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DISEASES AND DISORDERS

Molecular subtyping of Alzheimer’s disease using RNA
sequencing data reveals novel mechanisms and targets
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Alzheimer’s disease (AD), the most common form of dementia, is recognized as a heterogeneous disease with
diverse pathophysiologic mechanisms. In this study, we interrogate the molecular heterogeneity of AD by analyzing
1543 transcriptomes across five brain regions in two AD cohorts using an integrative network approach. We iden-
tify three major molecular subtypes of AD corresponding to different combinations of multiple dysregulated
pathways, such as susceptibility to tau-mediated neurodegeneration, amyloid-§ neuroinflammation, synaptic
signaling, immune activity, mitochondria organization, and myelination. Multiscale network analysis reveals
subtype-specific drivers such as GABRB2, LRP10, MSN, PLP1, and ATP6V1A. We further demonstrate that variations
between existing AD mouse models recapitulate a certain degree of subtype heterogeneity, which may partially
explain why a vast majority of drugs that succeeded in specific mouse models do not align with generalized hu-
man trials across all AD subtypes. Therefore, subtyping patients with AD is a critical step toward precision medi-
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cine for this devastating disease.

INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia in
the elderly, estimated to affect more than 5.8 million individuals in
the United States and more than 50 million worldwide, with almost
half of individuals aged over 75 years (I). AD is primarily characterized
by progressive neurological decline, especially selectively targeted
memory loss and cognitive dysfunction (2). The neuropathological
manifestations of AD start long before apparent cognitive symp-
toms, however. It is traditionally understood that these include the
accumulation of amyloid-beta (A) peptide as extracellular plaques
and hyperphosphorylated tau as intracellular neurofibrillary tangles
(NFTs), typically identified on postmortem biopsy and used for
definitive AD diagnosis. Both Ap and NFT accumulation typically

"Department of Genetics and Genomic Sciences, Icahn School of Medicine at
Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA. 2Mount Sinai
Center for Transformative Disease Modeling, Icahn School of Medicine at Mount
Sinai, One Gustave L. Levy Place, New York, NY 10029, USA. 3Icahn Institute for Data
Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One
Gustave L. Levy Place, New York, NY 10029, USA. “Medical Scientist Training Pro-
gram, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. °Nash
Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai,
1425 Madison Avenue, New York, NY 10029, USA. SFriedman Brain Institute, lcahn
School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029,
USA. "Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425
Madison Avenue, New York, NY 10029, USA. 8Ronald M. Loeb Center for Alzheimer's
Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. *New
York Stem Cell Foundation Research Institute, New York, NY 10019, USA. 10Depart-
ment of Neurology, Icahn School of Medicine at Mount Sinai, New York NY 10029,
USA. ""Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA. '*Department of Pediatrics, Icahn School of Med-
icine at Mount Sinai, New York, NY 10029, USA. *Neurology, JJ Peters VA Medical
Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA. *Mental lliness Re-
search, Education and Clinical Centers, JJ Peters VA Medical Center, 130 West
Kingsbridge Road, Bronx, NY 10468, USA. 1sPsychiatr , JJ Peters VA Medical Center,
130 West Kingsbridge Road, Bronx, NY 10468, USA. '°Department of Pharmacolog-
ical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place,
New York, NY 10029, USA.

*Corresponding author. Email: bin.zhang@mssm.edu

Neff et al., Sci. Adv. 2021; 7 : eabb5398 6 January 2021

progress to targeted neuronal and synaptic loss, mainly in regions
of the cerebral cortex and the hippocampus. Concurrent with the
neuronal loss in AD, there is an additional coordinated breakdown
across other brain cell types such as gliosis, demyelination, and
inflammation that exacerbates cognitive dysfunction (3).

However, an increasingly growing body of evidence has demon-
strated that AD is a heterogeneous disease caused by various patho-
physiologic mechanisms beyond the typical dogma. For instance,
up to one-third of patients with a clinical diagnosis of AD have no
accumulation of AP (4), while many of those diagnosed with AD at
postmortem biopsy do not show cognitive impairment (5). Among
those at risk of sporadic late-onset AD (LOAD), patients may carry
a unique set of numerous genetic changes with greater risk for
developing the disease, including clusterin (CLU), triggering
receptor expressed on myeloid cells 2 (TREM?2), and apolipo-
protein E (APOE) variants (6). The interaction between specific
LOAD risk alleles and changes in disease pathogenesis, however,
remains elusive.

Furthermore, it is very challenging to predict the progression of
AD, suggesting high heterogeneity in disease progression among
patients with AD. There is growing evidence that disease progres-
sion and responses to interventions differ substantially within LOAD.
For instance, patients with LOAD often branch into distinct groups
including (i) slow versus rapid cognitive decliners (7), (ii) amnestic
versus nonamnestic AD (8), (iii) executive versus cortical visual
defect versus dysphasia-predominant AD (9), (iv) psychosis and
depression-associated AD (10-12), and (v) metabolic dysfunction-
associated AD modulated by abnormalities in insulin resistance,
hormonal deficiencies, or homocysteinemia (13). Last, the relation-
ship between the various forms of AD and other non-AD dementias
such as primary age-related tauopathy (14), vascular contributions
to cognitive impairment and dementia (15), and frontotemporal
dementia (16) must be better understood. Therefore, identifying
unique molecular subtypes of AD resistant to other comorbid
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conditions may provide new insights into AD patient subpopula-
tions and pave the way for precision medicines for AD.

Molecular biomarkers may hold the promise for improving
methodologies for AD subtype identification and classification
(17, 18). Some recent studies have highlighted the great advantages
of using RNA sequencing (RNA-seq) to profile the transcriptome of
the brain with neurodegenerative diseases. For instance, a multiomic
molecular analysis of LOAD across four brain regions uncovered
subnetworks and previously unidentified molecular drivers of the
disease, including the vacuolar adenosine 5’-triphosphate (ATP)-
dependent proton pump ATP6V1A, which are now shown to modulate
cognitive function in Drosophila models of AD (19). In addition,
molecular network analysis of LOAD brains has identified an excess
of dysregulated genes that cannot be fully predicted by a single
model of the disease (19). Nevertheless, only a limited number of
published papers describe RNA-seq studies of the most relevant
material, namely, human AD brains across multiple regions (20).
Therefore, it is highly likely that specific subtype signatures of AD exist
across large transcriptomic studies that have not yet been identified.

In this study, we investigate molecular subtypes of AD in the
Mount Sinai/J] Peters VA Medical Center Brain Bank (MSBB-AD)
(21) study and replicate these findings in the Religious Orders
Study-Memory and Aging Project (ROSMAP) (22, 23). The MSBB-AD
cohort is a critical resource to understand postmortem molecular
changes leading to regional vulnerability as the samples were ex-
tracted from four brain regions, including the frontal pole (FP), the
superior temporal gyrus (STG), the parahippocampal gyrus (PHG),
and the inferior frontal gyrus (IFG), of the same set of human. Un-
derstanding the genetic and molecular differences between molecu-
lar subtypes of AD within these data will provide novel insights into
disease pathogenesis and offer new avenues for developing effec-
tive therapeutics.

RESULTS

The PHG carries the strongest molecular signal of LOAD

We obtained clinical and transcriptomic signatures from the MSBB-
AD study of 364 human brains, including whole-transcriptome
RNA-seq data from four brain regions (FP, STG, PHG, and IFG)
from participants with AD that showed neurocognitive decline as
measured by clinical dementia rating (CDR) score > 1 and nonde-
mented controls (CDR = 0). An overview of the cohorts, methods,
and analyses used in this study is provided in fig. S1. In addition,
table S1 summarizes the clinical and pathologic phenotypes for the
samples in the MSBB-AD cohort with the transcriptomic data from
the PHG. We identified several confounding factors in the RNA-
seq data, including age of death, race, and postmortem interval
(PMI). To minimize reidentification of clinical and technical co-
variates (see Materials and Methods), we first correct the transcrip-
tomic data for age of death, race, gender, PMI, batch number, and
RNA integrity number (RIN) using a mixed-effects model.

