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Abstract

Graphical modeling has been broadly useful for exploring the dependence structure among 

features in a dataset. However, the strength of graphical modeling hinges on our ability to encode 

and estimate conditional dependencies. In particular, commonly used measures such as partial 

correlation are only meaningful under strongly parametric (in this case, multivariate Gaussian) 

assumptions. These assumptions are unverifiable, and there is often little reason to believe they 

hold in practice. In this paper, we instead consider 3 nonparametric measures of conditional 

dependence. These measures are meaningful without structural assumptions on the multivariate 

distribution of the data. In addition, we show that for 2 of these measures there are simple, strong 

plug-in estimators that require only the estimation of a conditional mean. These plug-in estimators 

(1) are asymptotically linear and non-parametrically efficient, (2) allow incorporation of flexible 

machine learning techniques for conditional mean estimation, and (3) enable the construction 

of valid Wald-type confidence intervals. In addition, by leveraging the influence function of 

these estimators, one can obtain intervals with simultaneous coverage guarantees for all pairs of 

features.

1. Introduction

With the development of new high-throughput measurement technologies in biotechnology, 

engineering, and elsewhere, it is increasingly common to measure a number of features 

on each of a collection of people/objects without a strong apriori understanding on the 

interplay between these features. It is fundamental to developing science that we learn these 

relationships. For example, understanding co-expression of genes (Stuart et al., 2003; Ben-

Dor et al., 1999; Ma et al., 2007; Chu et al., 2009) is foundational to biology; identifying 

regulatory networks (Hartemink et al., 2000) can help us understand cell differentiation 

(Huang & Ingber, 2000; Boyer et al., 2005), and identify targets for treatment of disease 

(Csermely et al., 2005; Berger & Iyengar, 2009); and among many other applications.

The relationships between features can be evaluated and expressed using Graphical 
Modeling: Here we use a graph G = (V, E, W), where V = {1, …, p} (p > 2) indexes a 

set of nodes {Vi}i∈V representing the features, E = {ei,j} is a set of edges corresponding to 

dependence between adjacent nodes, and W = {wi,j} is a collection of weights expressing 

the strength of each edge. In defining these edges and weights, one must decide on a 
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measure of association/dependence. Covariance and correlation are two commonly-used 

measures for the dependence between two variables in multivariate analysis (Anderson et al., 

1958; Székely et al., 2007; Samuel et al., 2001; Langfelder & Horvath, 2008; Choi et al., 

2010; Zager & Verghese, 2008).

However, one is often interested in a more causally-motivated parameter: In particular, when 

using correlation, features can easily be connected due to indirect effects (Bedford & Cooke, 

2002). For example, two “connected” features may be mechanistically tied to a third feature, 

and otherwise completely unrelated. These are often not the edges we wish to discover. One 

is often more interested in a conditional measure: For two features Y and Z, conditional 

on fixing all other features X = V k k = 1
p − Y , Z , we aim to assess if there an association 

between Y and Z. Previous work has attempted to address this using partial correlation (De 

La Fuente et al., 2004; Baba et al., 2004). Rather than connecting features with non-zero 

correlation, instead features with non-zero entries in the precision matrix are connected. This 

corresponds to assessing the conditional dependence when all of the features considered 

have a joint Gaussian distribution (Yuan & Lin, 2007; Friedman et al., 2008). In practice, 

that is rarely, if ever, the case, and edges may correspond to scientific quantities of little 

interest.

In this work, we address this issue: We consider a more general form of conditional 

dependence that reduces to the partial correlation when all features are Gaussian. This 

dependence measure admits a straightforward, natural, and efficient estimator, that facilitates 

the use of general machine learning methods in estimating dependence. In addition, these 

estimators allow us to construct asymptotically-valid confidence intervals and run hypothesis 

tests (while accounting for multiple testing, when evaluating all edges in a graph).

The dependence measure that we primarily consider, which we term the scaled expected 
conditional covariance is

ΨY , Z = E Cov Y , Z X
E Var Y X E Var Z X . (1)

Here, Cov(Y, Z|X) is the conditional covariance of Y and Z given X, and Var(Y|X) is 

the conditional variance of Y given X. This parameter is just a functional that maps the 

joint distribution of X, Y, and Z to a real number. In contrast to parameters from classical 

statistics, e.g. coefficients in a linear model, ΨY,Z is model agnostic, and does not implicitly 

assume any functional form on the relationships between our variables. This parameter 

summarizes the average degree of association between our features: This summarization 

using the average has two advantageous attributes: 1) It provides a single summary of 

dependence between features; and 2) Averages can be estimated at better rates than local 

quantities (Bickel et al., 1993). These issues dissuade us from directly using a local quantity 

such as Cov(Y, Z|X).

