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Molecular subtyping of Alzheimer’s disease using RNA 
sequencing data reveals novel mechanisms and targets
Ryan A. Neff1,2,3,4, Minghui Wang1,2,3, Sezen Vatansever1,2,3, Lei Guo1,2,3, Chen Ming1,2,3, 
Qian Wang1,2,3, Erming Wang1,2,3, Emrin Horgusluoglu-Moloch1,2,3, Won-min Song1,2,3, Aiqun Li1,3,5,6,7, 
Emilie L. Castranio11, Julia TCW5,8, Lap Ho1,2,3, Alison Goate1,3,5,6,8,10,11, Valentina Fossati9, 
Scott Noggle9, Sam Gandy7,10,11, Michelle E. Ehrlich10,12, Pavel Katsel7,15, Eric Schadt1,3, 
Dongming Cai10,13, Kristen J. Brennand1,3,5,6, Vahram Haroutunian5,6,11,14,15, Bin Zhang1,2,3,16*

Alzheimer’s disease (AD), the most common form of dementia, is recognized as a heterogeneous disease with 
diverse pathophysiologic mechanisms. In this study, we interrogate the molecular heterogeneity of AD by analyzing 
1543 transcriptomes across five brain regions in two AD cohorts using an integrative network approach. We iden-
tify three major molecular subtypes of AD corresponding to different combinations of multiple dysregulated 
pathways, such as susceptibility to tau-mediated neurodegeneration, amyloid- neuroinflammation, synaptic 
signaling, immune activity, mitochondria organization, and myelination. Multiscale network analysis reveals 
subtype-specific drivers such as GABRB2, LRP10, MSN, PLP1, and ATP6V1A. We further demonstrate that variations 
between existing AD mouse models recapitulate a certain degree of subtype heterogeneity, which may partially 
explain why a vast majority of drugs that succeeded in specific mouse models do not align with generalized hu-
man trials across all AD subtypes. Therefore, subtyping patients with AD is a critical step toward precision medi-
cine for this devastating disease.

INTRODUCTION
Alzheimer’s disease (AD) is the most common form of dementia in 
the elderly, estimated to affect more than 5.8 million individuals in 
the United States and more than 50 million worldwide, with almost 
half of individuals aged over 75 years (1). AD is primarily characterized 
by progressive neurological decline, especially selectively targeted 
memory loss and cognitive dysfunction (2). The neuropathological 
manifestations of AD start long before apparent cognitive symp-
toms, however. It is traditionally understood that these include the 
accumulation of amyloid-beta (A) peptide as extracellular plaques 
and hyperphosphorylated tau as intracellular neurofibrillary tangles 
(NFTs), typically identified on postmortem biopsy and used for 
definitive AD diagnosis. Both A and NFT accumulation typically 

progress to targeted neuronal and synaptic loss, mainly in regions 
of the cerebral cortex and the hippocampus. Concurrent with the 
neuronal loss in AD, there is an additional coordinated breakdown 
across other brain cell types such as gliosis, demyelination, and 
inflammation that exacerbates cognitive dysfunction (3).

However, an increasingly growing body of evidence has demon-
strated that AD is a heterogeneous disease caused by various patho-
physiologic mechanisms beyond the typical dogma. For instance, 
up to one-third of patients with a clinical diagnosis of AD have no 
accumulation of A (4), while many of those diagnosed with AD at 
postmortem biopsy do not show cognitive impairment (5). Among 
those at risk of sporadic late-onset AD (LOAD), patients may carry 
a unique set of numerous genetic changes with greater risk for 
developing the disease, including clusterin (CLU), triggering 
receptor expressed on myeloid cells 2 (TREM2), and apolipo-
protein E (APOE) variants (6). The interaction between specific 
LOAD risk alleles and changes in disease pathogenesis, however, 
remains elusive.

Furthermore, it is very challenging to predict the progression of 
AD, suggesting high heterogeneity in disease progression among 
patients with AD. There is growing evidence that disease progres-
sion and responses to interventions differ substantially within LOAD. 
For instance, patients with LOAD often branch into distinct groups 
including (i) slow versus rapid cognitive decliners (7), (ii) amnestic 
versus nonamnestic AD (8), (iii) executive versus cortical visual 
defect versus dysphasia-predominant AD (9), (iv) psychosis and 
depression-associated AD (10–12), and (v) metabolic dysfunction–
associated AD modulated by abnormalities in insulin resistance, 
hormonal deficiencies, or homocysteinemia (13). Last, the relation-
ship between the various forms of AD and other non-AD dementias 
such as primary age-related tauopathy (14), vascular contributions 
to cognitive impairment and dementia (15), and frontotemporal 
dementia (16) must be better understood. Therefore, identifying 
unique molecular subtypes of AD resistant to other comorbid 
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conditions may provide new insights into AD patient subpopula-
tions and pave the way for precision medicines for AD.

Molecular biomarkers may hold the promise for improving 
methodologies for AD subtype identification and classification 
(17, 18). Some recent studies have highlighted the great advantages 
of using RNA sequencing (RNA-seq) to profile the transcriptome of 
the brain with neurodegenerative diseases. For instance, a multiomic 
molecular analysis of LOAD across four brain regions uncovered 
subnetworks and previously unidentified molecular drivers of the 
disease, including the vacuolar adenosine 5′-triphosphate (ATP)–
dependent proton pump ATP6V1A, which are now shown to modulate 
cognitive function in Drosophila models of AD (19). In addition, 
molecular network analysis of LOAD brains has identified an excess 
of dysregulated genes that cannot be fully predicted by a single 
model of the disease (19). Nevertheless, only a limited number of 
published papers describe RNA-seq studies of the most relevant 
material, namely, human AD brains across multiple regions (20). 
Therefore, it is highly likely that specific subtype signatures of AD exist 
across large transcriptomic studies that have not yet been identified.

In this study, we investigate molecular subtypes of AD in the 
Mount Sinai/JJ Peters VA Medical Center Brain Bank (MSBB-AD) 
(21) study and replicate these findings in the Religious Orders 
Study–Memory and Aging Project (ROSMAP) (22, 23). The MSBB-AD 
cohort is a critical resource to understand postmortem molecular 
changes leading to regional vulnerability as the samples were ex-
tracted from four brain regions, including the frontal pole (FP), the 
superior temporal gyrus (STG), the parahippocampal gyrus (PHG), 
and the inferior frontal gyrus (IFG), of the same set of human. Un-
derstanding the genetic and molecular differences between molecu-
lar subtypes of AD within these data will provide novel insights into 
disease pathogenesis and offer new avenues for developing effec-
tive therapeutics.

RESULTS
The PHG carries the strongest molecular signal of LOAD
We obtained clinical and transcriptomic signatures from the MSBB-
AD study of 364 human brains, including whole-transcriptome 
RNA-seq data from four brain regions (FP, STG, PHG, and IFG) 
from participants with AD that showed neurocognitive decline as 
measured by clinical dementia rating (CDR) score > 1 and nonde-
mented controls (CDR = 0). An overview of the cohorts, methods, 
and analyses used in this study is provided in fig. S1. In addition, 
table S1 summarizes the clinical and pathologic phenotypes for the 
samples in the MSBB-AD cohort with the transcriptomic data from 
the PHG. We identified several confounding factors in the RNA-
seq data, including age of death, race, and postmortem interval 
(PMI). To minimize reidentification of clinical and technical co-
variates (see Materials and Methods), we first correct the transcrip-
tomic data for age of death, race, gender, PMI, batch number, and 
RNA integrity number (RIN) using a mixed-effects model.