To understand which brain regions and molecular processes are
most vulnerable to dysregulation in AD, we perform differential
gene expression analysis between AD and control, generating dif-
ferentially expressed genes (DEGs) for each of the four brain re-
gions in the MSBB-AD (see Materials and Methods). The PHG
brain region has the largest number of DEGs [3571 genes; adjusted
false discovery rate (FDR), 0.05] compared to the FP (3 genes), STG
(1 gene), and IFG (181 genes). The results are consistent with previ-
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ous DEG analyses (19) of the MSBB-AD transcriptomic data and
suggest that the PHG is most vulnerable in AD as manifested by
marked transcriptomic dysregulation. In addition, these findings
are consistent with our previous pan-cortical atlas of AD (inde-
pendent of the data described here), in which the PHG brain region
showed the most substantial transcriptomic changes (24). Previous
work has shown that the hippocampus is strongly associated with
AB and tau accumulation and early memory loss in AD (24). We
have also shown in previous studies of the MSBB-AD cohort that
transcriptomic changes in the PHG region highly overlap the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (25) Alzheimer’s and
Parkinson’s disease gene sets and are correlated with high AB plaque
density (19), demonstrating that these changes are consistent with
AD disease progression. Therefore, the PHG region carries the
strongest molecular signature of AD.

Normalization of data by AD stages removes confounding
signal of neuronal loss

Patients with more severe AD-associated dementia, such as those in
a later stage of the disease, have been reported to have more neuro-
nal loss at postmortem biopsy (3). Therefore, it is important to
control for AD stage before transcriptomic analysis is performed
between AD participants. Previous work by our laboratory has
shown that brain cell-type surrogate proportion values (SPVs), in-
cluding the proportion of neurons in a sample, can be inferred from
bulk RNA-seq data when combined with measurements of brain
cell type-specific gene expression patterns (26) and may serve as a
marker of neuronal loss in AD.

To determine the extent of hippocampal neuronal loss in the
MSBB-AD cohort, we perform cell-type proportion analysis (Mate-
rials and Methods) of bulk tissue transcriptomic data from the PHG
region. As shown in fig. S2A, there is a strong relationship between
PHG neuronal loss and CDR score in the MSBB-AD cohort, with
astrogliosis and increased abundances of other cell types associated
with disease progression. Currently, there is no universally accepted
method to rectify for neuronal loss seen in AD, as this reduction in
neurons is both the cause and effect of molecular changes leading to
cognitive impairment. We examine both normalization by neuro-
nal cell-type proportion SPVs and AD dementia (as measured by
CDR score, range 0 to 6) to reduce the molecular signature of neu-
ronal loss in AD, using a linear effect model (Materials and Methods).
We show that after either normalization by neuronal cell-type pro-
portion or dementia severity (fig. S2, A and B), there is no remaining
significant correlation between cell type and AD stage. Furthermore,
the remaining correlation after normalization by dementia severity
is not reduced further with additional normalization for neuronal
cell type, as shown in fig. S2C. Thus, both normalization by CDR and
cell-type proportion SPVs effectively remove the confounding effects
of neuronal loss along disease progression in the MSBB-AD cohort.

We further normalize the PHG transcriptomic data by CDR
score, to remove the confounding effects of neuronal loss in later
AD stages. Therefore, any identified differences between groups of
AD participants should be distinct from previously identified clini-
cal subtypes of AD that rely on these metrics.

Identification of AD putative subtypes from molecular data
of the PHG

We seek to determine whether subgroups of AD participants
demonstrate molecular and clinical differences. To robustly identify
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subgroups of AD participants, we evaluate the performance of several
sample clustering methods for AD participants using the normalized
gene expression data within each brain region in the MSBB-AD
cohort. We choose two classical clustering algorithms (hierarchical,
k-means) as well as two novel network-based clustering algorithms
[weighted sample gene network analysis (WSCNA) and multiscale
embedded gene expression network analysis (MEGENA)] to group
similar samples together into putative AD subtypes. WSCNA shows
the best performance in terms of clustering quality and thus is ad-
opted to identify AD subtypes for the subsequent analyses.

As shown in Fig. 1, WSCNA identifies five subtypes in the
MSBB-AD (clusters A, B1, B2, C1, and C2) across all 151 partici-
pants with PHG transcriptomic data. On the basis of the dendrogram
and the network similarity heatmap (Fig. 1, A and B), these five sub-
types can be further grouped into three major classes of AD-labeled
class A, class B (comprising subtypes B1 and B2), and class C (com-
prising subtypes C1 and C2). Each class of subtypes has a similar
number of samples (47 in class A, 54 in class B, and 50 in class C)
(Fig. 1C).

Cluster stability is defined here as the rate at which sample
pairs group together into the same subtypes upon repeated re-
clustering on a random subset of the input data (Materials and
Methods). Subtypes from WSCNA clustering are generally sta-
ble (fig. S4), and sample pairs grouped together, on average, be-
tween 60 and 91% across all five detected AD subtypes. The class
C subtypes have the strongest stability, followed by class A and
class B; all subtypes demonstrate a cluster stability strongly above
random clusters, which was empirically determined at a stability
range between 20 and 30%. Therefore, these subtypes show spe-
cific robust molecular signals suitable for classification into stable
subtypes.

Molecular signatures of putative AD subtypes

To characterize the molecular signatures of these AD subtypes, we
identify DEGs for each of the five subtypes compared with nonde-
mented controls (CDR = 0) from the RNA-seq data in the PHG
region. The identified AD subtype molecular signatures are provid-
ed in data file S1. Each AD subtype has a specific transcriptomic
signature of up- and down-regulated genes that distinguishes it
from the others at a molecular level, suggesting a plurality of differ-
ent mechanisms of AD. As shown by Fig. 1D, there is a clear sepa-
ration of molecular signatures between the five AD subtypes that
can be visually appreciated from the whole-transcriptome gene
expression heatmap after identifying gene modules using weighted
interaction network analysis (WINA) (24, 27).

Using mean gene expression levels grouped by Gene Ontology
(GO) pathway as surrogate markers for the activity level of various
molecular processes in the brain, we identify a number of differences
in key AD-related pathways between the subtypes, providing in-
sights into disease pathogenesis. As shown in Fig. 1E, we highlight
significant deviations (Welsh’s P < 0.05) of 74 AD-related signa-
tures from previous studies and GO pathways (17, 28), including
pathways related to AP, oxidative stress, tau NFT, and synaptic
function, across the five AD subtypes and controls. First, we
compare our subtype molecular signatures with the postmortem
hippocampal transcriptional signatures of AD by Blalock et al. (28)
(termed Blalock signatures). Overall, molecular signatures from all
AD participants are consistent with Blalock; however, this consist-
ency is not shared between each of the individual AD subtypes. We
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observe that the direction of the gene expression changes in the
class C subtypes is consistent with the Blalock signatures, while
the changes in the class A subtype are opposite to Blalock. In
contrast, the signature of the class B subtypes does not show sig-
nificant enrichment of the Blalock signatures. Therefore, AD sub-
types may be classified into three larger classes (classes A, B, and C),
i.e., typical (class C), intermediate (class B), or atypical (class A),
by molecular presentation when compared to the Blalock signa-
tures of AD.

We observe only weak molecular enrichment of AB- and tau-
related pathways across all AD participants as a group, but strong
enrichment of these pathways in the subtypes. For instance, we see
strong up-regulation of AB binding, clearance, and fiber formation
pathways in subtype C1 and scavenger receptor activity in subtypes
C1 and C2, while these same pathways are down-regulated in sub-
types A and Bl. On the other hand, tau-neighborhood genes
(“GNF2_MAPT” pathway) are strongly up-regulated in subtypes A,
B1, and B2 but down-regulated in C1 and C2. Tau protein binding
and tau-related P35 pathway genes are up-regulated in the subtype
A. Therefore, it is likely that AD subtypes may be characterized by
either AP activity predominant (class C) or microtubule associated
protein tau (MAPT)-activity predominant (class A + B) although
they cannot fully explain all differences seen between the five sub-
types.