Later, we will further show that estimating these average dependence measures, such as 

(1), primarily (and in some cases only) relies on the estimation of a conditional mean. This 

reduces the problem of testing/evaluating conditional dependence to a canonical prediction 
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problem, which allows us to naturally incorporate flexible machine learning techniques, 

such as generalized additive models (Hastie, 2017), local polynomial regression (Seifert & 

Gasser, 2004), random forests (Liaw et al., 2002) etc., and make inference even when X is 

high-dimensional (Tibshirani, 1996; Meinshausen et al., 2006).

2. Related Work

Related work falls in two categories: The first does not directly estimate a parameter 

encoding dependence, but rather just tests a null hypothesis of conditional independence. 

This is the strategy generally taken with Gaussian graphical models (Wermuth & Lauritzen, 

1990; Toh & Horimoto, 2002; Uhler, 2017), where the graph structure is encoded by the 

precision matrix. This idea was extended by (Liu et al., 2012) and (Barber et al., 2018) 

to transelliptical graphical model where nonparametric rank-based regularization estimators 

were used for estimating the latent inverse covariance matrix. Although, these approaches 

generalize the estimation to non-Gaussian setting and accommodate for high-dimensional 

data. They still assume specific underlying model structures.

The other approach evaluates the degree of dependence through estimation of a target 
parameter: (Douglas et al., 1998) measured the local dependence of pairs via a conditional 

covariance function by monotonically transforming the conditioning function to a total 

score. (Bedford & Cooke, 2002) weakened the concept of conditional independence and 

applied the conditional correlation coefficient to account for the dependence structure. 

(Fukumizu et al., 2004; Gretton et al., 2005; Sun et al., 2007; Fukumizu et al., 2008) 

consider a more general nonparametric characterization of conditional independence using 

covariance operators on reproducing kernel Hilbert spaces (RKHS) to capture nonlinear 

dependence. However, in these cases, a local parameter was used: These conditional 

dependence measures depend on the value taken by conditioning variables. This parameter 

thus cannot be used as a summary measure.

Summary measures of conditional dependence which i) do not make parametric assumptions 

on the model; and ii) adjust for other covariates have been proposed in regression setting. 

The most canonical of such measures is the average treatment effect ∫ E[Y|X = x, Z = 1] − 

E[Y|X = x, Z = 0]dP(x) (Becker et al., 2002), which has been extensively discussed in the 

semiparametric context (Van Der Laan & Rubin, 2006; Kennedy, 2016). But this measure is 

limited to evaluating association with a binary treatment. Approaches that attempt to use this 

with a continuous treatment are often either adhoc, or result in a local measure (Hirano & 

Imbens, 2004; Hill, 2011; Kennedy et al., 2017).

There exist methodologies which give omnibus measures of departure from conditional 

independence. For example, Zhang et al., 2012 and Wang et al., 2015 used kernels and 

characteristic functions respectively to average over some functions of the conditioning 

variables. These methods have the potential advantage that they use an omnibus test and 

thus do not have to prespecify a particular direction to consider for departures from 

conditional independence. This advantage however is tied to their restriction: they need 

to specify very specific methods of “regressing out the conditioning variables”, such as 

using RKHS regression or local averaging. This may be inappropriate when confounders 
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are high-dimensional or with heterogeneous types. In addition, tuning of hyperparameters in 

these methods can be difficult. The theoretically optimal bandwidth pointed out in the paper 

can be hardly achievable by any sort of split sample validation criterion, such as minimizing 

MSE.

There are other methods which use resampling strategies to modify the original data, in 

an attempt to construct a pseudo-dataset where the indicated features are conditionally 

independent, Doran et al., 2014 cleverly uses a restricted set of permutations that fix 

something akin to a sufficient dimension reduction of the conditioning variables. This 

approach works well in some scenarios, however with high dimensional features, for 

example, it may be infeasible to effectively select such a dimension reduction, which 

would result in a procedure more akin to a marginal, rather than conditional independence 

testing. Sen et al., 2017 uses a bootstrap to construct pseudo-conditionally-independent 

data. It then attempts to differentiate between the original data, and this new pseudo-data. 

Failure to differentiate suggests that the original data was conditionally independent. This 

methodology does allow ML-based tools to be used in constructing the classifier, however it 

still hinges on our ability to construct conditionally independent pseudo-data.

Newey & Robins, 2018 recently discussed expected conditional covariance (one of the 

3 measures in this manuscript) as a summary of dependence in low-dimensional partially-

linear additive regression. Their estimator is similarly a plug-in, however they discuss 

only a very particular strategy (which does not leverage Machine Learning techniques) of 

estimating the requisite conditional mean functions. In contrast, we decouple estimation of 

the conditional mean from evaluation of the expected conditional covariance. As such, in 

Section 4, we show that a wide array of ML-based predictive modeling techniques might be 

used in building those predictive functions for the conditional mean, and then leveraged in 

estimation of the expected conditional covariance.

3. Average Conditional Dependence Measures

Let O = (Y , Z, X) ∈ ℝp denote a random vector drawn from some joint distribution P ∈ ℳ, 

where ℳ is an unrestricted model space. Here, we have Y ∈ ℝ, Z ∈ ℝ, and X ∈ ℝp − 2. For 

ease of notation, we have identified Y and Z as a pair of features of interest, and are aiming 

to evaluate the dependence between Y and Z conditional on X. However, we eventually plan 

to evaluate this dependence between all pairs of variables.