To understand which brain regions and molecular processes are 
most vulnerable to dysregulation in AD, we perform differential 
gene expression analysis between AD and control, generating dif-
ferentially expressed genes (DEGs) for each of the four brain re-
gions in the MSBB-AD (see Materials and Methods). The PHG 
brain region has the largest number of DEGs [3571 genes; adjusted 
false discovery rate (FDR), 0.05] compared to the FP (3 genes), STG 
(1 gene), and IFG (181 genes). The results are consistent with previ-

ous DEG analyses (19) of the MSBB-AD transcriptomic data and 
suggest that the PHG is most vulnerable in AD as manifested by 
marked transcriptomic dysregulation. In addition, these findings 
are consistent with our previous pan-cortical atlas of AD (inde-
pendent of the data described here), in which the PHG brain region 
showed the most substantial transcriptomic changes (24). Previous 
work has shown that the hippocampus is strongly associated with 
A and tau accumulation and early memory loss in AD (24). We 
have also shown in previous studies of the MSBB-AD cohort that 
transcriptomic changes in the PHG region highly overlap the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (25) Alzheimer’s and 
Parkinson’s disease gene sets and are correlated with high A plaque 
density (19), demonstrating that these changes are consistent with 
AD disease progression. Therefore, the PHG region carries the 
strongest molecular signature of AD.

Normalization of data by AD stages removes confounding 
signal of neuronal loss
Patients with more severe AD-associated dementia, such as those in 
a later stage of the disease, have been reported to have more neuro-
nal loss at postmortem biopsy (3). Therefore, it is important to 
control for AD stage before transcriptomic analysis is performed 
between AD participants. Previous work by our laboratory has 
shown that brain cell–type surrogate proportion values (SPVs), in-
cluding the proportion of neurons in a sample, can be inferred from 
bulk RNA-seq data when combined with measurements of brain 
cell type–specific gene expression patterns (26) and may serve as a 
marker of neuronal loss in AD.

To determine the extent of hippocampal neuronal loss in the 
MSBB-AD cohort, we perform cell-type proportion analysis (Mate-
rials and Methods) of bulk tissue transcriptomic data from the PHG 
region. As shown in fig. S2A, there is a strong relationship between 
PHG neuronal loss and CDR score in the MSBB-AD cohort, with 
astrogliosis and increased abundances of other cell types associated 
with disease progression. Currently, there is no universally accepted 
method to rectify for neuronal loss seen in AD, as this reduction in 
neurons is both the cause and effect of molecular changes leading to 
cognitive impairment. We examine both normalization by neuro-
nal cell-type proportion SPVs and AD dementia (as measured by 
CDR score, range 0 to 6) to reduce the molecular signature of neu-
ronal loss in AD, using a linear effect model (Materials and Methods). 
We show that after either normalization by neuronal cell-type pro-
portion or dementia severity (fig. S2, A and B), there is no remaining 
significant correlation between cell type and AD stage. Furthermore, 
the remaining correlation after normalization by dementia severity 
is not reduced further with additional normalization for neuronal 
cell type, as shown in fig. S2C. Thus, both normalization by CDR and 
cell-type proportion SPVs effectively remove the confounding effects 
of neuronal loss along disease progression in the MSBB-AD cohort.

We further normalize the PHG transcriptomic data by CDR 
score, to remove the confounding effects of neuronal loss in later 
AD stages. Therefore, any identified differences between groups of 
AD participants should be distinct from previously identified clini-
cal subtypes of AD that rely on these metrics.

Identification of AD putative subtypes from molecular data 
of the PHG
We seek to determine whether subgroups of AD participants 
demonstrate molecular and clinical differences. To robustly identify 



Neff et al., Sci. Adv. 2021; 7 : eabb5398     6 January 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 17

subgroups of AD participants, we evaluate the performance of several 
sample clustering methods for AD participants using the normalized 
gene expression data within each brain region in the MSBB-AD 
cohort. We choose two classical clustering algorithms (hierarchical, 
k-means) as well as two novel network-based clustering algorithms 
[weighted sample gene network analysis (WSCNA) and multiscale 
embedded gene expression network analysis (MEGENA)] to group 
similar samples together into putative AD subtypes. WSCNA shows 
the best performance in terms of clustering quality and thus is ad-
opted to identify AD subtypes for the subsequent analyses.

As shown in Fig.  1, WSCNA identifies five subtypes in the 
MSBB-AD (clusters A, B1, B2, C1, and C2) across all 151 partici-
pants with PHG transcriptomic data. On the basis of the dendrogram 
and the network similarity heatmap (Fig. 1, A and B), these five sub-
types can be further grouped into three major classes of AD-labeled 
class A, class B (comprising subtypes B1 and B2), and class C (com-
prising subtypes C1 and C2). Each class of subtypes has a similar 
number of samples (47 in class A, 54 in class B, and 50 in class C) 
(Fig. 1C).

Cluster stability is defined here as the rate at which sample 
pairs group together into the same subtypes upon repeated re-
clustering on a random subset of the input data (Materials and 
Methods). Subtypes from WSCNA clustering are generally sta-
ble (fig. S4), and sample pairs grouped together, on average, be-
tween 60 and 91% across all five detected AD subtypes. The class 
C subtypes have the strongest stability, followed by class A and 
class B; all subtypes demonstrate a cluster stability strongly above 
random clusters, which was empirically determined at a stability 
range between 20 and 30%. Therefore, these subtypes show spe-
cific robust molecular signals suitable for classification into stable 
subtypes.

Molecular signatures of putative AD subtypes
To characterize the molecular signatures of these AD subtypes, we 
identify DEGs for each of the five subtypes compared with nonde-
mented controls (CDR = 0) from the RNA-seq data in the PHG 
region. The identified AD subtype molecular signatures are provid-
ed in data file S1. Each AD subtype has a specific transcriptomic 
signature of up- and down-regulated genes that distinguishes it 
from the others at a molecular level, suggesting a plurality of differ-
ent mechanisms of AD. As shown by Fig. 1D, there is a clear sepa-
ration of molecular signatures between the five AD subtypes that 
can be visually appreciated from the whole-transcriptome gene 
expression heatmap after identifying gene modules using weighted 
interaction network analysis (WINA) (24, 27).

Using mean gene expression levels grouped by Gene Ontology 
(GO) pathway as surrogate markers for the activity level of various 
molecular processes in the brain, we identify a number of differences 
in key AD-related pathways between the subtypes, providing in-
sights into disease pathogenesis. As shown in Fig. 1E, we highlight 
significant deviations (Welsh’s P < 0.05) of 74 AD-related signa-
tures from previous studies and GO pathways (17, 28), including 
pathways related to A, oxidative stress, tau NFT, and synaptic 
function, across the five AD subtypes and controls. First, we 
compare our subtype molecular signatures with the postmortem 
hippocampal transcriptional signatures of AD by Blalock et al. (28) 
(termed Blalock signatures). Overall, molecular signatures from all 
AD participants are consistent with Blalock; however, this consist-
ency is not shared between each of the individual AD subtypes. We 

observe that the direction of the gene expression changes in the 
class C subtypes is consistent with the Blalock signatures, while 
the changes in the class A subtype are opposite to Blalock. In 
contrast, the signature of the class B subtypes does not show sig-
nificant enrichment of the Blalock signatures. Therefore, AD sub-
types may be classified into three larger classes (classes A, B, and C), 
i.e., typical (class C), intermediate (class B), or atypical (class A), 
by molecular presentation when compared to the Blalock signa-
tures of AD.

We observe only weak molecular enrichment of A- and tau- 
related pathways across all AD participants as a group, but strong 
enrichment of these pathways in the subtypes. For instance, we see 
strong up-regulation of A binding, clearance, and fiber formation 
pathways in subtype C1 and scavenger receptor activity in subtypes 
C1 and C2, while these same pathways are down-regulated in sub-
types A and B1. On the other hand, tau-neighborhood genes 
(“GNF2_MAPT” pathway) are strongly up-regulated in subtypes A, 
B1, and B2 but down-regulated in C1 and C2. Tau protein binding 
and tau-related P35 pathway genes are up-regulated in the subtype 
A. Therefore, it is likely that AD subtypes may be characterized by 
either A activity predominant (class C) or microtubule associated 
protein tau (MAPT)–activity predominant (class A + B) although 
they cannot fully explain all differences seen between the five sub-
types.