The predicted subtypes also differ strongly in neuronal activity
despite normalization for AD staging. We see broad down-regulation
of glutaminergic, y-aminobutyric acid (GABA) related, glyciner-
gic, and dendritic synaptic pathways in class C subtypes, with ab-
sent changes in cholinergic and dopaminergic synaptic pathways,
suggesting that these synapse types are selectively resilient to AD
subtype molecular changes. On the other hand, we observe strong
up-regulation of these same synapse pathways in classes A and B,
with the exception of up-regulation of glycinergic synapse in class
A. This pattern is consistent with differences in synaptic excitation
pathways between subtypes: Excitatory synapses are up-regulated in
classes A and B but down-regulated in class C. These data suggest
that AD subtypes may be split into those selectively vulnerable to
synaptic depression (class C) versus synaptic excitation (classes A
and B).

Dysregulated immune system activities, including reactive glio-
sis and the breakdown of the blood-brain barrier, have been repeat-
edly observed in AD brains (29). In subtypes B2, C2, and especially
C1, immune-related pathways including the innate and adaptive
immune response, immune system activation, inflammation, cir-
culatory system development, and endothelial cell migration are
up-regulated compared with normal controls. Such up-regulation
coincides with increased expression of blood-brain barrier, base-
ment membrane, and cell matrix adhesion genes. However, these
immune response pathways are down-regulated in subtypes A and
B1. These data and the findings relative to synaptic pathways sug-
gest that disease progression across AD subtypes is characterized by
either increased immune or synapse pathway activity.

Last, certain molecular pathways are subtype specific and thus
provide greater insights into disease pathogenesis when considering
other enriched AD pathways. For example, many protein degradation-
related genes, including ubiquitination and polyubiquitination, protein
catabolism, the proteasome, and proteins targeting for destruction,
are up-regulated in subtype A while organic acid-related genes,
including acid secretion and acidic amino acid transport, are specifically
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Fig. 1. Identification of five stable molecular subtypes of AD. (A and B) WSCNA clustering dendrogram and topological overlap matrix (TOM) heatmap, showing three
major classes (A, B, and C) and five subtypes annotated as A, B1, B2, C1, and C2, corresponding to the yellow, red, blue, turquoise, and orange clusters, respectively.
(€) Number of samples in each subtype, control (CDR = 0) and mild cognitive impairment (MCl) (CDR = 0.5). (D) Gene expression profiles of all the samples in the PHG from
the MSBB-AD cohort. The samples on the columns are grouped by subtype, and the genes on the rows are grouped by WINA module. FC, fold change. (E) Change in mean
expression level of various gene pathways for each AD subtype in comparison with the normal control samples. AD-related pathways, representing differential expression
from previous AD studies, are derived from the MSigDB. Sets are grouped by major area of biological activity.

up-regulated in class B. Defects in the acidification of lysosomes in neu-
rons have been previously associated with neuronal and synaptic loss in
AD, as well as decreases in long-term potentiation (19).

Association of clinical and pathological phenotypes

and APOE variants with putative AD subtypes

To understand the clinical characteristics of these molecularly
defined AD subtypes, we examine the relationship between charac-
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terized AD pathologic markers in the MSBB-AD study and each
subtype. As shown in Fig. 2 (B and C), under the Kruskal-Wallis
(KW) one-way analysis of variance (ANOVA) test, the AD subtypes
are marginally associated with several clinical AD markers, includ-
ing tau NFT levels in the medial frontal cortex (KW, P = 0.041), AB
mean plaque density (KW, P=0.020), and APOE e4 (KW, P=0.048)
and APOE e2 (KW, P = 0.012) allele counts. The “Ap predominant”
AD subtypes (class C), with a mean plaque density of 14.2/mm?,
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o of 0.05. n.s., not significant.

show a significantly larger A plaque burden than both of the “tau-
predominant” class A (mean, 8.4/mm? Welsh’s t test, P = 3.1 x 107%)
and the class B (mean, 9.6/mm? Welsh’s  test, P = 0.018) subtypes,
despite no significant difference in cognitive decline as measured
by CDR. Consistent with the preprocessing steps already performed
on the PHG data, the subtypes do not show significant differences
in previously corrected covariates. We do not see significant changes
in CDR score (KW, P = 0.082; Fig. 2C), biological sex (KW,
P =0.554; Fig. 2, B and C), ethnicity (KW, P =0.748), PMI (KW,
P =0.502), or age of death (KW, P = 0.503) across AD subtypes.
We also seek to better understand differences in APOE allele
dosages between AD subtypes. We find that certain subtypes are
preferentially enriched or depleted for the e4 and e2 alleles com-
pared with others. For instance, the subtype C1 has a significantly
increased APOE e4 allele dosage (median, 0.61 alleles per partici-
pant) compared with the subtypes A (P = 0.035 under Welsh’s
t test), B1 (P =0.015), and B2 (P =0.017). This is consistent with the
known influence of the e4 allele on AD pathogenesis, including the
formation of AP plaques and NFTs, most similar to the molecular
signature of the AB-predominant subtypes. On the other hand, sub-
type C2, which shares many molecular features with C1, does not
have this association with APOE e4. Furthermore, subtype B2 has an
increased APOE e2 allele dosage (median, 0.23 alleles per partici-
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pant) compared with subtype A (P = 0.031) and C1 (P = 0.0091);
however, similar to APOE e4 among the class C subtypes, the APOE e2
dosage is also much higher than subtype B1 (P = 0.049). Therefore,
while APOE may modulate AD pathogenesis and contribute to
some molecular signatures in a portion of subtypes, we show that
APOE dosage is insufficient to fully explain all of the molecular
similarities and differences between both related and distinct AD
subtypes.

A subset of postmortem Alzheimer’s brains with PHG transcrip-
tomic data available (n = 55 of 151) has additional quantification of
AP plaque and tau NFT amounts across multiple brain regions, as
shown in fig. S6. We observed that tau NFT counts are significantly
associated with the AD subtypes across the inferior parietal lobule
(KW test, P = 0.017) and medial frontal gyrus (KW, P = 0.034). In
these regions, both the class B and C subtypes have increased tau
NFT burden. In contrast, Ap plaque rating is significantly elevated
in the inferior parietal lobule (KW, P = 0.031), medial frontal gyrus
(KW, P = 0.041), and lateral frontal gyrus (KW, P = 0.012) in only
the class C (AB-predominant) subtypes. These results are consistent
with the previous signatures from the GO pathway analysis, indi-
cating that class C subtypes are AP predominant, while class B sub-
types are tau NFT predominant. It is likely that while class A shows
increased MAPT pathway activity, it is resilient to the development
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of tau NFTs, perhaps via increased protein degradation pathway ac-
tivity. Therefore, these results suggest that class A subtypes are tau
NFT resilient. As expected from the analysis on all samples, both
CDR (KW, P = 0.155) and Braak score (KW, P = 0.075) are not asso-
ciated with the AD subtypes. Therefore, AD staging is not associated
with the changes in AP plaque and tau NFT levels in the subtypes.

