reference mtDNAs with a minimum base quality of 30 and a mini-
mum genomic depth of 10× were used. Point estimate of contami-
nation was calculated on transversion-type variations by summing 
the consensus and alternative allele counts across all allele counts. 
(ii) In the second mtDNA-based method developed in (48) that 
provides Bayesian estimates of contamination, the probability of 
being authentic per sample was estimated to be between 79 and 99% 
(table S1). For this method, we first produced consensus mitochondrial 
sequences using ANGSD (49) with parameters “-doFasta 2 -doCounts 
1-minQ 30 -minMapQ 30 -setMinDepth 3” and calculated the 
probabilities for being authentic per sequence using contamMix li-
brary in R. Last, according to X chromosome–based estimation of 
degree of contamination in male individuals, contamination esti-
mates were between 0.0001 and 0.009 (table S1). This method that 
was implemented in ANGSD (49) is based on examination of het-
erozygous positions on the X chromosome. To run this method, we 
first created a binary count file with the command “angsd -r 
X:5000000-154900000 -doCounts 1 -setMinDepth 3 -setMaxDepth 
100 -i Counts 1 -minMapQ 30 -minQ 30” and then calculated the 
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contamination estimate on transversion-type SNPs by “contamina-
tion -d 3 -e 100.” Contamination estimates and two different CIs 
including sampling all reads from each site (method 1) and sam-
pling one read randomly per site (method 2) are reported in table 
S1. We included samples in the downstream analysis if the sample 
did not fail at least two of the applied tests; we thus included all 
samples for further analysis.

Biological sex determination
Biological sex of the individuals was determined using the Ry meth-
od, which was developed in (50). This method relies on dividing the 
total number of reads that were mapped to the Y chromosome to 
the total number of reads that were mapped to the X and Y chromo-
some. Computation was performed on sequencing reads with a 
minimum read length of 35 bp, with a mapping quality minimum 
of 30, and that were mapped to the reference genome with a maxi-
mum of 10% mismatches. We used ry_compute.py script, which is 
available at https://github.com/pontussk/ry_compute/blob/master/
ry_compute.py.

Biological relatedness estimation
We have used the program lcMLkin to detect related individuals 
(51). We chose only transversion-type SNPs (n = 1,065,109) from 
the Estonian Genome Diversity Project (EGDP) (52) to avoid bias 
due to postmortem damage in our samples. The genotype likelihoods 
of the selected SNP positions were called using “SNPbam2vcf.py” 
with a minimum frequency of 0.15 and using the population allele 
frequencies from the ancient individuals generated in this study. 
After a first run with all the ancient individuals, we used only the 
unrelated individuals as founders to estimate the allele frequencies of 
each pair. We inferred the most probable relationship between the 
ancient samples analyzed here comparing the obtained values of k0, k1, 
and k2 with the expected values of these parameters for the different 
degrees of relationship shown in (53) (see Supplementary Text).

Uniparental markers
To determine Y chromosome haplogroups, variants at haplogroup 
defining SNPs were identified on the basis of haplogroup defini-
tions from PhyloTreeY (54) (http://phylotree.org/Y/tree/) and 
nomenclature from the International Society of Genetic Genealogy 
database (https://isogg.org) (v.11.349). The variants were called 
using SAMtools (v.1.8) mpileup with “–B” parameter (46), and 
positions with base and mapping quality of less than 30 were filtered. 
We also excluded insertions and deletions and sites that displayed 
multiple alleles from the analysis. Depending on the library prepa-
ration mode (damage-repaired or non–damage-repaired libraries), 
we used either transversions (non–damage-repaired libraries) or 
both transitions and transversions (damage-repaired libraries) in 
Y haplogroup assignment (table S18).

Mitochondrial haplogroups of 38 individuals were reported in 
(18) and those of 2 individuals (N2a-Matta-1 and cta016) were re-
ported in this study (table S1). In brief, using sequence alignment 
files (BAM files) as input, consensus mitochondrial sequences were 
produced using ANGSD with parameters -doFasta 2 -doCounts 
1-minQ 30 -minMapQ 30 -setMinDepth 3. Using HaploFind (55) 
and HaploGrep (56), mitochondrial haplogroups were determined. 
For the final assignment of haplogroups, visual inspection against 
PhyloTree mtDNA tree (build 17) was performed (table S1) (18) 
(see Supplementary Text).