The predicted subtypes also differ strongly in neuronal activity 
despite normalization for AD staging. We see broad down-regulation 
of glutaminergic, γ-aminobutyric acid (GABA) related, glyciner-
gic, and dendritic synaptic pathways in class C subtypes, with ab-
sent changes in cholinergic and dopaminergic synaptic pathways, 
suggesting that these synapse types are selectively resilient to AD 
subtype molecular changes. On the other hand, we observe strong 
up-regulation of these same synapse pathways in classes A and B, 
with the exception of up-regulation of glycinergic synapse in class 
A. This pattern is consistent with differences in synaptic excitation 
pathways between subtypes: Excitatory synapses are up-regulated in 
classes A and B but down-regulated in class C. These data suggest 
that AD subtypes may be split into those selectively vulnerable to 
synaptic depression (class C) versus synaptic excitation (classes A 
and B).

Dysregulated immune system activities, including reactive glio-
sis and the breakdown of the blood-brain barrier, have been repeat-
edly observed in AD brains (29). In subtypes B2, C2, and especially 
C1, immune-related pathways including the innate and adaptive 
immune response, immune system activation, inflammation, cir-
culatory system development, and endothelial cell migration are 
up-regulated compared with normal controls. Such up-regulation 
coincides with increased expression of blood-brain barrier, base-
ment membrane, and cell matrix adhesion genes. However, these 
immune response pathways are down-regulated in subtypes A and 
B1. These data and the findings relative to synaptic pathways sug-
gest that disease progression across AD subtypes is characterized by 
either increased immune or synapse pathway activity.

Last, certain molecular pathways are subtype specific and thus 
provide greater insights into disease pathogenesis when considering 
other enriched AD pathways. For example, many protein degradation– 
related genes, including ubiquitination and polyubiquitination, protein 
catabolism, the proteasome, and proteins targeting for destruction, 
are up-regulated in subtype A while organic acid–related genes, 
including acid secretion and acidic amino acid transport, are specifically 
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up-regulated in class B. Defects in the acidification of lysosomes in neu-
rons have been previously associated with neuronal and synaptic loss in 
AD, as well as decreases in long-term potentiation (19).

Association of clinical and pathological phenotypes 
and APOE variants with putative AD subtypes
To understand the clinical characteristics of these molecularly 
defined AD subtypes, we examine the relationship between charac-

terized AD pathologic markers in the MSBB-AD study and each 
subtype. As shown in Fig. 2 (B and C), under the Kruskal-Wallis 
(KW) one-way analysis of variance (ANOVA) test, the AD subtypes 
are marginally associated with several clinical AD markers, includ-
ing tau NFT levels in the medial frontal cortex (KW, P = 0.041), A 
mean plaque density (KW, P = 0.020), and APOE e4 (KW, P = 0.048) 
and APOE e2 (KW, P = 0.012) allele counts. The “A predominant” 
AD subtypes (class C), with a mean plaque density of 14.2/mm2, 
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Fig. 1. Identification of five stable molecular subtypes of AD. (A and B) WSCNA clustering dendrogram and topological overlap matrix (TOM) heatmap, showing three 
major classes (A, B, and C) and five subtypes annotated as A, B1, B2, C1, and C2, corresponding to the yellow, red, blue, turquoise, and orange clusters, respectively. 
(C) Number of samples in each subtype, control (CDR = 0) and mild cognitive impairment (MCI) (CDR = 0.5). (D) Gene expression profiles of all the samples in the PHG from 
the MSBB-AD cohort. The samples on the columns are grouped by subtype, and the genes on the rows are grouped by WINA module. FC, fold change. (E) Change in mean 
expression level of various gene pathways for each AD subtype in comparison with the normal control samples. AD-related pathways, representing differential expression 
from previous AD studies, are derived from the MSigDB. Sets are grouped by major area of biological activity.
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show a significantly larger A plaque burden than both of the “tau- 
predominant” class A (mean, 8.4/mm2; Welsh’s t test, P = 3.1 × 10−3) 
and the class B (mean, 9.6/mm2; Welsh’s t test, P = 0.018) subtypes, 
despite no significant difference in cognitive decline as measured 
by CDR. Consistent with the preprocessing steps already performed 
on the PHG data, the subtypes do not show significant differences 
in previously corrected covariates. We do not see significant changes 
in CDR score (KW, P =  0.082; Fig.  2C), biological sex (KW, 
P = 0.554; Fig. 2, B and C), ethnicity (KW, P = 0.748), PMI (KW, 
P = 0.502), or age of death (KW, P = 0.503) across AD subtypes.

We also seek to better understand differences in APOE allele 
dosages between AD subtypes. We find that certain subtypes are 
preferentially enriched or depleted for the e4 and e2 alleles com-
pared with others. For instance, the subtype C1 has a significantly 
increased APOE e4 allele dosage (median, 0.61 alleles per partici-
pant) compared with the subtypes A (P = 0.035 under Welsh’s 
t test), B1 (P = 0.015), and B2 (P = 0.017). This is consistent with the 
known influence of the e4 allele on AD pathogenesis, including the 
formation of A plaques and NFTs, most similar to the molecular 
signature of the A-predominant subtypes. On the other hand, sub-
type C2, which shares many molecular features with C1, does not 
have this association with APOE e4. Furthermore, subtype B2 has an 
increased APOE e2 allele dosage (median, 0.23 alleles per partici-

pant) compared with subtype A (P = 0.031) and C1 (P = 0.0091); 
however, similar to APOE e4 among the class C subtypes, the APOE e2 
dosage is also much higher than subtype B1 (P = 0.049). Therefore, 
while APOE may modulate AD pathogenesis and contribute to 
some molecular signatures in a portion of subtypes, we show that 
APOE dosage is insufficient to fully explain all of the molecular 
similarities and differences between both related and distinct AD 
subtypes.

A subset of postmortem Alzheimer’s brains with PHG transcrip-
tomic data available (n = 55 of 151) has additional quantification of 
A plaque and tau NFT amounts across multiple brain regions, as 
shown in fig. S6. We observed that tau NFT counts are significantly 
associated with the AD subtypes across the inferior parietal lobule 
(KW test, P = 0.017) and medial frontal gyrus (KW, P = 0.034). In 
these regions, both the class B and C subtypes have increased tau 
NFT burden. In contrast, A plaque rating is significantly elevated 
in the inferior parietal lobule (KW, P = 0.031), medial frontal gyrus 
(KW, P = 0.041), and lateral frontal gyrus (KW, P = 0.012) in only 
the class C (A-predominant) subtypes. These results are consistent 
with the previous signatures from the GO pathway analysis, indi-
cating that class C subtypes are A predominant, while class B sub-
types are tau NFT predominant. It is likely that while class A shows 
increased MAPT pathway activity, it is resilient to the development 
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Fig. 2. Mean values of several clinical and pathologic traits across AD subtypes. (A) Bar plots of mean CDR, Braak score, Aβ plaque density, tau NFT densities (mea-
sured in the entorhinal cortex, the medial superior temporal cortex, and the medial frontal cortex), APOE4 allele count, and APOE2 allele count across five subtypes, 
control, and MCI. (B) Stacked bar chart of inferred biological sex from transcriptomic data for all the PHG samples, across five subtypes, control, and MCI. (C) Natural 
log-transformed P values from the KW ANOVA test of clinical, pathologic, and demographic variables. Significant tests are greater than ~3.0, which corresponds to an 
 of 0.05. n.s., not significant.
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of tau NFTs, perhaps via increased protein degradation pathway ac-
tivity. Therefore, these results suggest that class A subtypes are tau 
NFT resilient. As expected from the analysis on all samples, both 
CDR (KW, P = 0.155) and Braak score (KW, P = 0.075) are not asso-
ciated with the AD subtypes. Therefore, AD staging is not associated 
with the changes in A plaque and tau NFT levels in the subtypes.