Key network regulators of putative AD subtypes
The diverse molecular changes in the AD subtypes suggest distinct
intrinsic molecular mechanisms underlying each subtype. To iden-
tify potential key regulators of the molecular changes in each AD
subtype, we use a network biology approach that integrates multi-
scale embedded gene coexpression network analysis (MEGENA)
(30) and Bayesian causal network (BN) (31) inference (19, 24, 27, 32).
Toward this end, we construct a coexpression network on the basis
of all the AD samples in the PHG, which includes 22,291 genes and
61,152 edges, and a BN comprised of 21,577 genes and 23,554 edges.
Key driver analysis (KDA; Materials and Methods) of each resulting
network and the subtype DEG signatures identifies a ranked list of
955 up-regulated and 639 down-regulated key network regulator
genes (KNRs) in the MEGENA network and a ranked list of 1226
up-regulated and 846 down-regulated KNRs in the BN. Last, the in-
tersection of the BN and MEGENA network KNRs yields a subset of
233 up- and 164 down-regulated KNRs across the five subtypes
(table S2). The full list of AD subtype molecular signatures, MEGENA
and BN KNRs, as well as their intersection and combined P values un-
der the aggregated Cauchy association test, is provided in data file S1.
Figure 3 (A and B) shows the up- and down-regulated key driv-
ers of each subtype in the context of the MEGENA network, while
Fig. 3 (C and D) shows the top 20 up- and down-regulated KNRs
per subtype in the MEGENA network and the BN. Even the sub-
types within each class (e.g., B and C) have subtype-specific drivers.
As shown in Fig. 3 (A and B), each subtype’s key drivers fall onto
separate parts of the MEGENA network, suggesting that specific
gene modules are subtype specific, and subtypes may be driven by a
specific, yet diverse set of disease mechanisms that lead to AD. For
instance, a large number of neuronal genes located at the center of
the global network are down-regulated in the AB-predominant
AD subtypes (C1 and C2) and are predicted to be pathogenic in
AD. These down-regulated neuronal genes are predicted to be reg-
ulated by KNRs GABRB2 (BN, P=7.2 x 10°*), SYT1 (P=3.6 x 107"),
ATP6VIA (P=1.81x 10%), and SCN2A (P = 4.07 x 10") in both
models. On the other hand, the top right of the MEGENA network
consists of many oligodendrocytic genes that are down-regulated in
the class B subtypes and are predicted to be regulated by PLPI (BN,
P =1.05x 10""*), Ermin (ERMN) (P = 1.51 x 107*%), Quaking (QKI)
(P =6.95 x 10™%), and Stromal antigen 2 (STAG?2) (8.89 x 107%) in
both models. Last, the bottom right of the network is enriched for
several down-regulated microglial, endothelial, and astrocytic
genes that are driven by LRPI10 (BN P = 2.15 x 107%), TLN1 (P =
3.71x 10~%), LAMB2 (P=2.2 x 10~%), MYOIC (P = 5.2 x 10~°), and
NOTCHI (P = 4.6 x 107'%). Consistent with the observation that
the AD subtypes in the classes A and C show opposite gene expres-
sion changes in known AD-associated gene signatures, many
up-regulated neuronal KNRs (GABRB2, LRP10,SYT1,and PREPL)
in the class A subtype are down-regulated in class C. Therefore, it is
likely that both the class A and class C subtypes result from either
inhibitory or excitatory dysregulation along a single axis in specific
neuronal processes.
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Last, we sought to investigate whether these subtype KNRs in the
PHG are also key regulators in other brain regions in the MSBB-AD
cohort. The same network analysis procedure is applied to the other
regions, including the FP, IFG, and STG. As shown in Fig. 3E, many
neuronal genes, including the KNRs SCN2A, GABRB2, PLPI, and
UGTS, have a consistent direction (up- or down-regulation) in two
or more brain regions in the MAPT pathway and AB-predominant
AD subtypes. Furthermore, some key oligodendrocytic genes such
as PLPI and UGTS8 remain as key network regulators for the class
B subtypes. Therefore, although the PHG shows the greatest vulner-
ability, the subtype key regulators have consistent dysregulation in
all the regions studied here.

Cell-type specificity of subtype molecular signatures
As previously discussed, to better understand brain cell-type speci-
ficity of transcriptomic changes in each AD subtype, we perform
cell-type proportion analysis (Materials and Methods) on each sam-
ple using the brain cell-type marker signatures determined by cell
type-specific sequencing previously conducted by our laboratory
(26). Figure 4A shows significant and unique changes in the cell-
type composition in the AD subtypes. For instance, class A has a
small increase in neurons combined with a decrease of oligoden-
drocyte precursor cells (OPCs), astrocytes, and endothelial cells. On
the other hand, class C has a substantial loss of neurons accompanied
by an increase of oligodendrocytes, astrocytes, OPCs, and endotheli-
al cells, opposite of the changes observed in class A. The class B sub-
types have mixed changes in other cell types, but both have a small
to moderate decrease in oligodendrocytes, consistent with the
oligodendrocytic key regulators found through network analysis.
These patterns are consistent with the reactive astrocytosis and mi-
crogliosis commonly seen in some patients with AD with immune
system activation in response to misfolded or polymerized amyloid
AP (3), which is indicated by the presence of inflammatory markers.
Next, using RNA-seq data derived from cultured brain cells (in-
cluding neurons, astrocytes, microglia, endothelial cells, and oligo-
dendrocytes), we examine the cell-type specificity of the key regulator
genes of each AD subtype (Materials and Methods). As shown in
Fig. 4 (B to F), we find that for the class C (“AB-predominant”)
subtypes, KNRs are up-regulated in microglia (TLN1, MSN, and
IL6R), endothelial cells (TAGLN2), and astrocytes (LRP10, GNA12,
and LTBP3) and down-regulated in neurons (ATP6VIA, SCN2A,
GABRB?2, and NAPB), consistent with neuroinflammatory destruc-
tion. On the other hand, the class A subtype has up-regulated neu-
ronal regulators (GABRB2, SYT1, and SCN2A), indicating increased
neuron remodeling and activity, and down-regulated KNRs in
astrocytes, endothelial cells, and microglia (LRP10, NOTCH1, MYOIC,
and TLNI). Only the class B shows marked down-regulation of
genes in oligodendrocytes (PLP1, UGT8, CLDND1, ERMN, and
ENPP2) with up-regulation in other cell types, suggesting that a
demyelinating process may be relevant in this class.

Enrichment of known AD genetic risk markers with

specific subtypes

To identify the influence of genetic determinants on AD subtype,
we investigate the differences in polygenic risk score (PRS) between
the predicted AD subtypes. We first compute each sample’s PRS
against the genome wide association study (GWAS) meta-analysis
of Kunkle et al. (33) across AD using the PRSice R package (34).
As non-European samples are excluded from the meta-analysis,

60of 17



SCIENCE ADVANCES | RESEARCH ARTICLE

A Down-regulated KNRs
&\,

TLNi

A /’jt’f/w’s | \%\\;;\3@;0“1
~NEGAR . %

3 \\ Subtype

B Up-regulated KNRs
&

A (yellow) A (yellow)
B1 (red) B1 (red)
B2 (blue) B2 (blue)
C1 (turquoise) CH1 (turquoise)
C2 (orange) C2 (orange)
C
@ - 0.6
< A . o000 oo -0 ece0ce -04 O
o Bt .« e e e .. 02 L
3 B2 . c0°0:00000 00000000 . Y Y X 00 2
O Clee:-¢ - @Q000@ - ¢ - ¢ ° 00000000 -0 Y=
<O( C2eoc-0-00000 . T X ° [T I XX EN X X ——O.Z(La
p - 0.4
e O AL Yol g
A O e A R R O |
VIS L & G/$ 5;37 & N ’*&S\“‘*@&c}”“$” OFET T "GP T VYR
< < < & N & Size: KNR P value
(larger = more sig.)
Top 10 MEGENA key network regulator genes per subtype
D -
® I— 06
Qo
= -0.4 8
5 <)
3 (XX XX} -02 &
a -00 T~
3 -02 9
- --04 QO
- -0.6
Size: KNR P value
(larger = more sig.)
Top 10 BN key network regulator genes per subtype
E o
STG (BM22) IFG (BM44) |_ 0.6
-04
8 eccee ee0coe - o
> -0.2 Lé-”
g o . . B
a e 0 IO 00 ©
o c9-0@0co000 o - 90000 - 0@ ‘-0-28
3 0000 - o °00c0: -0 - . I‘*OAD
] - -0.6
YUDNOOD N DO N0 0Q v Y2 FOTONR T
SEOSEESTETIELEE SoLSESTSFEIEES
éz‘TQo & FEOOIIIE ¢ FEEESS @ Size: KNR P value
LR ©C ¥ J SR S Q7 (larger = more sig.)