For simplicity, we denote the conditional means and the conditional variances with respect 

to distribution P as μP,Y(x) = EP(Y|X = x) and σP , Y
2 x = VarP Y |X = x . Our first measure of 

dependence, previously mentioned in Section 1, is the expected conditional covariance

Ψ1 P = EP CovP Y , Z X
= y − μP , Y x z − μP , Z x dP o , (2)

We define our second measure similarly, as the expected conditional correlation
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Ψ2 P = EP CorrP Y , Z X

= CovP Y , Z X = x
σP , Y

2 x σP , Z
2 x

dP x . (3)

Ψ1 and Ψ2 are the averaged conditional analogs to covariance and correlation. By averaging 

these conditional associations, these measures provide a global, instead of local, assessment 

of dependence.

In graphical modeling, as we are evaluating dependence between multiple pairs of features, 

it is important to use a standardized measure of association. Non-zero values of Ψ1 will vary 

according to the scale of our variables. In contrast, Ψ2 is standardized. Unfortunately, while 

Ψ2 appears to be a very natural quantity, it ends up being somewhat difficult to estimate (this 

is further discussed in Section 4). In light of this, we propose a third, alternative standardized 

measure of dependence which we term the scaled expected conditional covariance

Ψ3 P = Ψ1 P
V Y P V Z P , (4)

where V Y P = EP[σP , Y
2 X ] and V Z P = EP[σP , Z

2 X ]. Ψ3 is constructed by scaling the 

expected conditional covariance with the square root of the products of the two expected 

conditional variances. This is analogous to how correlation is formed from covariance (only, 

in this case we average before taking our quotient). Indeed, it is simple to show that Ψ3 is 

scale invariant, and furthermore takes on values in [−1, 1].

Though Ψ3 is perhaps less natural than Ψ2, it turns out to be much easier to estimate from 

data. This makes intuitive sense as Ψ2 contains positive local quantities in the denominator 

(the conditional standard deviations), where Ψ3 contains only global quantities in the 

denominator. Estimating local quantities is more difficult, and instability of those estimates 

in the denominator (in particular if they are near 0) will result in instability of the estimator 

of Ψ2. More specifically, our theory takes advantage of the fact that VY(P) = EP[CovP(Y, 
Y|X)], and that the standard delta-method can be applied to a ratio of efficient estimators in 

the case of Ψ3 (Oehlert, 1992).

3.1. Higher Order Dependence

In this Section we discuss the relationship of our parameters to the conditional dependence/

independence of features. In particular, we know that, without modification, covariance 

only encodes linear dependence. Unless variables are jointly Gaussian, linear independence 

does not imply independence (Hyvärinen et al., 2001). However, general dependence can 

be evaluated using higher-order moments (or equivalently covariance of derived features) 

(Fukumizu et al., 2008; Gretton et al., 2005). Using similar ideas, we relate our dependence 

measures to non-linear association.

Consider two pre-specified functions ϕ1:ℝ ℝp1 and ϕ2:ℝ ℝp2 and assume that both 

functions are conditionally integrable: E[ϕ1(Y)|X] < ∞, E[ϕ2(Z)|X] < ∞. Further consider a 
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non-negative weight function w(x). Then, the (ϕ1, ϕ2, w)-expected conditional covariance is 

defined as

Ψ1
ϕ1, ϕ2, w P = EP w x CovP ϕ1 Y , ϕ2 Z X . (5)

One can similarly extend Ψ2(P) and Ψ3(P) by replacing Y and Z with ϕ1(Y) and ϕ2(Z). 

Theoretically, estimating Ψ1
ϕ1, ϕ2, w P  is essentially the same as estimating Ψ1(P) since 

ϕ1(Y) is nothing more than a random variable. But conceptually, this simple transformation 

in (5) allows us assess higher order conditional dependence structure between Y and Z. In 

many cases, w(x) will be taken to be 1, however it is required to characterize necessary and 

sufficient conditions for conditional independence.

3.2. Conditional Independence Testing

Using this idea of higher order dependence, we can develop necessary and 

sufficient conditions for conditional independence between Y and Z conditional 

on X. In particular, We consider (ϕ1, ϕ2, w)-expected conditional covariance, for 

w X = 1 X ∈ Sx , ϕ1 Y = 1 Y ∈ Sy , and ϕ2 Z = 1 Z ∈ Sz  for arbitrary sets Sx, Sy, and 

Sz. In this case, we see that (ϕ1, ϕ2, w)-expected conditional covariance equal to 0 is 

equivalent to P(Y ∈ Sy, Z ∈ Sz|X ∈ Sx) = P(Y ∈ Sy|X ∈ Sx)P(Z ∈ Sz|X ∈ Sx). This gives us a 

simple necessary and sufficient condition for conditional independence

Proposition 1 Random variables Y and Z are independent conditional on X iff for every ϕ1, 

ϕ2 and w in ℓ2(P)1, for which Ψ1
ϕ1, ϕ2, w P  is defined and finite, we have Ψ1

ϕ1, ϕ2, w P = 0.