Key network regulators of putative AD subtypes
The diverse molecular changes in the AD subtypes suggest distinct 
intrinsic molecular mechanisms underlying each subtype. To iden-
tify potential key regulators of the molecular changes in each AD 
subtype, we use a network biology approach that integrates multi-
scale embedded gene coexpression network analysis (MEGENA) 
(30) and Bayesian causal network (BN) (31) inference (19, 24, 27, 32). 
Toward this end, we construct a coexpression network on the basis 
of all the AD samples in the PHG, which includes 22,291 genes and 
61,152 edges, and a BN comprised of 21,577 genes and 23,554 edges. 
Key driver analysis (KDA; Materials and Methods) of each resulting 
network and the subtype DEG signatures identifies a ranked list of 
955 up-regulated and 639 down-regulated key network regulator 
genes (KNRs) in the MEGENA network and a ranked list of 1226 
up-regulated and 846 down-regulated KNRs in the BN. Last, the in-
tersection of the BN and MEGENA network KNRs yields a subset of 
233 up- and 164 down-regulated KNRs across the five subtypes 
(table S2). The full list of AD subtype molecular signatures, MEGENA 
and BN KNRs, as well as their intersection and combined P values un-
der the aggregated Cauchy association test, is provided in data file S1.

Figure 3 (A and B) shows the up- and down-regulated key driv-
ers of each subtype in the context of the MEGENA network, while 
Fig. 3 (C and D) shows the top 20 up- and down-regulated KNRs 
per subtype in the MEGENA network and the BN. Even the sub-
types within each class (e.g., B and C) have subtype-specific drivers. 
As shown in Fig. 3 (A and B), each subtype’s key drivers fall onto 
separate parts of the MEGENA network, suggesting that specific 
gene modules are subtype specific, and subtypes may be driven by a 
specific, yet diverse set of disease mechanisms that lead to AD. For 
instance, a large number of neuronal genes located at the center of 
the global network are down-regulated in the A-predominant 
AD subtypes (C1 and C2) and are predicted to be pathogenic in 
AD. These down-regulated neuronal genes are predicted to be reg-
ulated by KNRs GABRB2 (BN, P = 7.2 × 10−44), SYT1 (P = 3.6 × 10−30), 
ATP6V1A (P = 1.81 × 10−27), and SCN2A (P = 4.07 × 10−116) in both 
models. On the other hand, the top right of the MEGENA network 
consists of many oligodendrocytic genes that are down-regulated in 
the class B subtypes and are predicted to be regulated by PLP1 (BN, 
P = 1.05 × 10−14), Ermin (ERMN) (P = 1.51 × 10−32), Quaking (QKI) 
(P = 6.95 × 10−30), and Stromal antigen 2 (STAG2) (8.89 × 10−27) in 
both models. Last, the bottom right of the network is enriched for 
several down-regulated microglial, endothelial, and astrocytic 
genes that are driven by LRP10 (BN P = 2.15 × 10−8), TLN1 (P = 
3.71 × 10−8), LAMB2 (P = 2.2 × 10−8), MYO1C (P = 5.2 × 10−3), and 
NOTCH1 (P = 4.6 × 10−12). Consistent with the observation that 
the AD subtypes in the classes A and C show opposite gene expres-
sion changes in known AD-associated gene signatures, many 
up-regulated neuronal KNRs (GABRB2, LRP10, SYT1, and PREPL) 
in the class A subtype are down-regulated in class C. Therefore, it is 
likely that both the class A and class C subtypes result from either 
inhibitory or excitatory dysregulation along a single axis in specific 
neuronal processes.

Last, we sought to investigate whether these subtype KNRs in the 
PHG are also key regulators in other brain regions in the MSBB-AD 
cohort. The same network analysis procedure is applied to the other 
regions, including the FP, IFG, and STG. As shown in Fig. 3E, many 
neuronal genes, including the KNRs SCN2A, GABRB2, PLP1, and 
UGT8, have a consistent direction (up- or down-regulation) in two 
or more brain regions in the MAPT pathway and A-predominant 
AD subtypes. Furthermore, some key oligodendrocytic genes such 
as PLP1 and UGT8 remain as key network regulators for the class 
B subtypes. Therefore, although the PHG shows the greatest vulner-
ability, the subtype key regulators have consistent dysregulation in 
all the regions studied here.

Cell-type specificity of subtype molecular signatures
As previously discussed, to better understand brain cell–type speci-
ficity of transcriptomic changes in each AD subtype, we perform 
cell-type proportion analysis (Materials and Methods) on each sam-
ple using the brain cell–type marker signatures determined by cell 
type–specific sequencing previously conducted by our laboratory 
(26). Figure 4A shows significant and unique changes in the cell-
type composition in the AD subtypes. For instance, class A has a 
small increase in neurons combined with a decrease of oligoden-
drocyte precursor cells (OPCs), astrocytes, and endothelial cells. On 
the other hand, class C has a substantial loss of neurons accompanied 
by an increase of oligodendrocytes, astrocytes, OPCs, and endotheli-
al cells, opposite of the changes observed in class A. The class B sub-
types have mixed changes in other cell types, but both have a small 
to moderate decrease in oligodendrocytes, consistent with the 
oligodendrocytic key regulators found through network analysis. 
These patterns are consistent with the reactive astrocytosis and mi-
crogliosis commonly seen in some patients with AD with immune 
system activation in response to misfolded or polymerized amyloid 
A (3), which is indicated by the presence of inflammatory markers.

Next, using RNA-seq data derived from cultured brain cells (in-
cluding neurons, astrocytes, microglia, endothelial cells, and oligo-
dendrocytes), we examine the cell-type specificity of the key regulator 
genes of each AD subtype (Materials and Methods). As shown in 
Fig. 4 (B to F), we find that for the class C (“A-predominant”) 
subtypes, KNRs are up-regulated in microglia (TLN1, MSN, and 
IL6R), endothelial cells (TAGLN2), and astrocytes (LRP10, GNA12, 
and LTBP3) and down-regulated in neurons (ATP6V1A, SCN2A, 
GABRB2, and NAPB), consistent with neuroinflammatory destruc-
tion. On the other hand, the class A subtype has up-regulated neu-
ronal regulators (GABRB2, SYT1, and SCN2A), indicating increased 
neuron remodeling and activity, and down-regulated KNRs in 
astrocytes, endothelial cells, and microglia (LRP10, NOTCH1, MYO1C, 
and TLN1). Only the class B shows marked down-regulation of 
genes in oligodendrocytes (PLP1, UGT8, CLDND1, ERMN, and 
ENPP2) with up-regulation in other cell types, suggesting that a 
demyelinating process may be relevant in this class.

Enrichment of known AD genetic risk markers with  
specific subtypes
To identify the influence of genetic determinants on AD subtype, 
we investigate the differences in polygenic risk score (PRS) between 
the predicted AD subtypes. We first compute each sample’s PRS 
against the genome wide association study (GWAS) meta-analysis 
of Kunkle et al. (33) across AD using the PRSice R package (34). 
As non-European samples are excluded from the meta-analysis, 
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we exclude non-European individuals in the MSBB-AD during the 
PRS calculation. As shown in fig. S7, two of the three subtype class-
es show an increase in PRS burden compared with nondemented 
controls, with significant differences in class A (median PRS, 0.235; 
P = 0.048 under Welsh’s t test) and C (PRS, 0.44; P = 0.013) sub-

types. While class B shows an increase in PRS, this difference is not 
significant from nondemented controls (PRS, 0.33; P = 0.117). In 
addition, we see an increased PRS burden across all AD samples 
(median PRS, 0.35) compared with nondemented controls (PRS, 
−0.43; P = 0.016). Despite these significant differences between 
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individual AD subtypes and nondemented controls, there is no signifi-
cant difference in PRS between the AD subtype classes. Therefore, these 
analyses demonstrate that genetic factors likely predispose individuals in 
the MSBB cohort to developing AD across each subtype, but these 
factors fail to adequately discriminate the molecular subtypes.