Fig. 3. MEGENA and BN-based key drivers of the AD subtypes. (A and B) Top down- and up-regulated MEGENA key drivers for each subtype plotted in its location in
the network. Color of a node represents subtype (ties resolved; described below), while size of a node corresponds to the total number of genes in the two-hop network
neighborhood around the gene, which are differentially expressed. Some genes are drivers for more than one subtype, and ties are resolved by coloring the node corre-
sponding to the subtype with the smallest signature so as to preserve faint signals. (C) Heatmap of the top 20 down- and up-regulated MEGENA key drivers for each AD
subtype, where size of the node represents KNR natural log P value (larger is more significant). (D) Heatmap of the top 20 down- and up-regulated BN key drivers for each
AD subtype. (E) AD subtype key drivers in the MEGENA network supported by gene expression changes in other brain regions, which the region of overlap listed.

we exclude non-European individuals in the MSBB-AD during the
PRS calculation. As shown in fig. S7, two of the three subtype class-
es show an increase in PRS burden compared with nondemented
controls, with significant differences in class A (median PRS, 0.235;
P =0.048 under Welsh’s ¢t test) and C (PRS, 0.44; P = 0.013) sub-
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types. While class B shows an increase in PRS, this difference is not
significant from nondemented controls (PRS, 0.33; P = 0.117). In
addition, we see an increased PRS burden across all AD samples
(median PRS, 0.35) compared with nondemented controls (PRS,
—0.43; P = 0.016). Despite these significant differences between
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five different cell types in a brain cell type-specific sequencing experiment (52).

individual AD subtypes and nondemented controls, there is no signifi-
cant difference in PRS between the AD subtype classes. Therefore, these
analyses demonstrate that genetic factors likely predispose individuals in
the MSBB cohort to developing AD across each subtype, but these
factors fail to adequately discriminate the molecular subtypes.

To better interrogate the intersection between known AD-
associated genetic loci and the AD subtypes, we also intersect the AD
risk genes compiled by the International Genomics of Alzheimer’s
Project (IGAP) Consortium (6) and the predicted subtype-specific
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key regulators. Forty-nine key regulators of the MEGENA network
across all five MSBB subtypes have genetic loci associated with AD
(IGAP gene-level significance, P < 0.01), including AMPH, PICALM,
MEF2C, EPDRI1, and PSMCé6 (table S2). AMPH, MEF2C, and
EPDRI are down-regulated in the class C subtypes and up-regulated
in class A. PICALM is down-regulated in subtype B2. PSMCE6 is
down-regulated in both the class B and C subtypes.

AMPH, otherwise known as amphiphysin 1, is a vesicle cell
surface protein important in clathrin-mediated endocytosis and is
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primarily expressed in neurons. It is an important homolog of
BINI, which is highly expressed in oligodendrocytes as well as im-
mune cell types and has been shown to be correlated with tau levels
as well as glial fibrillary acidic protein (GFAP) and myelin basic
protein (MBP) expression (35). In neurons, increased AMPH ex-
pression is associated with increased tau pathology, while increased
BINI expression is associated with decreased tau pathology (36).
On the other hand, human autoantibodies to AMPH, which are ob-
served in rare diseases (e.g., Stiff person syndrome), have been
shown to induce defective presynaptic vesicle dynamics and com-
position, leading to decreased GABAergic transmission (37). Many
GABA pathway genes are also predicted as key regulators in multi-
ple subtypes (GABRB2, GABRAI, and GABRA4). Therefore, either
up- or down-regulation of AMPH may lead to synaptic defects, either
directly on the synaptic vesicles or through the secondary effects of
tau accumulation. This is in line with our understanding of class C
in which decreased AMPH may lead to decreased neuronal activity
and up-regulated AMPH may increase tau pathway activity. There-
fore, the effects of GABAergic signaling on cognitive dysfunction
are likely critical to understanding and treating AD subtypes.

Subclassification of MSBB-AD samples with mild cognitive
impairment (CDR = 0.5) recapitulates three major AD
subtype classes

We have previously shown that AD subtypes are not correlated with
dementia severity as measured by CDR score and that molecular
signatures of these subtypes are independent from neuron degener-
ation and reactive gliosis seen in later stages of AD. We then seek to
investigate whether participants with a mild cognitive impairment
(MCI), without clinically defined AD, exhibit a subtype-specific sig-
nature consistent with the identified AD subtypes. On the basis of
the clinical data available, we defined MCI for the MSBB-AD cohort
as having a CDR score of 0.5, which corresponded to possible or
mild dementia (n = 32).

To determine whether MCI samples group together with AD
subtypes or whether MCI samples cluster separately on the basis of
their molecular signatures, we repeat the WSCNA on the combined
AD and MCI samples in the MSBB-AD cohort. As shown in the
clustering dendrogram given in figs. S8 and S9, MCI samples are
distributed in the branches corresponding with all five AD subtypes,
including both AP and tau-predominant AD subtypes. We count
the number of MCI samples distributed to each branch, labeled by
the corresponding AD subtype (table S4). We observe that the dis-
tribution of the MCI samples across the subtypes is different than
that of the AD samples (one-way ANOVA, P = 4.7 x 103, F
statistic = 14.947, df = 1). The MCI samples are distributed more often
to tau-predominant AD subtypes than AB-predominant AD sub-
types. This could be due to a variety of reasons, including potential
resilience to certain AD subtypes among the MCI group. Therefore,
MCI samples may also be subclassified into different subtypes, pro-
viding additional insights into the molecular features of the disease.

Validation of MSBB-AD subtypes in ROSMAP shows
conserved AD subtype molecular signatures

To verify the generalizability of AD subtypes identified in the
MSBB-AD cohort, we perform the WSCNA-based subtyping anal-
ysis on the gene expression data from the dorsolateral prefrontal
cortex (DLPFC) in the ROSMAP cohort (n = 610, with 391 AD
cases). The ROSMAP cohort is an independent study of a differ-
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ent brain region with more MCI (n = 64) and severe AD participants.
The postmortem brains in the ROSMAP cohort were collected from
individuals residing around multiple geographically distant sites
across the United States, and participants enrolled in the study were
evaluated multiple times over many years before death for cognitive
impairment that was suggestive of AD (38). Cognitive impairment
was measured by the mini-mental status exam (MMSE) at multiple
time points, and pathologic factors such as AP and tau NFT burden
were measured postmortem. In addition, the study includes three pre-
dominantly African-American and Hispanic communities in multi-
ple locations (38). Therefore, reidentification of similar molecular
subtypes of AD in the ROSMAP cohort should allow for greater
generalization of the findings from the MSBB-AD alone.

Similar to the normalization process performed on the MSBB
RNA-seq data, the ROSMAP gene expression data are corrected for
batch effect, PMI, gender, RIN, and outliers, as well as dementia
severity using MMSE scores to remove any potential effect of in-
creasing neuronal loss with AD staging on the ROSMAP subtypes.
Previous studies have shown a strong correspondence between
CDR scores and MMSE (39), and therefore, MMSE would serve as
a similar measure of dementia severity. As shown in fig. S10 (A and
B), we measure the cell-type proportion of ROSMAP samples with
increasing dementia severity before and after MMSE normalization.
We demonstrate that—like in MSBB-AD—neuronal loss inferred
from bulk transcriptomic data in ROSMAP is correlated with de-
creasing cognition (MMSE), and normalization using MMSE score
can eliminate this observed bias and allows for stage-free subtyping.
Furthermore, we show that cell-type proportion normalization is
not sufficient to completely eliminate the bias from dementia sever-
ity, as a non-zero residual correlation still persists between MMSE
and various cell types, and therefore, we choose MMSE normaliza-
tion to correct for this.

As shown in Fig. 5A, we identify five subtypes from AD partic-
ipants in this cohort, similar to those in the MSBB-AD cohort.
Expression profiles from this cohort and from the subtypes in
the PHG of the MSBB-AD cohort are significantly correlated
(Fig. 5, B and C). First, by inspection of the up- and down-regulated
gene modules alone, we observe two subtypes (blue and turquoise)
with decreased synaptic signaling and increased immune response,
one subtype (green) with increased synaptic signaling and protein
modification activity, and two subtypes (yellow and red) that do not
show changes in either pathway. Next, to quantify the similarity
between the two sets of AD subtypes in the two independent co-
horts, we perform correlation analysis of the mean gene expression
profiles of these subtypes, followed by hierarchical clustering analy-
sis. As shown in Fig. 5C, most subtypes in the ROSMAP cohort well
match certain subtypes from the PHG in the MSBB-AD cohort,
except the yellow subtype in the ROSMAP (Pearson correlation co-
efficients between 0.6 and 0.8). The clustering analysis further
demonstrates that three major AD subtype classes (tau-predominant
classes A and B, and AB-predominant class C) are highly conserved
across both cohorts with different brain regions.