Comprehensively testing for conditional independence via Proposition 1 is generally 

intractable as one would have to consider all possible w, ϕ1, and ϕ2. This is unsurprising: 

General conditional dependence is extremely difficult to evaluate — in practice impossible 

with any reasonable quantity of data in moderate to high dimensions. In practice, we instead 

choose a few test functions (ϕ1 and ϕ2) to use, and just evaluate conditional dependence in 

those directions (finding conditional associations in any of those directions does imply that 

our features are not conditionally independent). This same idea is employed with Gaussian 

graphical modeling; only there, conditional dependence is completely characterized by 

linear conditional dependence. Additionally, in the joint Gaussian setting local and global 

dependence are equivalent (the conditional covariance between two features in a joint 

gaussian model cannot vary with the values of the other features).

In the rest of this manuscript, we just consider ϕ1(y) = y, ϕ2(z) = z, and w(x) = 1, returning to 

our original measures. While these measures cannot conclusively show that a pair of features 

are conditionally independent, if any of Ψ1, Ψ2 or Ψ3 are non-zero, that does allow us to 

conclude that those features are conditionally dependent.

1ℓ2(P) represents a function class, where any function f in this class is square-integrable and measurable with respect to P.
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4. Estimating the Parameters

Suppose that we observe n i.i.d samples oi i = 1
n = yi, zi, xi i = 1

n  from an unknown 

distribution P ∈ ℳ where ℳ is a nonparametric model space. Our goal is to estimate the 

three well-defined global measures Ψi, i = 1, 2, 3 for conditional dependence. Before we 

discuss specific estimation of these 3 measures, we note that all 3 will require estimation 

of the intermediate quantities μP,Y(x) = EP[Y|X] and μP,Z(x) = EP[Z|X]. Estimating these 

conditional means is precisely the goal of most predictive modeling techniques. In the 

case that Y or Z is continuous, regression techniques can be used; If they are binary, 

then probabilistic classification methods might be used (eg. penalized regression, neural 

network, tree-based methods like random forests or boosted trees, etc…). In the following 

discussion we will often leverage predictive models μY x  and μZ x , and care must be taken 

in estimating these models (using various statistical/machine learning tools, with proper 

selection of tuning parameters via split-sample validation, etc…). There is an enormous 

literature on building such models that we cannot hope to engage with here. However, we 

note that our ability to leverage these ideas in evaluating dependence is a strong asset for our 

method. Our asymptotic results will tend to rely on the following assumption:

Assumption 1 Suppose we have n observations oi = (xi, yi, zi), i = 1, …, n drawn iid from 
some distribution P. Let μY  and μZ be estimators of μP,Y, μP,Z based on those observations. 

We assume that those estimators each fall in a P-Donsker Class (Van der Vaart, 2000), and 
further that

μY x − μP , Y x 2dP x = op n−1/2 ,

μZ x − μP , Z x 2dP x = op n−1/2 .

This is just saying that our predictive models converge to the truth sufficiently fast. 

For correctly specified low/moderate dimensional parametric models (eg. linear/logistic 

regression) this will be satisfied (in fact the rate is actually Op (n−1)). This will 

also be the case for various nonparametric and high dimensional methods under fairly 

general assumptions including the Lasso (Tibshirani, 1996), additive models (Sadhanala & 

Tibshirani, 2017), and neural network models (Bach, 2017).

From here we can consider estimating our dependence measures. We begin with the 

expected conditional covariance Ψ1(P). In this case we propose a natural plug-in estimator:

Ψ1 ≡ 1
n i = 1

n
yi − μY xi zi − μZ xi , (6)

in which we use our predictive models μY  and μZ. As discussed in the next theorem this 

estimator is quite well-behaved.
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Theorem 1 Suppose Assumption 1 holds for μY  and μZ. Then the plug-in estimator 

Ψ1 is n − consistent, asymptotically linear, and nonparametrically efficient with influence 

function DP
1 oi = yi − μP , Y xi zi − μP , Z xi − Ψ1 P . This additionally implies that Ψ1 is 

asymptotically normal:

n Ψ1 − Ψ1 P d N 0, σ1
2 P , (7)

where σ1
2 P = DP

1 o
2
dP o .

It is straightforward to obtain a consistent estimator of the asymptotic variance σ1
2 P , which 

is σ1
2 = 1

n i = 1
n yi − μY xi zi − μZ xi − Ψ1

2
. This can be used with asymptotic-normality 

to form confidence intervals for Ψ1 with asymptotically correct coverage. In addition, we 

should note that, so long as Assumption 1 holds, the plug-in estimator Ψ1 has the same 

first-order behaviour (rate and variance), as the plug-in estimator with μP,Y and μP,Z known 

(which is first-order optimal in that case). This means that, under Assumption 1, there is no 

asymptotic cost to estimating the predictive models. These results can be shown by simple 

calculation (see supplementary materials).

