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Nonnegative sparse representation has become a popular methodology in medical analysis and diagnosis in recent years. In order to
resolve network degradation, higher dimensionality in feature extraction, data redundancy, and other issues faced when medical
images parameters are trained using convolutional neural networks. Lung tumors in chest CT image based on nonnegative, sparse,
and collaborative representation classification of DenseNet (DenseNet-NSCR) are proposed by this paper: firstly, initialization
parameters of pretrained DenseNet model using transfer learning; secondly, training DenseNet using CT images to extract feature
vectors for the full connectivity layer; thirdly, a nonnegative, sparse, and collaborative representation (NSCR) is used to represent
the feature vector and solve the coding coefficient matrix; fourthly, the residual similarity is used for classification. The
experimental results show that the DenseNet-NSCR classification is better than the other models, and the various evaluation
indexes such as specificity and sensitivity are also high, and the method has better robustness and generalization ability through
comparison experiment using AlexNet, GoogleNet, and DenseNet-201 models.

1. Introduction

Chest CT images offer the advantages of easy access, cost-
effectiveness, and low radiation dosage needed, making it
the most common screening procedure in daily clinical
practice. Diagnostic testing of multiple diseases of the
chest from CT images by radiologists can provide useful
references for the diagnosis and treatment of lung diseases.
Lung cancer [1] is one of the malignant tumors with a
high rate of morbidity and mortality, posing a serious
threat to human health. Early diagnosis and early detec-
tion are crucial to the treatment of lung cancer.
Computer-assisted diagnostic technology (CAD) [2] has
been widely used in the diagnosis and treatment of various
diseases, especially lung cancer detection, which is one of
the most common applications of CAD technology. The
introduction of computer-aided diagnosis technology has
an important and positive effect on the early detection
and diagnosis of lung cancer, so it has great prospects

for development in the field of assisting doctors in diag-
nosing and treating lung cancer.

In recent years, deep learning [3] had achieved great suc-
cess in the field of image processing due to its excellent learn-
ing capabilities. Deep learning, exemplified by DenseNet [4],
has been increasingly applied in the field of medical imaging;
good results have been achieved in clinically assisted classifi-
cation, identification, detection, and segmentation for benign
and malignant tumors, brain functions, cardiovascular dis-
eases, and other major diseases. Residual neural networks
(ResNet) [5, 6] reduce feature redundancy and reuse existing
features by sharing parameter shortcut connections and pre-
serving intermediate features. Khened et al. [7] proposed a
fully convolutional multiscale residual DenseNets for cardiac
segmentation and automated cardiac diagnosis using ensem-
ble of classifiers. In Alzheimer’s disease diagnosis, hippocam-
pus analysis by combination of 3-D DenseNet and shapes are
putted forward by Cui and Liu [8]. Tong et al. [9] proposed a
channel-attention-based DenseNet network for remote
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sensing image scene classification. However, the trade-off is
that it is difficult to rediscover the underlying features using
high-level information; DenseNet effectively leverages high-
level information to rediscover new features at the bottom
layer, enhancing feature transmission across the network
and enabling enhanced feature reuse, effectively reducing
the number of parameters. Chen et al. [10] proposed a new
DenseNet and ResNet-based dual asymmetric feature learn-
ing network, DualCheXNet, which uses two homogeneous
DCNNs to learn each other supplemented with more accu-
rate features for multilabeled thoracic disease classification,
which is relatively robust; Dai et al. [11] proposed the
improved lung nodule classification identification algorithm
based on DenseNet; the model is based on DenseNet and uses
intermediate dense projection method to obtain three-
dimensional information about pulmonary nodules and train
the network using Focal Loss to enable the network to focus
on learning the difficult resolved lung nodules, with good
experimental results; Zhu and Qin [12] proposed an
improved U-Net convolutional neural network lung nodule
detection algorithm using convolutional and pooling opera-
tion to retrieve high-level features, enable high-speed flow
of feature information between input and output layers
through DenseNet, and generate in combination with expan-
sion convolution. Multiscale features improve the utilization
of low-level features of pulmonary nodules. Li et al. [13] used
a DenseNet for computer-aided diagnosis of lung cancer,
which uses a patch-based, multiresolution DenseNet to
extract features and classify them using four different inte-
gration methods.