We then seek to determine whether the participants in the
ROSMAP cohort are distributed in the AD subtypes at the same
relative proportion as those in the MSBB-AD cohort. The distribu-
tions are roughly proportional to each other, with fewer samples in
the C2 subtype than C1, with most samples either falling into class
A or B (table S5). Excluding samples that do not match any subtype
across both datasets, we perform a one-way ANOVA test across
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both MSBB-AD and ROSMAP and find no significant difference in
the distribution of samples. P = 0.089, F statistic = 5.01.

As shown in Fig. 5D, the ROSMAP subtypes also exhibit predicted
cell-type proportion changes in the frontal cortex. For example, the
blue and turquoise subtypes (class C-like) show decreases in neuro-
nal SPVs and increases in microglia and endothelial cell SPVs. On
the other hand, the green subtype (class A-like) shows strong in-
creases in neuronal and OPC SPVs, along with decreases in other
cell types. Last, the red subtype (class B-like) shows strong decreases
in OPC SPV only. Therefore, AD subtypes show strong, character-
istic susceptibility to cell-type proportion changes that are consistent
across subtypes identified in the two independent cohorts.

Similar to the MSBB subtypes, the ROSMAP subtypes are not
associated with clinical and pathological traits, including biological
sex, cognitive scores, age, Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD) pathologic scores, MMSE, and Braak
staging, suggesting that these subtypes are truly molecular sub-
types with distinct expression patterns. As shown in Fig. 5E, APOE
e2 allele dosage significantly decreases in the yellow (“other AD”)
subtype compared to all other subtypes (Welsh’s  test, P < 0.025), which
did not contain any APOE e2 individuals. On the other hand, APOE
e4 allele dosage is not significantly associated with ROSMAP AD
subtypes.

In addition, PRSs for ROSMAP subtypes and nondemented
controls are also computed using the GWAS meta-analysis of
Kunkle et al. (33) using the same methodology as for MSBB-AD, as
shown in fig. S10C. Similarly to the MSBB-AD cohort, each of the
ROSMAP classes A (median, 0.339, P = 5.1 x 10~ under Welsh’s
t test), B (median, 0.084, P = 0.032), and C (median, 0.191,P=1 x
107°) have an increased PRS compared to nondemented controls
(median, —0.239); however, there are no significant PRS differences
between subtypes.

Prediction of AD subtypes across different cohorts
We then develop a high-performance classifier to predict the
MSBB-AD PHG-based subtype classes (A, B, and C) of the partici-
pants in the ROSMAP AD cohort. A random forest (RF) model is
trained using all the AD samples in the MSBB PHG dataset and a
range of 5 to 350 subtype key regulators as features until maxi-
mum accuracy is achieved. Additional details about the training
and classification processes are given in Materials and Methods.
As shown in Fig. 5F, the performance of the RF model on the
ROSMAP data peaks in accuracy with 271 features. This top-performing
RF model was then selected for further validation and characteriza-
tion. A list of molecular features used in the model, as well as
top-performing features by class, is given in data file S2 and fig. S11.
Using the ROSMAP-derived subtype categories as the ground truth,
our classifier model reaches an accuracy of 83.1% (SD, 1.0%), with
class C (AP predominant) AD subtype prediction peaking at
91.3% (SD, 1.0), suggesting that the identified subtypes are highly
reproducible and predictable. Similar to the ROSMAP subtypes,
the subtypes predicted by the classifier do not show a significant
difference in cognition, CERAD score, MMSE, Braak score, APOE,
or biological sex (Fig. 5G). There is a small but significant associa-
tion with age of death under the KW test, but this was no longer
significant after multiple testing correction (P = 0.036, adjusted
P = 0.252), which is likely due to differences in age between the
atypical and intermediate subtypes (Welsh’s t test, P = 0.0048). The
difference in mean age between the groups is 1.6 years (87.6 years

Neff et al., Sci. Adv. 2021; 7 : eabb5398 6 January 2021

versus 86.0 years for atypical and intermediate, respectively), which
is relatively small and likely does not reflect marked differences in
AD stages. In addition, there is no significant difference in age under
the Welsh’s t test between the predicted AB- and tau-predominant
subtypes even without multiple test correction.

Correspondence between human AD subtypes and AD
mouse models

In the past two decades, several different mouse models of AD have
been developed to characterize AD pathology, biology, and behavioral
changes. Many of these mouse models perturb various AD-related
proteins or regulatory genes such as AR, APP, MAPT, PSEN1, TYROBP,
and HDACI. Given the substantial differences in molecular signatures
among the AD subtypes, we explore whether these AD subtypes’
transcriptomic signatures match the existing mouse model signatures.

We collect aligned RNA-seq data from 19 mouse model studies of
AD that are publicly available at the Accelerating Medicines Partnership-
Alzheimer’s Disease (AMP-AD) portal on Synapse.org and Gene
Expression Omnibus, as listed in data file S3. Transcriptomic signa-
tures for each mouse model are also identified. Many of these models
may harbor multiple amyloid precursor protein (APP) variants and
tau protein variants. The Swedish mice (APPK670N/M671NL)
develop AP plaques near neurons. The Dutch (APPE693Q) mice
accumulate soluble AP in perivascular cells at the blood-brain
barrier. The 5XFAD mice recapitulate APP variants seen in familial
forms of AD but do not have related tau NFT seen in AD. Tau
protein variant TauP301L (“D35”) and TauP301S (“PS19”) mice
develop hyperphosphorylated tau, as well as presenilin 1 (PSENI)
Aexon9 and M146V variants. We also examine APOE variant mice
and mouse models with mutant HDACI, TYROBP, TREM2, BIN1,
CD2AP, CLU, and GFAP alleles.

As shown in Fig. 6A, the class C subtypes (AP predominant)
match to the 5XFAD (familial), APP Dutch (inflammatory), and
APP Swedish (amyloid) mice, consistent with an amyloid-driven
disease with increased immune and circulatory system activity, as
well as previous findings that the class C subtypes may be driven by
inflammatory processes (shown in Fig. 1E). Inflammation at the
blood-brain barrier has been noted in AD and other age-related
neurodegenerative diseases such as vascular dementia. On the other
hand, the tau-predominant class A subtype has a gene signature
opposite to those of 5XFAD and APP mouse models but consistent
with that of the TauP301L model, in line with gene expression
changes in known tau pathways. The remaining two class B sub-
types (B1 and B2) show the strongest match with the CLU (apo]-)
mutant model and a good match with the CD2AP and BINI mutant
models. Clusterin, a secreted neuroprotective glycoprotein secreted
primarily by astrocytes, has been shown to be increased in AD in
response to tau-mediated neurodegeneration. Clusterin mutant mice
have been shown to have less AP damage and neuritic dystrophy
when bred with 5XFAD model mice versus controls (40). There-
fore, the class B subtypes match the mouse models that carry tau-
related neurodegenerative factors over amyloid-related factors.

We further examine the expression changes of the subtype-
specific key regulators in the 5XFAD, TauP301L, and CLU mutant
mouse models that match the three subtype classes. Figure 6B shows
the gene expression levels of the top four key regulators from each
of the five MSBB-AD subtypes in each mouse model. As expected,
the gene expression differences between the AD subtypes across hu-
man participants are recapitulated in specific mouse models. Many
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Fig. 6. Matching existing AD mouse models to the MSBB-AD subtypes. (A) GSEA enrichment of differential expression signatures of the identified AD subtypes
(up- and down-regulated) for the gene signatures of the AD mouse models. Positive scores indicate strong consistency. (B) Gene expression of the top subtype key regula-

tors across the mouse models, with significant DEGs shown.

KNRs of the AB- and tau-predominant subtypes have consistent
expression changes in the respective human brain samples and the
matched mouse models.