SNP discovery and datasets
We prepared four different datasets for population genetics and 
diversity analysis including the following: (i) The Human Origins 
dataset consists of pseudohaploidized genotypes of ancient individ-
uals sequenced in this study and pseudohaploidized genotypes of 
published ancient individuals (table S2) for a total of 594,924 SNPs 
genotyped in 2730 individuals from 203 present-day populations, 
which is available as curated Human Origins SNP Array dataset 
from (37, 57). This dataset was used in PCA, model-based cluster-
ing analysis, and outgroup f3-statistics. (ii) The 1000 Genomes data-
set consists of pseudohaploidized genotypes of ancient individuals 
sequenced in this study as well as pseudohaploidized genotypes of 
published ancient individuals (table S2) for a total of 1,938,919 
transversion-type SNPs ascertained with a minor allele frequency of 
10% in the Yoruba population (n = 108 individuals) from phase 3 of 
the 1000 Genomes Project (58). This dataset was used in f4-statistics, 
qpAdm, and admixture graph-fitting analysis. (iii) The EGDP data-
set consists of pseudohaploidized genotypes of ancient individuals 
sequenced in this study for 42,971,058 SNPs genotyped in 483 
humans from 148 present-day populations, which is available from 
(52). This dataset was used for kinship analysis. (iv) The diploid 
dataset consists of diploid genotypes of 13 ancient individuals se-
quenced in this study with coverages above 4.5× including Kamenka-1, 
Kamenka-3, kra001, cta016, irk022, irk025, irk030, irk034, irk036, 
irk040, irk061, irk068, and irk075 (table S1), as well as 3 published 
individuals including Stuttgart (37), Loschbour (37), and Ust’ Ishim 
(25). This dataset was used in diversity analysis including estima-
tion of heterozygosity, RoH, and also effective population size changes 
in time.

To prepare the diploid dataset, we used bam files that were prepared 
by merging damage-repaired libraries of Kamenka-1, Kamenka-3, 
kra001, cta016, irk022, irk025, irk030, irk034, irk036, irk040, irk061, irk068, 
and irk075, as well as bam files including Stuttgart (37), Loschbour 
(37), and Ust’ Ishim (25), which were processed with the same 
parameters. The last two bases of each read were trimmed using 
TrimBam of bamutils (59). Using Picard (http://broadinstitute.
github.io/picard/), “read groups” were added to the files. Using 
indels of phase 1 of the 1000 Genomes Project (58) as reference, indel 
realignment was performed using GATK (60) IndelRealignment 
module. To call the diploid genotypes, the UnifiedGenotyper 
module of GATK was used with the parameters -stand_call_conf 50.0, 
-stand_emit_conf 50.0, -mbq 30, -contamination 0.02, and --output_
mode EMIT_ALL_SITES. Using vcftools, SNP sites overlapping 
with 1,938,919 transversion-type SNPs were extracted. To prepare 
the other datasets, we used SAMtools (46) mpileup, producing pileup 
of each read for every genomic position of each ancient individual 
overlapping with 594,924 SNPs from the Human Origins SNP Array 
dataset (37, 57), overlapping with 42,971,058 SNPs (52), and over-
lapping with 1,938,919 transversion-type SNPs of African Yoruba 
individuals (58). Subsequently, a random read with a minimum 
mapping quality of 30 was selected and encoded as homozygous in 
the ancient individual. In the Human Origins dataset, C/T-type 
transitions were encoded as missing data. The 1000 Genomes data-
set contained only transversion-type SNPs.

Principal components analysis
PCA was performed on the Human Origins dataset, which was pre-
pared as described above. Principal components were calculated on 
present-day populations from Asia, Eurasia, Oceania, and America 

https://github.com/pontussk/ry_compute/blob/master/ry_compute.py
https://github.com/pontussk/ry_compute/blob/master/ry_compute.py
http://phylotree.org/Y/tree/
https://isogg.org
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
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(table S2) using smartpca tool (v.1600) of the EIGENSOFT (61) 
with numoutlieriter: 0, shrinkmode: YES, and lsqproject: YES op-
tions. The result was plotted using the ploteig program of the 
EIGENSOFT (61).