We will postpone a discussion of estimating Ψ2, and first discuss estimation of Ψ3. 

We use a similar plug-in for Ψ3: Ψ3 =
Ψ1

V Y V Z
, where V Y = 1

n i = 1
n yi − μY xi

2
 and 

V Z = 1
n i = 1

n zi − μZ xi
2
. Using a similar direct calculation, we can show that V Y  and 

V Z are asymptotically linear and efficient estimates of VY(P) and VZ(P). Thus, by applying 

the delta-method we get the following result

Theorem 2 Suppose Assumption 1 holds for μY  and μZ. Then the plug-in estimator 

Ψ3 is n − consistent, asymptotically linear, and nonparametrically efficient with influence 

function DP
3 oi =

yi − μP , Y xi zi − μP , Z xi
V Y P V Z P − Ψ3 P

yi − μP , Y xi
2

2V Y P +
zi − μP , Z xi

2

2V Z P , This 

additionally implies that Ψ3 is asymptotically normal:

n Ψ3 − Ψ3 P d N 0, σ3
2 P , (8)

where σ3
2 P = DP

3 o
2
dP o .

We can similarly use a consistent estimate of σ3
2(P ), and combine that with asymptotic 

normality to build a confidence interval for Ψ3. This again has the same efficiency as the 

optimal estimator with μP,Y and μP,Z known.

Building an estimator for Ψ2(P) is a bit more complicated. Here, we must analyze the 

canonical gradient of Ψ2(P) under a nonparametric model. This informs us about the low-
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order terms in a von-mises expansion, and allows us to calculate the so-called “one-step” 

correction needed to update our plug-in estimator to construct an efficient estimator (Bickel 

et al., 1993). In order to follow this path, we also need estimators of Cov(Y, Z|X = x), σY
2 x ,

and σZ
2 x . We will denote such estimators by Cov Y , Z |X = x , σY

2 x , and σZ
2 x . Coming up 

with strong estimators for these intermediate quantities is a significant hurdle in estimating 

Ψ2 well, and a major reason why we instead propose Ψ3 as a standardized measure of 

conditional dependence.

Based on all of this, the estimator we propose for Ψ2(P) is Ψ2 = Ψ2 + 1
n i = 1

n
D 2 oi , where 

Ψ2 is a naive estimator of form

Ψ2 = 1
n i = 1

n yi − μY xi zi − μZ xi

σY
2 xi σZ

2 xi
(9)

and

D 2 oi = Cov Y , Z X = xi

σY
2 xi σZ

2 xi
× yi − μY xi

2

2σY
2 xi

+ zi − μZ xi
2

2σZ
2 xi

− 1 (10)

Here D(2) is the canonical gradient (or equivalently the efficient influence function) of Ψ2(P) 

in the nonparametric model-class.

Standard theory for such one-step estimators gives us the following result:

Theorem 3 Suppose μY (x), μZ(x) satisfy Assumption 1, and similarly estimators Cov(Y, Z|X 

= x), σY
2 x , and σZ

2 x  are also from P-Donsker classes, and converge to the truth at that 

same n−1/2 rate in squared error loss. Then the estimator Ψ2 is n − consistent, asymptotically 

linear, and nonparametrically efficient with influence function DP
(2)(o) defined in (10), This 

additionally implies that Ψ2 is asymptotically normal:

n Ψ2 − Ψ2 P d N 0, σ2
2 P , (11)

where σ2
2 P = DP

2 o
2
dP o .

Theorem 3 has requirements on convergence of additional intermediate quantities 

(conditional covariances and conditional variances). In practice, even in simple scenarios 

Ψ2 performs much more poorly than Ψ1 and Ψ3. The theoretical route we took to derive 

this “efficient” estimator, could also have been applied for Ψ1 and Ψ2 to construct efficient 

estimators. It turns out, that in those cases, we would have ended up with precisely the 

plugins Ψ1 and Ψ2 from such constructions (however, one can more easily show efficiency of 

those estimators from direct calculation).
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4.1 Double Robustness of Ψ1

In Assumption 1, we give separate convergence rates bounds for each 

predictive model. In fact, for the result of Theorem 1 we only require that 

R1 Pn, P ≡ μY x − μP , Y x μZ x − μP , Z x dP x = OP n−1/2 . In particular, this is 

precisely the second-order term from an asymptotic expansion of our estimator. Using this, 

we can directly show that our estimator Ψ1 is doubly robust in that

• Ψ1 is consistent if either one of μY x  and μZ x  is consistent, and in a P-

Glivenko-Cantelli Class. (and thus R1 Pn, P = oP 1 )

• Ψ1 is efficient if μY x  and μZ x  converge sufficiently fast that 

R1 Pn, P = oP n−1/2 .