DISCUSSION

In this study, we systematically identify five molecular subtypes of
AD in three major classes and subsequently characterize them with
molecular signatures, network regulator genes, and matched mouse
models. Through a novel clustering method, the AD subtypes are
identified and cross-validated using independent postmortem
brain RNA data. The hippocampal area demonstrates the greatest
subtyping signal over the other regions, despite the fact that sub-
type effects are detectable across all brain regions studied here.
These subtypes are independent of age and disease severity. These
AD subtypes are well conserved across different independent co-
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horts. A small number of predicted key regulators can be used to
predict clinical features such as cognitive function or dementia.
Each subtype has a unique set of key regulator genes, and many
predicted subtype key regulators are also known as AD genetic risk
genes. Last, we show that each existing mouse model of AD may match
to a particular subset of human AD subtypes but not all subtypes
simultaneously. This may partially explain how many existing
clinical trials that showed promising efficacy in one particular
mouse model later do not align with human trial results, assuming
that study participants had consisted of a heterogeneous group of
participants across many AD subtypes.

The molecular subtypes of AD cannot be fully explained by dif-
ferences in postmortem pathologic variables such as AP and tau
accumulation or by differences in APOE risk allele genotype between
participants. These findings are consistent with previous studies
that have shown that cognitive impairment is neither dependent on
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nor fully assured by high levels of AR and tau accumulation (4, 5). It
is more likely that AB and tau accumulation are often mediators or
the end effects of neurodegeneration and inflammation, independent
of hippocampal load. This is also consistent with recent meta-analyses
of AD that have shown that the effects of APOE genotype on AD
risk are significantly diminished in older individuals (>75 years,
LOAD) (41).

The predicted subtypes and their molecular signatures as well as
key regulators along with matched mouse models pave the way for
developing novel therapeutics for AD toward precision medicine.
The specific mouse models identified in this study that most closely
match each of the AD subtypes may serve an important role in the
validation of subtype key regulator genes and hit compounds.
Additional work toward validating and better understanding the
role of each subtype key regulator in its matching mouse model will
provide great value and have a great impact on future studies of AD.

We observed many cell type-specific signatures and key regula-
tor genes for each AD subtype, which are persistent even after the
effects of dementia severity on neuronal loss and reactive gliosis are
removed, suggesting that subpopulations of neuronal or glial cell
types may contribute distinctively to different AD subtypes. There-
fore, single-cell transcriptomic analysis of control and AD human
brains will gain more insights into these cell types and the underly-
ing molecular mechanisms, leading to the heterogeneity in AD. This
will be a future direction of the research on AD subtype analysis.

Only about one-third of the AD cases carry consistent hallmarks
(e.g., increased immune response and decreased synaptic signaling)
of a “typical” AD presentation (class C), while the rest show oppo-
site molecular gene regulation and other complex changes across
multiple pathways and cell types (classes A and B). One potential
avenue for research on the modulation of the hallmark signature
across the subtypes is to look at the interaction between Ap folding,
tau, mitochondria, and lysosomal acidification, which are all dys-
regulated across the subtypes. Recent work has shown that certain AB
oligomers may, depending on the presence of tau, block mitochondrial
activity through lysosomal mTORCI protein kinase activity but poten-
tially stimulate mitochondrial activity in the absence of tau (42).

The bidirectional nature of certain key regulator genes (e.g.,
GABRB2 and ATP6V1A) across the identified AD subtypes is nota-
ble but not unsupported by previous research. Recent work in AD
mouse models has shown that the effects of a-synuclein on Alzheimer’s
pathology and clinical phenotypes are important when the gene is
up- and down-regulated. For instance, while reduced a-synuclein
increases AP deposition in APP mutant mice, increased a-synuclein
was shown in the same experiment to decrease spatial memory for-
mation, increase neuronal cell cycle dysfunction, and increase spe-
cific tau conformational markers (43).

Among all the clinical, pathological, and genetic factors tested,
APOE genotype is highly associated with some of the AD subtypes.
Besides APOE, additional genetic risk factors for AD, such as those
identified by linkage analysis and GWAS in the IGAP study, hint at
a plurality of mechanisms through which AD is developed (6, 44, 45).
Furthermore, one study shows that some patients with MCI or de-
pression before AD have a more gradual progression to the disease
and that they have pathologic AP and tau cerebrospinal fluid (CSF)
level changes that are not affected by APOE allele status, while the
other forms of AD show a strong APOE association (46).

We demonstrate that participants with only MCI could be clas-
sified into all three subtype classes, suggesting that certain patients
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may be selectively vulnerable for a certain disease-causing molecu-
lar process over others. One caveat of our analyses is that partici-
pants in both the MCI and AD groups are similarly aged; therefore,
participants with MCI in the MSBB-AD likely demonstrate resilience
to AD as a group and, as a result, may be in an earlier stage of the
disease. While MCI participants are more often classified into tau-
predominant subtypes than AD participants, it is unlikely that this
is due to participant age in the MSBB-AD. Future work will investi-
gate the progression of MCI to AD subtype via a prospective study
to establish whether participants maintain a particular subtype des-
ignation from one stage of dementia to the next over a range of ages
and clinical course of disease progression.

Drug repositioning, a process of matching known drug tran-
scriptomic signatures to a disease signature in silico to identify hit
candidates that produce the desired change in expression, may be
useful in identifying compounds that change the level of top key
regulator genes among certain AD subtypes that can be validated in
their matched AD animal model system. For instance, a particular
candidate compound identified using molecular signature data alone
using an in silico drug repositioning algorithm (47) was able to in-
crease the expression level of ATP6VIA and restore long-term po-
tentiation and memory formation in both cultured neurons and AD
mouse models (19). Therefore, AD subtype-specific signatures
identified in the MSBB-AD cohort will play an important role not
only in identifying new candidate drugs for treating AD but also in
stratifying the patient population for suitable AD treatments.

To develop personalized treatments for AD, each patient should
be classified by subtype. As we have shown, AD subtypes have very
different transcriptomic signatures and therefore will likely require
specialized treatments. Given that many subtype-specific key regu-
lators have opposite directions in some AD subtypes, it is also
possible that drugs that reduce AD symptoms in one subtype may
exacerbate symptoms in another subtype. Furthermore, we con-
struct a machine learning model for predicting AD subtypes that is
effective and robust. However, since the prediction is based on brain
transcriptomic data that are not available from vast majority of patients,
unnecessary biomarkers for AD subtypes either from peripheral tissues
(e.g., CSF and blood) or noninvasive brain imaging are highly desirable.

MATERIALS AND METHODS

AD cohorts

In this study, we used two AD cohorts of RNA-seq data: the MSBB-AD
(21) study and the ROSMAP (22, 23). The MSBB-AD cohort in-
cludes RNA expression data in the following four different brain
regions: FP (Brodmann area 10; n = 265 with 187 AD cases), STG
(Brodmann area 22; n = 240 with 174 AD cases), PHG (Brodmann
area 36; n = 215 with 151 AD cases), and the IFG (Brodmann area
44; n =222 with 157 AD cases). Clinical phenotypes for each partic-
ipant are also collected including age, race, sex, hypoxia-induced
encephalopathy score, cognitive function scores, CDR, age of onset
and death, and pathologic findings of tau and AP on biopsy. This
cohort was specifically selected to include cases with either no neu-
ropathology or only neuropathological lesions diagnostic of AD.
Cases with mixed neuropathology, e.g., AD and cerebrovascular
disease and AD with Lewy bodies, were specifically excluded from
the study cohort. Controls were defined as those presenting with no
cognitive impairment (i.e., CDR = 0) and no overt neuritic plaque
or NFT involvement.
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The ROSMAP (22, 23) includes whole-transcriptome RNA-seq
data of the DLPFC from 615 participants including those with AD
(n=391), MCI (n = 64) and nondemented controls (n = 160) determined
by a CERAD pathology score of definite AD or probable AD. Clin-
ical and pathologic phenotypes, as well as demographic informa-
tion, were also collected as well for each sample including MMSE
scores (at time of diagnosis and last known), CERAD score, Braak
score, cognitive score, APOE genotype, age of death, age at diagno-
sis, PMI, gender, race, education level, and if the participant was
Spanish-speaking.