To better interrogate the intersection between known AD- 
associated genetic loci and the AD subtypes, we also intersect the AD 
risk genes compiled by the International Genomics of Alzheimer’s 
Project (IGAP) Consortium (6) and the predicted subtype-specific 

key regulators. Forty-nine key regulators of the MEGENA network 
across all five MSBB subtypes have genetic loci associated with AD 
(IGAP gene-level significance, P ≤ 0.01), including AMPH, PICALM, 
MEF2C, EPDR1, and PSMC6 (table S2). AMPH, MEF2C, and 
EPDR1 are down-regulated in the class C subtypes and up-regulated 
in class A. PICALM is down-regulated in subtype B2. PSMC6 is 
down-regulated in both the class B and C subtypes.

AMPH, otherwise known as amphiphysin 1, is a vesicle cell 
surface protein important in clathrin-mediated endocytosis and is 
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primarily expressed in neurons. It is an important homolog of 
BIN1, which is highly expressed in oligodendrocytes as well as im-
mune cell types and has been shown to be correlated with tau levels 
as well as glial fibrillary acidic protein (GFAP) and myelin basic 
protein (MBP) expression (35). In neurons, increased AMPH ex-
pression is associated with increased tau pathology, while increased 
BIN1 expression is associated with decreased tau pathology (36). 
On the other hand, human autoantibodies to AMPH, which are ob-
served in rare diseases (e.g., Stiff person syndrome), have been 
shown to induce defective presynaptic vesicle dynamics and com-
position, leading to decreased GABAergic transmission (37). Many 
GABA pathway genes are also predicted as key regulators in multi-
ple subtypes (GABRB2, GABRA1, and GABRA4). Therefore, either 
up- or down- regulation of AMPH may lead to synaptic defects, either 
directly on the synaptic vesicles or through the secondary effects of 
tau accumulation. This is in line with our understanding of class C 
in which decreased AMPH may lead to decreased neuronal activity 
and up-regulated AMPH may increase tau pathway activity. There-
fore, the effects of GABAergic signaling on cognitive dysfunction 
are likely critical to understanding and treating AD subtypes.

Subclassification of MSBB-AD samples with mild cognitive 
impairment (CDR = 0.5) recapitulates three major AD 
subtype classes
We have previously shown that AD subtypes are not correlated with 
dementia severity as measured by CDR score and that molecular 
signatures of these subtypes are independent from neuron degener-
ation and reactive gliosis seen in later stages of AD. We then seek to 
investigate whether participants with a mild cognitive impairment 
(MCI), without clinically defined AD, exhibit a subtype-specific sig-
nature consistent with the identified AD subtypes. On the basis of 
the clinical data available, we defined MCI for the MSBB-AD cohort 
as having a CDR score of 0.5, which corresponded to possible or 
mild dementia (n = 32).

To determine whether MCI samples group together with AD 
subtypes or whether MCI samples cluster separately on the basis of 
their molecular signatures, we repeat the WSCNA on the combined 
AD and MCI samples in the MSBB-AD cohort. As shown in the 
clustering dendrogram given in figs. S8 and S9, MCI samples are 
distributed in the branches corresponding with all five AD subtypes, 
including both A and tau-predominant AD subtypes. We count 
the number of MCI samples distributed to each branch, labeled by 
the corresponding AD subtype (table S4). We observe that the dis-
tribution of the MCI samples across the subtypes is different than 
that of the AD samples (one-way ANOVA, P = 4.7 × 10−3, F 
statistic = 14.947, df = 1). The MCI samples are distributed more often 
to tau-predominant AD subtypes than A-predominant AD sub-
types. This could be due to a variety of reasons, including potential 
resilience to certain AD subtypes among the MCI group. Therefore, 
MCI samples may also be subclassified into different subtypes, pro-
viding additional insights into the molecular features of the disease.

Validation of MSBB-AD subtypes in ROSMAP shows 
conserved AD subtype molecular signatures
To verify the generalizability of AD subtypes identified in the 
MSBB-AD cohort, we perform the WSCNA-based subtyping anal-
ysis on the gene expression data from the dorsolateral prefrontal 
cortex (DLPFC) in the ROSMAP cohort (n = 610, with 391 AD 
cases). The ROSMAP cohort is an independent study of a differ-

ent brain region with more MCI (n = 64) and severe AD participants. 
The postmortem brains in the ROSMAP cohort were collected from 
individuals residing around multiple geographically distant sites 
across the United States, and participants enrolled in the study were 
evaluated multiple times over many years before death for cognitive 
impairment that was suggestive of AD (38). Cognitive impairment 
was measured by the mini-mental status exam (MMSE) at multiple 
time points, and pathologic factors such as A and tau NFT burden 
were measured postmortem. In addition, the study includes three pre-
dominantly African- American and Hispanic communities in multi-
ple locations (38). Therefore, reidentification of similar molecular 
subtypes of AD in the ROSMAP cohort should allow for greater 
generalization of the findings from the MSBB-AD alone.

Similar to the normalization process performed on the MSBB 
RNA-seq data, the ROSMAP gene expression data are corrected for 
batch effect, PMI, gender, RIN, and outliers, as well as dementia 
severity using MMSE scores to remove any potential effect of in-
creasing neuronal loss with AD staging on the ROSMAP subtypes. 
Previous studies have shown a strong correspondence between 
CDR scores and MMSE (39), and therefore, MMSE would serve as 
a similar measure of dementia severity. As shown in fig. S10 (A and 
B), we measure the cell-type proportion of ROSMAP samples with 
increasing dementia severity before and after MMSE normalization. 
We demonstrate that—like in MSBB-AD—neuronal loss inferred 
from bulk transcriptomic data in ROSMAP is correlated with de-
creasing cognition (MMSE), and normalization using MMSE score 
can eliminate this observed bias and allows for stage-free subtyping. 
Furthermore, we show that cell-type proportion normalization is 
not sufficient to completely eliminate the bias from dementia sever-
ity, as a non-zero residual correlation still persists between MMSE 
and various cell types, and therefore, we choose MMSE normaliza-
tion to correct for this.

As shown in Fig. 5A, we identify five subtypes from AD partic-
ipants in this cohort, similar to those in the MSBB-AD cohort. 
Expression profiles from this cohort and from the subtypes in 
the PHG of the MSBB-AD cohort are significantly correlated 
(Fig. 5, B and C). First, by inspection of the up- and down-regulated 
gene modules alone, we observe two subtypes (blue and turquoise) 
with decreased synaptic signaling and increased immune response, 
one subtype (green) with increased synaptic signaling and protein 
modification activity, and two subtypes (yellow and red) that do not 
show changes in either pathway. Next, to quantify the similarity 
between the two sets of AD subtypes in the two independent co-
horts, we perform correlation analysis of the mean gene expression 
profiles of these subtypes, followed by hierarchical clustering analy-
sis. As shown in Fig. 5C, most subtypes in the ROSMAP cohort well 
match certain subtypes from the PHG in the MSBB-AD cohort, 
except the yellow subtype in the ROSMAP (Pearson correlation co-
efficients between 0.6 and 0.8). The clustering analysis further 
demonstrates that three major AD subtype classes (tau-predominant 
classes A and B, and A- predominant class C) are highly conserved 
across both cohorts with different brain regions.

We then seek to determine whether the participants in the 
ROSMAP cohort are distributed in the AD subtypes at the same 
relative proportion as those in the MSBB-AD cohort. The distribu-
tions are roughly proportional to each other, with fewer samples in 
the C2 subtype than C1, with most samples either falling into class 
A or B (table S5). Excluding samples that do not match any subtype 
across both datasets, we perform a one-way ANOVA test across 
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both MSBB-AD and ROSMAP and find no significant difference in 
the distribution of samples. P = 0.089, F statistic = 5.01.

As shown in Fig. 5D, the ROSMAP subtypes also exhibit predicted 
cell-type proportion changes in the frontal cortex. For example, the 
blue and turquoise subtypes (class C–like) show decreases in neuro-
nal SPVs and increases in microglia and endothelial cell SPVs. On 
the other hand, the green subtype (class A–like) shows strong in-
creases in neuronal and OPC SPVs, along with decreases in other 
cell types. Last, the red subtype (class B–like) shows strong decreases 
in OPC SPV only. Therefore, AD subtypes show strong, character-
istic susceptibility to cell-type proportion changes that are consistent 
across subtypes identified in the two independent cohorts.