Model-based clustering
Unsupervised clustering was performed to estimate the ancestry 
components of ancient and present-day individuals. This analysis 
was conducted using ADMIXTURE (21) on the Human Origins 
dataset, which was described above. This dataset was divided into 
two sub-datasets to encompass (i) modern individuals and (ii) 
ancient individuals using the “--keep” option in PLINK (v1.90) (62). 
As described in (63), to prevent influence of missingness in ancient 
samples and the difference in number of overlapping SNPs across 
samples on analysis, we first run ADMIXTURE on the modern 
dataset and inferred the cluster memberships of each ancient indi-
vidual using the ancestral allele frequencies that were obtained from 
the modern dataset (63). Before ADMIXTURE analysis, the modern 
dataset consisting of a total of 2340 individuals from present-day 
Asia, Eurasia, America, Oceania, and Africa populations was filtered 
for linkage disequilibrium using the --indep-pairwise option in 
PLINK (v1.90) with parameters (--indep-pairwise 200 25 0.2) (62), 
yielding a total of 594,924 SNPs. The ancient dataset was filtered by 
selecting the same set of SNPs using the “--extract” option in PLINK 
(v1.90) (62). For every hypothetical cluster number (K) ranging 
between K = 2 and K = 16, ADMIXTURE was run 30 times with 
different random seeds on the modern dataset, and cluster mem-
berships of each ancient individual for each K and each run were 
computed using the ancestral allele frequencies (63). After merging 
the ancestral clusters of modern and ancient individuals for each K 
and each run, common signals between different replicate runs 
were determined using the LargeKGreedy algorithm of CLUMPP 
(64). Results were visualized using rworldmap, ggplot2, SDMTools, 
and RColorBrewer packages of GNU R version 3.3.0. Since we run 
the ADMIXTURE on modern samples and projected the ancient 
samples on this, we did not perform cross-validation to decide 
which K explains the observed pattern better; instead, we examined 
each K and present the results for all K values (fig. S3, table S4, and 
see Supplementary Text).

qpAdm analysis
To estimate the admixture patterns in ancient Siberian genomes, qpAdm 
analysis was performed. Using the qpAdm program of ADMIX-
TOOLS (57) package (https://github.com/DReichLab/AdmixTools) with 
the “allsnps: YES” option on the Human Origins dataset prepared 
as described above, we estimated the ancestry proportions in the ge-
nomes of Saqqaq (30) and Kolyma_M (5). First, to estimate ancestry 
proportions in the genome of Saqqaq, the following set of six popu-
lations was used as outgroup and provided as “right populations” to 
the program: MbutiPygmy, Yoruba, Mota, Onge, Ju_Hoan_north, and 
Papuan. Providing the “left populations” list as Saqqaq (30), K14 (26), 
and Yakutia_Lena_6850_6190_BP, we modeled the Saqqaq as a two-
way admixture of the K14 and Yakutia_Lena_6850_6190_BP (table S11). 
To model the Kolyma_M as a two-way admixture of Khaiyrgas-1 and 
Devils_Cave_N (5), another set of six populations including Yoruba, 
Mota (65), Onge, Ju_Hoan_north, Papuan, and Ust_Ishim was 
used as in the right populations list as outgroup. We considered the 
models with a P value of >0.05 (indicating a small deviation of data 
from the model expectation) as consistent with the tested model.

f3- and f4-statistics
Shared genetic drift between two populations (or individuals) since 
their divergence from an ancestral population was computed using 
the outgroup f3-statistics. The qp3pop program of ADMIXTOOLS 
(57) package was used with the “inbreed: YES” option on the Human 
Origins dataset described above to calculate f3-statistics for the tree-
like topology in the form of f3(Outgroup, Test Population, Modern 
Population) in which the Yoruba population was used as Outgroup, 
each of the 40 ancient Siberians was used as Test Population, and 
194 modern populations from the Human Origins dataset were 
used as Modern Population. Significant deviations from zero indi-
cated a deviation from the proposed tree-like topology; thus, more 
positive values indicated an excess of shared genetic drift between 
the Test Population and Modern Population. The f4-statistics for the 
tree-like topology of the shape f4(Outgroup, Test; Group1, Group2) 
measures the shared genetic drift between Test Population and 
Group1 and Group2. Assuming no recent interactions between each 
of these four groups, tree topologies are balanced at zero, and devi-
ation from zero implies a deviation from this proposed tree. Positive 
values indicate that Test population shares more alleles with Group1, 
and negative values indicate that Test population shares more al-
leles with Group2. Using the qpDstat program of ADMIXTOOLS 
(57) package with the “f4mode:YES” option, f4-statistics were calcu-
lated for a set of tree-like topologies.