Clustering algorithm evaluation and cluster stability
determination

We present a method to determine the empirical likelihood that a
particular clustering is robust and apply it to each considered clus-
tering algorithm and transcriptomic brain region. If true molecular
subtypes exist and are reflected in the transcriptomic data from a
certain brain region, then a robust clustering algorithm should pro-
duce the same set of clustered samples on repeated reclustering,
even if fewer samples or molecular features are used to create the
clustering. However, if no molecular signature is reflected in the
transcriptomic data, or the clustering algorithm is not robust, then
different sets of clustered samples may be produced upon repeated
reclustering. On the MSBB-AD cohort data, we performed 50 rounds
of bootstrapped reclustering using each of the four clustering algo-
rithms, withholding 20% of the samples and genes per round. We
calculate the rate at which pairs of samples shared the same cluster
across all 50 bootstrapping rounds (e.g., a pair of samples clustered
together in 35 of 50 bootstrapped clustering rounds would have a
rate of 70%), defined here as the pairwise sample reclustering rate.
We then calculate the average pairwise sample reclustering rate for
all pairs of samples within the sample clusters identified by each
algorithm, as well as the average rate of same-sized clusters drawn
from a distribution of 100,000 random pairs of samples. We term
these average rates the cluster stability rate and the null cluster sta-
bility rate, respectively. We then calculate the empirical likelihood
that the cluster stability rate and the null cluster stability rate are the
same, under the binomial distribution. Using this method, a specific
subtype grouping is considered a putative subtype if its empirically
adjusted P value is less than 0.05.

RNA-seq data normalization

MSBB-AD RNA-seq data were processed with the Spliced Tran-
scripts Alignment to a Reference (STAR) aligner and normalized
using mixed-model correction for batch effect, RIN, ribosomal
RNA rate, exonic RNA rate, PMI, age of death, inferred race, and
inferred sex. Label swaps were inferred and corrected or removed if
resolution was not possible.

To remove the disease stage effect, CDR is corrected in the
MSBB-AD gene expression data through linear model normaliza-
tion. This was verified by performing a second round of linear model
fitting between CDR and gene expression, which showed that no
significant DEGs remained between participants with different CDR
scores across all brain regions in the MSBB-AD.

ROSMAP DLPFC RNA-seq data were also normalized for age of
death, gender, batch, RIN, and PMI using mixed-model correction.
Data were then subsequently normalized for last known MMSE
score using a linear model, and no genes are shown subsequently to
have a correlation with MMSE (R? = 0).
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Differential gene expression analysis of AD subtypes

As described here, we performed differential gene expression (DEG)
analysis to determine the molecular signatures of each of the AD
subtypes compared with nondemented (CDR = 0) controls, starting
with the RNA-seq counts per million (CPM) data as input. The
analysis was carried out separately for each comparison. Log-scaled
(base 2) gene CPMs from samples in the comparison were first fit to
a linear model using the Imfit() provided by the limma R package
before contrasts were fit. Empirical Bayes statistics for differential
expression were then calculated using the eBayes() R function, fol-
lowed by the topTable() R function to output significant DEGs.
P values were adjusted by g values provided by the qvalue Biocon-
ductor package, using default parameters.

Clustering algorithms used in the establishment of putative
AD subtypes

WSCNA identifies sample clusters by analyzing gene expression
level correlations between pairs of samples to build a sample cor-
relation network, which is then used to calculate topological overlap
[topological overlap matrix (TOM)] score that can be used to clus-
ter similar samples together via k-means clustering. WSCNA ex-
tends the WINA algorithm (48) to samples by transposing the input
matrix so that sample-sample correlations are compared. Note that
gene expression data are standardized to z scores so that expression
differences do not inflate the correlation metric.

Network-based KNR analysis of molecular subtype signatures
We applied the key driver analysis (KDA) (49) to the multiscale em-
bedded gene expression network analysis (MEGENA) network
generated from PHG data in the MSBB. KDA first generates a sub-
network NG, defined as the set of nodes in N that are no more than
h layers away from the nodes in G, and then searches the h-layer
neighborhood (h = 1,..., H) for each gene in NG (HLNg,) for the
optimal /¥, such that

ES, = max(ES,g)Vg € Ng,» € {1,....H}

where ESj, ¢ is the computed enrichment statistic for HLN, 5. This
results in a list of predicted key network regulatory hub genes that
may alter the expression pattern of its surrounding nodes and result
in the DEG pattern observed.

Machine learning subtype classifier across other cohorts

We developed an RF model to classify samples into each AD sub-
type using the MSBB-AD PHG brain region data for training and
then validated this model on the ROSMAP data. All RF models
were built using the scipy Python library, with initial parameters of
300 decision trees and a maximum tree depth of 8. Before model
creation, both datasets are first corrected for cohort effect between
MSBB-AD and ROSMAP, using the ComBat program, to reduce
technical differences between studies. We divide classifier creation
into three steps: feature selection, model training, and model vali-
dation. For the feature selection step, we first selected different
numbers of top KNRs as features from each subtype (n = 1 to 80
features per subtype; total, 5 to 400 features). We then train multiple
RF models to predict subtype classification within the MSBB-AD
(PHG) cohort and evaluate the model accuracy using leave-one-
out cross-validation between the predicted and observed subtypes.
In the model training step, an RF model is created on all AD participants’
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PHG samples in MSBB-AD using only the top-performing features
identified in the previous step. Last, for the model validation step,
the RF model created from the MSBB-AD data is applied to the
ROSMAP data, and model accuracy is evaluated by comparing the
predicted ROSMAP subtypes from the RF model and the observed
ROSMAP subtypes from network-based clustering analysis. We in-
crease the number of features used in the RF model until maximum
validation accuracy is achieved, and the top-performing set of fea-
tures from this model is retained.

BN construction

A BN was constructed by integrating genome-wide gene expression,
SNP genotype, and known transcription factor (TF)-target rela-
tionships in the PHG in the MSBB-AD cohort, similar to our previ-
ous work (27). Briefly, we first computed expression quantitative
trait loci (eQTLs) and then used a formal statistical causal inference
test (50) to infer the causal probability between gene pairs associat-
ed with the same eQTL. The causal relationships inferred are used,
together with TF-target relationships from the Encyclopedia of
DNA Elements (ENCODE) project, as structural priors for building
a causal gene regulatory network from the gene expression data
through a Markov chain Monte Carlo (MCMC) simulation-based
procedure (51). We followed a network averaging strategy in which
1000 networks are generated from the MCMC procedure starting
with different random structure, and links that shared by more than
30% of the networks are used to define a final consensus network
structure. To ensure the consensus network is a directed acyclic graph,
an iterative deloop procedure was conducted, removing the most
weakly supported link of all links involved in any loop. Following
Zhang et al. (27), we performed KDA (49) on the consensus Bayesian
network to identify key network regulatory genes that can potentially
regulate a large number of downstream nodes.

Cell-type proportion analysis and cell-type normalization

To estimate the cell-type proportion of bulk tissue RNA-seq data
used in this study, we perform a cell-type deconvolution on each
sample using the brain cell-type marker signatures provided by the
BRETIGEA R package (26). One thousand marker genes per cell
type were used from the human brain cell marker gene set (neurons,
endothelials, oligodendrocytes, microglia, astrocytes, and OPCs) to
generate all surrogate cell-type proportion (SPV) estimates, except
for OPCs, which only had 500 marker genes available. Normaliza-
tion of the bulk RNA-seq by brain cell type was also performed by
BRETIGEA, using the default parameters and the calculated SPV
values from the previous step.

Cell-type specificity plots

To generate cell-type specificity plots, using the mean cell-type gene
expression levels from Zhang et al. (52), we plotted each squared
expression value as a vector from the center on a polar coordinate
system. We then calculated the vector sum from each of the expres-
sion levels and multiply the final result by a scaling parameter to
create a final point as the estimate of the cell-type specificity of any
gene under consideration.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/2/eabb5398/DC1

View/request a protocol for this paper from Bio-protocol.
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