Sparse representation (SR) and collaborative represen-
tation (CR) have become a popular methodology in pat-
tern classification and computer vision for computer-
aided diagnosis (CAD) and tumor recognition in recent
years [14]. These methods first encode the query sample
as a linear combination of the given training samples
and then assign the query sample to the corresponding
class with the minimal distance or approximation error.
One seminal work in this category is the sparse represen-
tation- (SR-) based classifier (SRC). Sparse representation
models often contain two stages: sparse coding and dictio-
nary learning. Li et al. [15] propose a nonnegative
dictionary-based sparse representation and classification
scheme for ear recognition. The nonnegative dictionary
includes the Gabor feature dictionary extracted from the
ear images and nonnegative occlusion dictionary learned
from the identity occlusion dictionary. A test sample with
occlusion can be sparsely represented over the Gabor fea-
ture dictionary and the occlusion dictionary. The sparse
coding coefficients are noted with nonnegativity and much

more sparsity, and the nonnegative dictionary has shown
increasing discrimination ability. Mi et al. [16] propose a
robust supervised sparse representation (RSSR) model,
which uses a two-phase robust representation to compute
a sparse coding vector. Huber loss is employed as the
fidelity term in the linear representation, which improves
the competitiveness of correct class in the first phase.
Then, training samples with weak competitiveness are
removed by supervised way. In the second phase, the com-
petitiveness of correct class is further boosted by Huber
loss. Zhang et al. [17] propose a nonlinear nonnegative
sparse representation model: NNK-KSVD. In the sparse
coding stage, a nonlinear update rule is proposed to obtain
the sparse matrix. In the dictionary learning stage, the
proposed model extends the kernel KSVD by embedding
the nonnegative sparse coding. The proposed nonnegative
kernel sparse representation model was evaluated on sev-
eral public image datasets for the task of classification.
Fuzzy discriminative sparse representation (FDSR) is pro-
posed by Ghasemi et al. [18]; the proposed fuzzy terms
increase the interclass representation difference and the
intraclass representation similarity. Also, an adaptive fuzzy
dictionary learning approach is used to learn dictionary
atoms. A robust sparse representation for medical image
classification is proposed based on the adaptive type-2
fuzzy learning (T2-FDL) system by Ghasemi et al. [19].
In the proposed method, sparse coding and dictionary
learning processes are executed iteratively until a near-
optimal dictionary is obtained. Moradi and Mahdavi-
Amiri [20] propose a sparse representation-based method
for segmentation and classification of lesion images. The
main idea of our framework is based on a kernel sparse
representation, which produces discriminative sparse codes
to represent features in a high-dimensional feature space.
Our novel formulation for discriminative kernel sparse
coding jointly learns a kernel-based dictionary and a linear
classifier. We also present an adaptive K-SVD algorithm
for kernel dictionary and classifier learning. In order to
solve the semantic gap problem between low-level features
and high-level image semantic, which will largely degrade
the classification performance, Zhang et al. [21] propose
a multiscale nonnegative sparse coding-based medical
image classification algorithm.

This paper presents methods for classification of for
benign and malignant lung tumors based on non-negative,
sparse, and collaborative representation classification of
DenseNet (DenseNet-NSCR). First, CT modal medical
images were collected and preprocessed. The dataset is then
trained in a DenseNet to construct a DenseNet model to
extract the full connection layer feature vector. It was

Identity mapping F 

Input
layer 

Hi Wi Hi +1

Convolutional
layer Relu Convolutional

layer Relu Output
layer

Figure 1: Residual block.
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concluded with the results of lung tumor classification in the
NSCR classifier, compared by a total of nine models, AlexNet
+SVM, AlexNet+SRC, AlexNet+NSCR, GoogleNet+SVM,
GoogleNet+SRC, GoogleNet+NSCR, DenseNet+SVM, Den-
seNet+SRC, and DenseNet+NSCR. The DenseNet+NSCR
model outperforms the other models with better robustness
and generalization capabilities.