Similar to the MSBB subtypes, the ROSMAP subtypes are not 
associated with clinical and pathological traits, including biological 
sex, cognitive scores, age, Consortium to Establish a Registry for 
Alzheimer’s Disease (CERAD) pathologic scores, MMSE, and Braak 
staging, suggesting that these subtypes are truly molecular sub-
types with distinct expression patterns. As shown in Fig. 5E, APOE 
e2 allele dosage significantly decreases in the yellow (“other AD”) 
subtype compared to all other subtypes (Welsh’s t test, P < 0.025), which 
did not contain any APOE e2 individuals. On the other hand, APOE 
e4 allele dosage is not significantly associated with ROSMAP AD 
subtypes.

In addition, PRSs for ROSMAP subtypes and nondemented 
controls are also computed using the GWAS meta-analysis of 
Kunkle et al. (33) using the same methodology as for MSBB-AD, as 
shown in fig. S10C. Similarly to the MSBB-AD cohort, each of the 
ROSMAP classes A (median, 0.339, P = 5.1 × 10−4 under Welsh’s 
t test), B (median, 0.084, P = 0.032), and C (median, 0.191, P = 1 × 
10−5) have an increased PRS compared to nondemented controls 
(median, −0.239); however, there are no significant PRS differences 
between subtypes.

Prediction of AD subtypes across different cohorts
We then develop a high-performance classifier to predict the 
MSBB-AD PHG-based subtype classes (A, B, and C) of the partici-
pants in the ROSMAP AD cohort. A random forest (RF) model is 
trained using all the AD samples in the MSBB PHG dataset and a 
range of 5 to 350 subtype key regulators as features until maxi-
mum accuracy is achieved. Additional details about the training 
and classification processes are given in Materials and Methods.

As shown in Fig. 5F, the performance of the RF model on the 
ROSMAP data peaks in accuracy with 271 features. This top-performing 
RF model was then selected for further validation and characteriza-
tion. A list of molecular features used in the model, as well as 
top-performing features by class, is given in data file S2 and fig. S11. 
Using the ROSMAP-derived subtype categories as the ground truth, 
our classifier model reaches an accuracy of 83.1% (SD, 1.0%), with 
class C (A predominant) AD subtype prediction peaking at 
91.3% (SD, 1.0), suggesting that the identified subtypes are highly 
reproducible and predictable. Similar to the ROSMAP subtypes, 
the subtypes predicted by the classifier do not show a significant 
difference in cognition, CERAD score, MMSE, Braak score, APOE, 
or biological sex (Fig. 5G). There is a small but significant associa-
tion with age of death under the KW test, but this was no longer 
significant after multiple testing correction (P = 0.036, adjusted 
P = 0.252), which is likely due to differences in age between the 
atypical and intermediate subtypes (Welsh’s t test, P = 0.0048). The 
difference in mean age between the groups is 1.6 years (87.6 years 

versus 86.0 years for atypical and intermediate, respectively), which 
is relatively small and likely does not reflect marked differences in 
AD stages. In addition, there is no significant difference in age under 
the Welsh’s t test between the predicted A- and tau-predominant 
subtypes even without multiple test correction.

Correspondence between human AD subtypes and AD 
mouse models
In the past two decades, several different mouse models of AD have 
been developed to characterize AD pathology, biology, and behavioral 
changes. Many of these mouse models perturb various AD- related 
proteins or regulatory genes such as A, APP, MAPT, PSEN1, TYROBP, 
and HDAC1. Given the substantial differences in molecular signatures 
among the AD subtypes, we explore whether these AD subtypes’ 
transcriptomic signatures match the existing mouse model signatures.

We collect aligned RNA-seq data from 19 mouse model studies of 
AD that are publicly available at the Accelerating Medicines Partnership– 
Alzheimer’s Disease (AMP-AD) portal on Synapse.org and Gene 
Expression Omnibus, as listed in data file S3. Transcriptomic signa-
tures for each mouse model are also identified. Many of these models 
may harbor multiple amyloid precursor protein (APP) variants and 
tau protein variants. The Swedish mice (APPK670N/M671NL) 
develop A plaques near neurons. The Dutch (APPE693Q) mice 
accumulate soluble A in perivascular cells at the blood-brain 
barrier. The 5XFAD mice recapitulate APP variants seen in familial 
forms of AD but do not have related tau NFT seen in AD. Tau 
protein variant TauP301L (“D35”) and TauP301S (“PS19”) mice 
develop hyperphosphorylated tau, as well as presenilin 1 (PSEN1) 
exon9 and M146V variants. We also examine APOE variant mice 
and mouse models with mutant HDAC1, TYROBP, TREM2, BIN1, 
CD2AP, CLU, and GFAP alleles.

As shown in Fig. 6A, the class C subtypes (A predominant) 
match to the 5XFAD (familial), APP Dutch (inflammatory), and 
APP Swedish (amyloid) mice, consistent with an amyloid-driven 
disease with increased immune and circulatory system activity, as 
well as previous findings that the class C subtypes may be driven by 
inflammatory processes (shown in Fig. 1E). Inflammation at the 
blood-brain barrier has been noted in AD and other age-related 
neurodegenerative diseases such as vascular dementia. On the other 
hand, the tau-predominant class A subtype has a gene signature 
opposite to those of 5XFAD and APP mouse models but consistent 
with that of the TauP301L model, in line with gene expression 
changes in known tau pathways. The remaining two class B sub-
types (B1 and B2) show the strongest match with the CLU (apoJ-) 
mutant model and a good match with the CD2AP and BIN1 mutant 
models. Clusterin, a secreted neuroprotective glycoprotein secreted 
primarily by astrocytes, has been shown to be increased in AD in 
response to tau-mediated neurodegeneration. Clusterin mutant mice 
have been shown to have less A damage and neuritic dystrophy 
when bred with 5XFAD model mice versus controls (40). There-
fore, the class B subtypes match the mouse models that carry tau- 
related neurodegenerative factors over amyloid-related factors.

We further examine the expression changes of the subtype- 
specific key regulators in the 5XFAD, TauP301L, and CLU mutant 
mouse models that match the three subtype classes. Figure 6B shows 
the gene expression levels of the top four key regulators from each 
of the five MSBB-AD subtypes in each mouse model. As expected, 
the gene expression differences between the AD subtypes across hu-
man participants are recapitulated in specific mouse models. Many 

http://Synapse.org
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KNRs of the A- and tau-predominant subtypes have consistent 
expression changes in the respective human brain samples and the 
matched mouse models.

DISCUSSION
In this study, we systematically identify five molecular subtypes of 
AD in three major classes and subsequently characterize them with 
molecular signatures, network regulator genes, and matched mouse 
models. Through a novel clustering method, the AD subtypes are 
identified and cross- validated using independent postmortem 
brain RNA data. The hippocampal area demonstrates the greatest 
subtyping signal over the other regions, despite the fact that sub-
type effects are detectable across all brain regions studied here. 
These subtypes are independent of age and disease severity. These 
AD subtypes are well conserved across different independent co-

horts. A small number of predicted key regulators can be used to 
predict clinical features such as cognitive function or dementia. 
Each subtype has a unique set of key regulator genes, and many 
predicted subtype key regulators are also known as AD genetic risk 
genes. Last, we show that each existing mouse model of AD may match 
to a particular subset of human AD subtypes but not all subtypes 
simultaneously. This may partially explain how many existing 
clinical trials that showed promising efficacy in one particular 
mouse model later do not align with human trial results, assuming 
that study participants had consisted of a heterogeneous group of 
participants across many AD subtypes.