This indicates additional robustness of Ψ1 to model misspecification (Scharfstein et al., 

1999; Van der Laan et al., 2003). Even if one of μZ and μY  is inconsistent, Ψ1 will 

still remain consistent as long as the other one is consistent. Unfortunately, neither the 

expected conditional correlation, nor the scaled expected conditional covariance estimators 

are double-robust. In particular, the scaled expected conditional covariance has second-order 

remainder terms associated with estimating each expected conditional variance which 

separately involve convergence of μY (x) and μZ(x). See supplementary materials for details 

about remainder terms.

4.2. Suboptimal Estimators

To some degree, it is a happy coincidence that the estimators for Ψ1 and Ψ2 proposed 

in Section 4 are simple and turn out to be first-order optimal. Generally simple plug-in 

estimators will not even be rate optimal (and converge at a slower rate than n−1/2). For 

example, one might consider an alternative representation of Ψ1(P) = EP[EP(Y Z|X) − EP(Y|

X) EP(Z|X)], and thus consider estimating Ψ1(P) by

Ψ1, naive = 1
n i = 1

n
μY Z xi − μY xi μZ xi , (12)

where μY Z xi  is an estimator of EP (Y Z|X). If μY  and μZ do not converge at a parametric 

rate (of n−1 in MSE)– when using ML-based estimates they generally will not– Ψ1, naive
will converge at slower than an n−1/2 rate. One could similarly define a simple estimator 

of Ψ2(P), Ψ2, naive = 1
n

i = 1

n
Cov Y , Z |xi
σY

2 xi σZ
2 xi

. Unfortunately, as in the case of Ψ1, naive, this 

estimator will not be efficient or even converge at a n−1/2 rate.

4.3. Constructing Confidence Intervals

Constructing a confidence interval based on the so-called naive estimators, Ψ1, naive and 

Ψ2, naive, is difficult. Due to the excess bias, they are, in general, not asymptotically 
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linear, so confidence intervals based on Gaussian approximations are not possible. In 

addition, resampling methods including bootstrapping, are generally invalid in this context. 

Fortunately, Ψ1, Ψ2 and Ψ3 do not suffer from these issues. As shown in Theorems 1-3, these 

centered estimators converge in distribution to mean-zero normal variables with asymptotic 

variance σj2 P = DP
j o

2
dP o  for j = 1, 2, 3. Thus, if we estimate our variances by

σj
2 = 1

n i = 1

n
D j oi

2, (13)

where D(j) is any consistent estimator of the influence function, we can form valid 

confidence intervals. Then, by leveraging asymptotic normality, we can construct a (1 − 

α)% Wald-type confidence interval for Ψj as

Ψj − n−1/2q1 − α/2σj, Ψj + n−1/2q1 − α/2σj , (14)

which has asymptotically correct coverage. qα stands for the α-th quantile of a standard 

normal distribution.

Asymptotic linearity can be leveraged more broadly to give intervals for multiple pairs of 

features with correct simultaneous coverage. In particular, suppose we are in an asymptotic 

regime with p fixed and n growing. Consider 2 pairs of features (j1, j2), and (j3, j4) with j1 

≠ j2 and j3 ≠ j4, (this can be extended to any number of pairs). In this case, we consider 

estimation of Ψ1
j1, j2, Ψ1

j3, j4 ⊺
, the expected conditional covariance of both pairs of features. 

Here, it is straightforward to show that under Assumption 1, we have

n
Ψ1

j1, j2

Ψ1
j2, j3

−
Ψ1

j1, j2

Ψ1
j2, j3

N 0, Σ ,

where Σ is defined based on expectations of products of influence functions for each 

estimator. This idea generalizes to arbitrary (but fixed) numbers of covariates, and can also 

be applied to estimation of Ψ2, and Ψ3. This joint normality can be combined with standard 

methods in multiple testing to construct confidence intervals with simultaneous coverage 

(Van der Laan, 2008).

4.4. Relationship to De-biased Lasso

In addition to graphical modeling, other meaningful measures can be obtained by slightly 

modifying Ψ1. One measure of particular interest is

Φ = E Cov Y , Z X
E Var Z X . (15)

Φ is a nonparametric functional, that combines expected conditional variance and covariance 

(similar to Ψ1). In fact, as with Ψ1, we can use a simple plug-in estimator (with estimated 
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conditional means constructed using any suitable machine learning technique) to estimate 

and make inference for Φ. If we further assume that we are working in a parametric space 

and the data (Y, Z, X) are generated from a linear model E[Y|Z, X] = γZ + βX, Φ is 

precisely the coefficient γ (Newey & Robins, 2018). In low dimensional problems γ is 

estimated efficiently by standard linear regression — in high dimensional problems it is 

common to use the Lasso (Tibshirani, 1996; O’Brien, 2016) with de-biasing to conduct 

inference (Sara et al.; Cun-Hui et al.). The work in this manuscript gives an alternative 

approach to estimation and inference. In particular, in the challenging case that the features 

are high-dimensional, the (theoretically optimal) plug-in estimator Φ is consistent and 

efficient (if the conditional mean estimates are sufficiently good). Under suitable conditions, 

the de-biased lasso will give an estimator with the same first order behavior when the 

design matrix is random (Geer, 2016). However, the de-biased lasso requires estimation of 

Σ−1 (usually by node-wise regression) which our nonparametric approach does not. Thus, 

the results in this paper provide an alternative for obtaining the estimators and confidence 

intervals of regression coefficients for linear models with either low- or high-dimensional 

features.