Admixture graph fitting
A statistical frame implemented in TreeMix (22) was used to examine 
the genetic relationships between ancient individuals and Khaiyrgas-1. 
The method relies on building a maximum likelihood tree of the 
given populations using the covariance matrix of allele frequencies. 
This method was applied to Khaiyrgas-1 (0.3×), irk034 (14.5×), 
kra001 (13.6×), Tianyuan (28), Kolyma_M (5), Yana_UP (5), An-
zick (29), MA1 (23), and AfontovaGora3 (24). Tree was rooted with 
the Yoruba population, and analysis was run on the 1000 Genomes 
dataset described above. To inactivate the correction for low sample 
size, the program was run with the “-noss” option. Using “-k 500 -se” 
parameters, SEs were estimated using blocks of 500 SNPs. The anal-
ysis was run for m = 0 zero-migration model. The analysis was run 
for 30 different random seeds, and the graph with the highest likeli-
hood and most common topology was reported (fig. S5).

Heterozygosity estimation
We estimated the heterozygosity levels in the genomes of 13 ancient 
individuals with coverages above 4.5× (Fig. 4A and table S1) as well 
as in the genomes of Loschbour (6.2×, European Mesolithic) and 
Stuttgart (9.2×, European Neolithic) (37). Heterozygosity levels were 
computed using ANGSD (49) on the alignment files (BAM) of the 
individuals as “angsd -i ${bamfile} -GL 1 -doGlf 2 -doMajorMinor 
1 -sites $sites -doSaf 1 -anc $ref. -minQ 30 -minmapq 30 -noTrans 
1 -out ${filebase}” and “realSFS ${filebase}.saf.idx -bootstrap 100 -P 
16 > ${filebase}_est_boot.ml.”

Runs of homozygosity
We computed the RoH in the genomes of 13 ancient Siberian indi-
viduals with coverages above 4.5× (Fig. 4B and table S1). For this anal-
ysis, the diploid dataset as described above was used. First, the dataset 
was converted to plink file format using vcftools (66) by extracting 
Yoruba-ascertained transversion SNPs. To compute the RoH levels, plink 
(62) was used as “plink --file ${filename} --homozyg --homozyg-density 

https://github.com/DReichLab/AdmixTools
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50 --homozyg-gap 100 --homozyg-kb 500 --homozyg-snp 50 --homozyg-
window-het 1 --homozyg-window-snp 50 --homozyg-window-
threshold 0.05 --out ${filename}.”

Multiple sequentially Markovian coalescent
MSMC was used to infer the changes in effective population size 
through time. The analysis was restricted to the samples with cover-
ages above 7.5× coverage. Input files were prepared using scripts 
provided with the release of MSMC (https://github.com/stschiff/
msmc-tools), and MSMC was run with the parameters --fixedRe-
combination and -r 0.88. Effective population sizes were plotted on 
the basis of a mutation rate of 1.25 × 10−8 and a generation time of 
30 years, and the curves were shifted on the basis of approximate 
ages of the samples.

Analysis for Y. pestis
We used 205 DNA libraries from 40 ancient individuals. Quality of the 
sequencing libraries was evaluated using fastqc (www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Reads were first mapped to a hy-
brid Yersinia genome (39), and those mapping to Y. pestis CO92 
reference genome were extracted. To judge the taxonomical origin 
of Y. pestis sequences, edit distance distribution, length distribution, 
deamination patterns, and breadth of coverage information were used. 
Malt was used to create an alignment database from reference and 
representative genomes of bacteria, fungi, archaea, and viruses from 
the National Center for Biotechnology Information RefSeq database 
(67). DustMasker was used to mask repetitive regions in the reference 
genomes. Each DNA library was aligned to the reference genome 
database by using the malt, and reads that were aligned to the Y. pestis 
reference genome were extracted using the malt-extract tool (https://
github.com/rhuebler/HOPS) (68) with the default options. Reads 
with mapping quality of <30 and  <20 nucleotides were filtered. 
Picard (http://broadinstitute.github.io/picard/) with MarkDuplicates 
option was used to remove the PCR duplicates. Edit distances were 
extracted using the NM field from the SAM file and visualized in R 
(version 3.6.2, R Core Team, 2013). MapDamage (69) was used to cal-
culate the deamination patterns and the deamination rate of Y. pestis 
and human DNA sequences. To examine the coverage, SAMtools 
(46) “depth -a” command was used (see Supplementary Text).

Investigating the functional SNPs
We inspected the allele distribution in SNP positions associated with a 
selection of biological traits using SAMtools mpileup (v1.3) (46). The 
traits that we investigated include the status of acetylator phenotype 
(NAT2), diet, and a set of phenotypic traits, i.e., risk of hypertension, 
cancers, and drug metabolism. We further evaluated the blood group 
variation among ancient individuals (see Supplementary Text).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/2/eabc4587/DC1
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