The molecular subtypes of AD cannot be fully explained by dif-
ferences in postmortem pathologic variables such as A and tau 
accumulation or by differences in APOE risk allele genotype between 
participants. These findings are consistent with previous studies 
that have shown that cognitive impairment is neither dependent on 
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Fig. 6. Matching existing AD mouse models to the MSBB-AD subtypes. (A) GSEA enrichment of differential expression signatures of the identified AD subtypes 
(up- and down-regulated) for the gene signatures of the AD mouse models. Positive scores indicate strong consistency. (B) Gene expression of the top subtype key regula-
tors across the mouse models, with significant DEGs shown.
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nor fully assured by high levels of A and tau accumulation (4, 5). It 
is more likely that A and tau accumulation are often mediators or 
the end effects of neurodegeneration and inflammation, independent 
of hippocampal load. This is also consistent with recent meta-analyses 
of AD that have shown that the effects of APOE genotype on AD 
risk are significantly diminished in older individuals (>75 years, 
LOAD) (41).

The predicted subtypes and their molecular signatures as well as 
key regulators along with matched mouse models pave the way for 
developing novel therapeutics for AD toward precision medicine. 
The specific mouse models identified in this study that most closely 
match each of the AD subtypes may serve an important role in the 
validation of subtype key regulator genes and hit compounds. 
Additional work toward validating and better understanding the 
role of each subtype key regulator in its matching mouse model will 
provide great value and have a great impact on future studies of AD.

We observed many cell type–specific signatures and key regula-
tor genes for each AD subtype, which are persistent even after the 
effects of dementia severity on neuronal loss and reactive gliosis are 
removed, suggesting that subpopulations of neuronal or glial cell 
types may contribute distinctively to different AD subtypes. There-
fore, single-cell transcriptomic analysis of control and AD human 
brains will gain more insights into these cell types and the underly-
ing molecular mechanisms, leading to the heterogeneity in AD. This 
will be a future direction of the research on AD subtype analysis.

Only about one-third of the AD cases carry consistent hallmarks 
(e.g., increased immune response and decreased synaptic signaling) 
of a “typical” AD presentation (class C), while the rest show oppo-
site molecular gene regulation and other complex changes across 
multiple pathways and cell types (classes A and B). One potential 
avenue for research on the modulation of the hallmark signature 
across the subtypes is to look at the interaction between A folding, 
tau, mitochondria, and lysosomal acidification, which are all dys-
regulated across the subtypes. Recent work has shown that certain A 
oligomers may, depending on the presence of tau, block mitochondrial 
activity through lysosomal mTORC1 protein kinase activity but poten-
tially stimulate mitochondrial activity in the absence of tau (42).

The bidirectional nature of certain key regulator genes (e.g., 
GABRB2 and ATP6V1A) across the identified AD subtypes is nota-
ble but not unsupported by previous research. Recent work in AD 
mouse models has shown that the effects of -synuclein on Alzheimer’s 
pathology and clinical phenotypes are important when the gene is 
up- and down-regulated. For instance, while reduced -synuclein 
increases A deposition in APP mutant mice, increased -synuclein 
was shown in the same experiment to decrease spatial memory for-
mation, increase neuronal cell cycle dysfunction, and increase spe-
cific tau conformational markers (43).

Among all the clinical, pathological, and genetic factors tested, 
APOE genotype is highly associated with some of the AD subtypes. 
Besides APOE, additional genetic risk factors for AD, such as those 
identified by linkage analysis and GWAS in the IGAP study, hint at 
a plurality of mechanisms through which AD is developed (6, 44, 45). 
Furthermore, one study shows that some patients with MCI or de-
pression before AD have a more gradual progression to the disease 
and that they have pathologic A and tau cerebrospinal fluid (CSF) 
level changes that are not affected by APOE allele status, while the 
other forms of AD show a strong APOE association (46).

We demonstrate that participants with only MCI could be clas-
sified into all three subtype classes, suggesting that certain patients 

may be selectively vulnerable for a certain disease-causing molecu-
lar process over others. One caveat of our analyses is that partici-
pants in both the MCI and AD groups are similarly aged; therefore, 
participants with MCI in the MSBB-AD likely demonstrate resilience 
to AD as a group and, as a result, may be in an earlier stage of the 
disease. While MCI participants are more often classified into tau- 
predominant subtypes than AD participants, it is unlikely that this 
is due to participant age in the MSBB-AD. Future work will investi-
gate the progression of MCI to AD subtype via a prospective study 
to establish whether participants maintain a particular subtype des-
ignation from one stage of dementia to the next over a range of ages 
and clinical course of disease progression.

Drug repositioning, a process of matching known drug tran-
scriptomic signatures to a disease signature in silico to identify hit 
candidates that produce the desired change in expression, may be 
useful in identifying compounds that change the level of top key 
regulator genes among certain AD subtypes that can be validated in 
their matched AD animal model system. For instance, a particular 
candidate compound identified using molecular signature data alone 
using an in silico drug repositioning algorithm (47) was able to in-
crease the expression level of ATP6V1A and restore long-term po-
tentiation and memory formation in both cultured neurons and AD 
mouse models (19). Therefore, AD subtype–specific signatures 
identified in the MSBB-AD cohort will play an important role not 
only in identifying new candidate drugs for treating AD but also in 
stratifying the patient population for suitable AD treatments.

To develop personalized treatments for AD, each patient should 
be classified by subtype. As we have shown, AD subtypes have very 
different transcriptomic signatures and therefore will likely require 
specialized treatments. Given that many subtype-specific key regu-
lators have opposite directions in some AD subtypes, it is also 
possible that drugs that reduce AD symptoms in one subtype may 
exacerbate symptoms in another subtype. Furthermore, we con-
struct a machine learning model for predicting AD subtypes that is 
effective and robust. However, since the prediction is based on brain 
transcriptomic data that are not available from vast majority of patients, 
unnecessary biomarkers for AD subtypes either from peripheral tissues 
(e.g., CSF and blood) or noninvasive brain imaging are highly desirable.

MATERIALS AND METHODS
AD cohorts
In this study, we used two AD cohorts of RNA-seq data: the MSBB-AD 
(21) study and the ROSMAP (22, 23). The MSBB-AD cohort in-
cludes RNA expression data in the following four different brain 
regions: FP (Brodmann area 10; n = 265 with 187 AD cases), STG 
(Brodmann area 22; n = 240 with 174 AD cases), PHG (Brodmann 
area 36; n = 215 with 151 AD cases), and the IFG (Brodmann area 
44; n = 222 with 157 AD cases). Clinical phenotypes for each partic-
ipant are also collected including age, race, sex, hypoxia-induced 
encephalopathy score, cognitive function scores, CDR, age of onset 
and death, and pathologic findings of tau and A on biopsy. This 
cohort was specifically selected to include cases with either no neu-
ropathology or only neuropathological lesions diagnostic of AD. 
Cases with mixed neuropathology, e.g., AD and cerebrovascular 
disease and AD with Lewy bodies, were specifically excluded from 
the study cohort. Controls were defined as those presenting with no 
cognitive impairment (i.e., CDR = 0) and no overt neuritic plaque 
or NFT involvement.
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The ROSMAP (22, 23) includes whole-transcriptome RNA-seq 
data of the DLPFC from 615 participants including those with AD 
(n = 391), MCI (n = 64) and nondemented controls (n = 160) determined 
by a CERAD pathology score of definite AD or probable AD. Clin-
ical and pathologic phenotypes, as well as demographic informa-
tion, were also collected as well for each sample including MMSE 
scores (at time of diagnosis and last known), CERAD score, Braak 
score, cognitive score, APOE genotype, age of death, age at diagno-
sis, PMI, gender, race, education level, and if the participant was 
Spanish-speaking.