5. Experiments

In this section, we assess the performance of the proposed (theoretically optimal) plug-in 

estimators of global dependence measures, in terms of the asymptotic performance, as well 

as their effectiveness in conditional independence testing and graph recovery. Here, we 

present the main results and provide additional results in supplementary materials.

5.1. Asymptotic Performance

We present the asymptotic properties of Ψ1 by computing the empirical bias, variance, 

and coverage of 95% Wald-type confidence interval in the setting of low-, moderate, and 

high-dimensional features.

We start with a simple scenario, where the conditioning variable X is univariate:

Y = sin 3X + ey, Z = cos 2X + ez, (16)

where X ~ Uniform(0,2) independent of e = ey, ez
T ∼ N 0

0 , 1 −0.5
−0.5 1 .

Then, we consider a setting of high-dimensional features, where we generate Y and Z from a 

linear model:

Y = Xβy + ey, Z = Xβz + ez, (17)

where X ~ N(0, I5000), βy = (1, …, 1,
10

0, …, 0
4990

) and βz = (−1, …, − 1,
10

0, …, 0
4990

). The error term 

e = ey, ez
T  is the same as in the low-dimensional case.

In both cases, the true values of Ψ1 are −0.5. We generate random datasets of size n ∈ {500, 

1000, 2000, …, 6000} and estimate Ψ1 (we run 400 simulates for each sample size). The 
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conditional means are estimated by local polynomial regression in the low-dimensional case 

and by lasso algorithm in the high-dimensional case. We compare our (theoretically optimal) 

plug-in estimator Ψ1 to the naive estimators: Ψ1, naive in (12).

Figure 1 shows that, the empirical n − scaled bias of our theoretically optimal plug-in 

estimator Ψ1 goes toward zero with increasing sample size, which corresponds to our 

asymptotic result. This is not the case for the naive estimator. The confidence interval of Ψ1
converges to the nominal 95% as sample size increases. As expected, due to excess bias, the 

bootstrap interval based on the “naive” estimators performs poorly (with coverage actually 

converging to 0). See supplementary materials for experiments of a moderate-dimensional 

case and the evaluation of Ψ3.

5.2. Conditional Independence Testing.

We examine the probabilities of Type I error under Y ⫫ Z|X and the power under Y ⫫Z X. 

Here, we consider the scenarios where X ∈ ℝ1 and X ∈ ℝ5 respectively. We compare the test 

based on the scaled expected conditional covariance (SEcov), i.e. Ψ3, with KCI-test (Zhang 

et al., 2012), CDI-test (Wang et al., 2015) and CCIT-test (Sen et al., 2017). The conditional 

means for Ψ3 are estimated by local polynomial regression when X ∈ ℝ1 and by random 

forest when X ∈ ℝ5.

In the low-dimensional setting, we still use model (16) to generate the data (Y, Z, 

X). For type I error, we let Cov ey, ez
T = 1 0

0 1  such that Y ⫫ Z|X. For power, we let 

Cov ey, ez
T = 1 −0.5

−0.5 1 , such that Y ⫫Z X. In the moderate-dimensional setting, we use 

the same pattern as the Case1 in (Zhang et al., 2012) for comparison. Y and Z are generated 

by G(F(X) + E), X ∈ ℝ5, where G and F are mixtures of linear, cubic, and tanh functions and 

are different for Y and Z. E is independent with both Y and Z. Under this mechanism, Y ⫫ 
Z|X holds. For Y ⫫Z X, we add errors cosh(ey) to Y and cosh(ez2) to Z where ey, ez ~iid N(0, 

1).

Figure 2 shows that Ψ3 is always capable of controlling type I errors and achieving a 

high power, regardless of the dimension of the conditioning set. However, this is not the 

case for other tests. When X ∈ ℝ1, the power of KCI- and CDI-test gradually increases 

with increasing sample size. They can control type I errors at a relatively low level but 

not comparable to the performance of Ψ3. When X ∈ ℝ5, both kernel-based tests collapse. 

That is, they almost always reject the null hypothesis when Y ⫫ Z|X, and often fail to 

reject the null when Y ⫫Z X. The CCIT-test achieves a relatively high power but struggles 

to control type type-I errors in both low- and moderate-dimensional settings. In addition, 

the CDI test is much less efficient compared to the other three. With regard to computation, 

estimating Ψ3 is the most efficient method for each fixed sample size, since it only requires 

the estimation of mean models.

Xiang and Simon Page 13

Proc Mach Learn Res. Author manuscript; available in PMC 2021 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5.3. Graph Recovery.