Clustering algorithm evaluation and cluster stability 
determination
We present a method to determine the empirical likelihood that a 
particular clustering is robust and apply it to each considered clus-
tering algorithm and transcriptomic brain region. If true molecular 
subtypes exist and are reflected in the transcriptomic data from a 
certain brain region, then a robust clustering algorithm should pro-
duce the same set of clustered samples on repeated reclustering, 
even if fewer samples or molecular features are used to create the 
clustering. However, if no molecular signature is reflected in the 
transcriptomic data, or the clustering algorithm is not robust, then 
different sets of clustered samples may be produced upon repeated 
reclustering. On the MSBB-AD cohort data, we performed 50 rounds 
of bootstrapped reclustering using each of the four clustering algo-
rithms, withholding 20% of the samples and genes per round. We 
calculate the rate at which pairs of samples shared the same cluster 
across all 50 bootstrapping rounds (e.g., a pair of samples clustered 
together in 35 of 50 bootstrapped clustering rounds would have a 
rate of 70%), defined here as the pairwise sample reclustering rate. 
We then calculate the average pairwise sample reclustering rate for 
all pairs of samples within the sample clusters identified by each 
algorithm, as well as the average rate of same-sized clusters drawn 
from a distribution of 100,000 random pairs of samples. We term 
these average rates the cluster stability rate and the null cluster sta-
bility rate, respectively. We then calculate the empirical likelihood 
that the cluster stability rate and the null cluster stability rate are the 
same, under the binomial distribution. Using this method, a specific 
subtype grouping is considered a putative subtype if its empirically 
adjusted P value is less than 0.05.

RNA-seq data normalization
MSBB-AD RNA-seq data were processed with the Spliced Tran-
scripts Alignment to a Reference (STAR) aligner and normalized 
using mixed-model correction for batch effect, RIN, ribosomal 
RNA rate, exonic RNA rate, PMI, age of death, inferred race, and 
inferred sex. Label swaps were inferred and corrected or removed if 
resolution was not possible.

To remove the disease stage effect, CDR is corrected in the 
MSBB-AD gene expression data through linear model normaliza-
tion. This was verified by performing a second round of linear model 
fitting between CDR and gene expression, which showed that no 
significant DEGs remained between participants with different CDR 
scores across all brain regions in the MSBB-AD.

ROSMAP DLPFC RNA-seq data were also normalized for age of 
death, gender, batch, RIN, and PMI using mixed-model correction. 
Data were then subsequently normalized for last known MMSE 
score using a linear model, and no genes are shown subsequently to 
have a correlation with MMSE (R2 = 0).

Differential gene expression analysis of AD subtypes
As described here, we performed differential gene expression (DEG) 
analysis to determine the molecular signatures of each of the AD 
subtypes compared with nondemented (CDR = 0) controls, starting 
with the RNA-seq counts per million (CPM) data as input. The 
analysis was carried out separately for each comparison. Log-scaled 
(base 2) gene CPMs from samples in the comparison were first fit to 
a linear model using the lmfit() provided by the limma R package 
before contrasts were fit. Empirical Bayes statistics for differential 
expression were then calculated using the eBayes() R function, fol-
lowed by the topTable() R function to output significant DEGs. 
P values were adjusted by q values provided by the qvalue Biocon-
ductor package, using default parameters.

Clustering algorithms used in the establishment of putative 
AD subtypes
WSCNA identifies sample clusters by analyzing gene expression 
level correlations between pairs of samples to build a sample cor-
relation network, which is then used to calculate topological overlap 
[topological overlap matrix (TOM)] score that can be used to clus-
ter similar samples together via k-means clustering. WSCNA ex-
tends the WINA algorithm (48) to samples by transposing the input 
matrix so that sample-sample correlations are compared. Note that 
gene expression data are standardized to z scores so that expression 
differences do not inflate the correlation metric.

Network-based KNR analysis of molecular subtype signatures
We applied the key driver analysis (KDA) (49) to the multiscale em-
bedded gene expression network analysis (MEGENA) network 
generated from PHG data in the MSBB. KDA first generates a sub-
network NG, defined as the set of nodes in N that are no more than 
h layers away from the nodes in G, and then searches the h-layer 
neighborhood (h = 1,…, H) for each gene in NG (HLNg,h) for the 
optimal h*, such that

  E  S h  *   = max(E  S  h    ,  g   ) ∀ g ∈  N  g    ,  h   ∈ {1, … , H}  

where ESh,g is the computed enrichment statistic for HLNg,h. This 
results in a list of predicted key network regulatory hub genes that 
may alter the expression pattern of its surrounding nodes and result 
in the DEG pattern observed.

Machine learning subtype classifier across other cohorts
We developed an RF model to classify samples into each AD sub-
type using the MSBB-AD PHG brain region data for training and 
then validated this model on the ROSMAP data. All RF models 
were built using the scipy Python library, with initial parameters of 
300 decision trees and a maximum tree depth of 8. Before model 
creation, both datasets are first corrected for cohort effect between 
MSBB-AD and ROSMAP, using the ComBat program, to reduce 
technical differences between studies. We divide classifier creation 
into three steps: feature selection, model training, and model vali-
dation. For the feature selection step, we first selected different 
numbers of top KNRs as features from each subtype (n = 1 to 80 
features per subtype; total, 5 to 400 features). We then train multiple 
RF models to predict subtype classification within the MSBB-AD 
(PHG) cohort and evaluate the model accuracy using leave-one-
out cross-validation between the predicted and observed subtypes. 
In the model training step, an RF model is created on all AD participants’ 
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PHG samples in MSBB-AD using only the top-performing features 
identified in the previous step. Last, for the model validation step, 
the RF model created from the MSBB-AD data is applied to the 
ROSMAP data, and model accuracy is evaluated by comparing the 
predicted ROSMAP subtypes from the RF model and the observed 
ROSMAP subtypes from network-based clustering analysis. We in-
crease the number of features used in the RF model until maximum 
validation accuracy is achieved, and the top-performing set of fea-
tures from this model is retained.

BN construction
A BN was constructed by integrating genome-wide gene expression, 
SNP genotype, and known transcription factor (TF)–target rela-
tionships in the PHG in the MSBB-AD cohort, similar to our previ-
ous work (27). Briefly, we first computed expression quantitative 
trait loci (eQTLs) and then used a formal statistical causal inference 
test (50) to infer the causal probability between gene pairs associat-
ed with the same eQTL. The causal relationships inferred are used, 
together with TF-target relationships from the Encyclopedia of 
DNA Elements (ENCODE) project, as structural priors for building 
a causal gene regulatory network from the gene expression data 
through a Markov chain Monte Carlo (MCMC) simulation–based 
procedure (51). We followed a network averaging strategy in which 
1000 networks are generated from the MCMC procedure starting 
with different random structure, and links that shared by more than 
30% of the networks are used to define a final consensus network 
structure. To ensure the consensus network is a directed acyclic graph, 
an iterative deloop procedure was conducted, removing the most 
weakly supported link of all links involved in any loop. Following 
Zhang et al. (27), we performed KDA (49) on the consensus Bayesian 
network to identify key network regulatory genes that can potentially 
regulate a large number of downstream nodes.

Cell-type proportion analysis and cell-type normalization
To estimate the cell-type proportion of bulk tissue RNA-seq data 
used in this study, we perform a cell-type deconvolution on each 
sample using the brain cell–type marker signatures provided by the 
BRETIGEA R package (26). One thousand marker genes per cell 
type were used from the human brain cell marker gene set (neurons, 
endothelials, oligodendrocytes, microglia, astrocytes, and OPCs) to 
generate all surrogate cell-type proportion (SPV) estimates, except 
for OPCs, which only had 500 marker genes available. Normaliza-
tion of the bulk RNA-seq by brain cell type was also performed by 
BRETIGEA, using the default parameters and the calculated SPV 
values from the previous step.

Cell-type specificity plots
To generate cell-type specificity plots, using the mean cell-type gene 
expression levels from Zhang et al. (52), we plotted each squared 
expression value as a vector from the center on a polar coordinate 
system. We then calculated the vector sum from each of the expres-
sion levels and multiply the final result by a scaling parameter to 
create a final point as the estimate of the cell-type specificity of any 
gene under consideration.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/2/eabb5398/DC1

View/request a protocol for this paper from Bio-protocol.
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