We now attempt to reconstruct the graph using SEcov, i.e. Ψ3, with moderate dimensional 

features (the conditional means are estimated by random forest). We make comparison with 

Gaussian graphical model (GGM), and transelliptical graphical model (TGM) (Liu et al., 

2012) where the CLIME estimator (Cai et al., 2011) using Kendall’s taus is employed. The 

graphs are generated from the following cases:

• Case1 (Gaussian): X ~ N8(0, Σ).

• Case2 (Copulas): Z ~ N8(0, Σ), U = Φ(Z), Xi = fi
−1 Ui  where fi

−1 are quantile 

functions of Gamma(2, 1), Gamma(2, 1), Beta(2, 2), Beta(2, 2), t(5), t(5), Unif(0, 

1), and Unif(0, 1) for i = 1, …, 8.

• Case3 (Transelliptical): X ~ TE8(Σ, ξ; f). ξ ~ χp and f 
= {f1, …, f8} = {h1, h2, h3, h4, h1, h2, h3, h4}, where 

ℎ1
−1 x = exp x , ℎ2

−1 x = sign x x 1/2, ℎ3
−1 x = x3, and ℎ4

−1 x = Φ x .

• Case4 (non-Gaussian, non-copulas, non-transelliptical): 

X1 = X2 + X3 + X4/2 + sin X5 + X6
2 + exp X7 + X8 and X2 = sin(X7) + |X8|, 

where X3, …, X8 ~iid exp(2).

Figure 3 shows that, all three methods work extremely well only when the data is Gaussian 

distributed (Case1). When the data follows a copulas (Case2) or transelliptical distribution 

(Case3), both TGM method and Ψ3 have a comparably great performance while GGM 

become much less effective due to the model misspecification. We note that, if the data has 

a highly skewed transelliptical distribution, Ψ3 may work poorly and TGM remains valid. 

For Case 4 where the data is non-Gaussian, non-copulas, and non-transelliptical, GGM 

method totally collapses, which is almost equivalent to a coin flip. The effectiveness of 

TGM method is also compromised since it uses a misspecified model. On the contrary, Ψ3 

which does not depend on any model assumptions still presents a strong performance.

6. Discussion

In this paper, we introduce three global measures for evaluating conditional dependence 

and reconstructing a conditional dependence graph. These measures are model-agnostic 

and we show that there exist natural and simple plug-in estimators that are asymptotically 

normal and efficient under mild conditions. Thus, we can construct Wald-type confidence 

intervals with asymptotically correct coverage. These tasks have proven difficult for existing 

graphical modeling methods.

One major strength of this work is in that the estimation of the proposed global measures 

only requires estimating two conditional mean models. Our framework allows us to use 

flexible machine learning tools for these estimates. Thus, the efficacy of our methodology 

is intimately connected to our ability to build a good predictive model: If we can build 

effective predictive models, our methodology can leverage that, and should do a good 

job evaluating conditional independence. This means, as the field’s ability to engage in 

predictive modeling grows, so will the scope of this methodology. For example, in the 
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high-dimensional setting, one might use Lasso, or tree-based ensembles to regress out 

the conditioning variables. If the conditioning variables take form of images, or text 

documents, one could use deep-learning (with enough data) for that adjustment. The 

predictive methodology can and should be selected to fit the context.

People may concerned about the effectiveness of the proposed methodology in very high-

dimensional settings, as it requires fitting ~ p2 models. However, since each conditional 

mean is estimated independently, the dependence between every pair of features can 

be evaluated entirely in parallel. Additionally, one might also consider adopting some 

form of “pre-screening”. For example, one may apply a simpler method (with potential 

false positives) first to create a network with a super-set of edges and then deploy the 

methodology proposed in this manuscript to refine this to a more accurate graph.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Empirical n – scaled bias, Empirical n—scaled variance and empirical coverage of 95% 

confidence interval of Ψ1 (blue) and Ψ1, naive (red) for the low-dimensional case (top) and the 

high-dimensional case(bottom). We only provide a bootstrap-based confidence interval for 

naive estimators in the low-dimensional case to show its failure.
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Figure 2. 
Left and middle: Type I error and power of three conditional independent testing methods 

for a low- and a moderate-dimensional case. Right: average CPU time taken by four tests. 

SEcov, KCI-test and CDI-test are all implemented in R. CCIT-test is implemented in Python.
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Figure 3. 
ROC curves of graph recovery for different methods in Case1-Case4. n = 400, p = 8.

Xiang and Simon Page 18

Proc Mach Learn Res. Author manuscript; available in PMC 2021 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Related Work
	Average Conditional Dependence Measures
	Higher Order Dependence
	Conditional Independence Testing

	Estimating the Parameters
	Double Robustness of Ψ^1
	Suboptimal Estimators
	Constructing Confidence Intervals
	Relationship to De-biased Lasso

	Experiments
	Asymptotic Performance
	Conditional Independence Testing.
	Graph Recovery.

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.