2. Basic Principle

2.1. The Basic Structure of DenseNet. DenseNet is typically
composed of multiple Dense Blocks and transition layer
structures overlap to form a multilayer neural network. Its
internal Dense Block structure uses the residual neural net-
work’s shortcut connection [5] structure. The deep residual
neural network is usually composed of multiple residual
block structures overlapping each other. Neighboring convo-
lutional layers are connected by a shortcut to form a residual
block. The residual block structure is shown in Figure 1,
whereHi is input,Hi+1 is output,Wi is weight, and F denotes
the identity mapping. The residual block mapping is repre-
sented in Figure 1 as

Hi+1 = Re lu Hi + F Hi,Wið Þð Þ: ð1Þ

The DenseNet structure uses dense connections in
model building as shown in Figure 1, where the current
network layer is connected to each subsequent layer. The
feature map within each Dense Block is of the same size,
and the features learned by the DenseNet are reused
within the network. The dense connections between the
DenseNet layers facilitate the flow of information through-
out the network. Its nonlinear function is shown in Eq. (2)
where xi denotes the output of layer l. ½x0 x1 x2 ⋯ xl−1�
indicates the collocation of feature maps from the input
layer to the l-1 layer. Hi denotes the nonlinear function
which is a combined operation containing the batch nor-
malization (BN) layer, the Relu layer, and the convolu-
tional layer. As a result, the training of the deep network
becomes more efficient and the performance of the model
is improved as shown in Figure 2.

DenseNet has fewer parameters for network training
compared to ResNet networks. Also, the use of dense con-
nections alleviates the overfitting problem for models with
small datasets. For the transition layer, it mainly connects
two Dense Blocks, which contain a 1 × 1 convolution and

2 × 2 average pooling to reduce the feature map size. If
the Dense Block of the previous layer outputs m feature
maps, the transition layer can generate θ feature maps,
where 0 ≤ θ ≤ 1 is called the compression factor; when θ
= 1, the feature map remains unchanged; when θ < 1, the
transition layer can further compress the model. In this
paper, DenseNet’s k = 32 and θ = 0:5 are used.

xl =Hi x0x1x2 ⋯ xl−1½ �ð Þ: ð2Þ

DenseNet has the following features: firstly, DenseNet
effectively alleviates the gradient vanishing problem caused
by an overly deep network. DenseNet effectively
strengthens feature forward transmission by acquiring the
loss function of all preceding layers for each layer, so that
deeper networks can be trained; secondly, compared to
ResNet, which uses summation to transmission features,
DenseNet uses inception’s concatenation channel merge,
which merges all previous layer outputs together as the
current input, thus significantly improving feature trans-
mission efficiency; thirdly, residual neural networks reduce
feature redundancy and reuse existing features by sharing
parameters across layers and preserving intermediate fea-
tures, with the disadvantage that it is difficult to rediscover
the underlying features using high-level information; Den-
seNet effectively leverages high-level information to redis-
cover new features at the bottom layer, enhancing feature
transmission across the network and enabling and enhanc-
ing feature reuse; fourthly, DenseNet effectively reduces
the number of parameters compared to ResNet which
has a larger number of parameters.

2.2. NSCR Algorithm. There are many redundant or irrele-
vant features in high-dimensional data, thus facing the
curse of dimensionality. On one hand, high computational
time and space are required; on the other hand, problems
such as overfitting occur in classification tasks. Therefore,
data dimension reduction is a challenging task in machine
learning. The sparse representation of high-dimensional
feature data is one of the recent research hotspots in the
field of machine learning, and SRC/CRC/NRC’s [16,
22]core idea is that test samples that are represented
approximately by linear combinations of training samples
from all classes, and then, the test samples are assigned
to the corresponding class with minimum distance or
approximate error. However, the coding coefficients in
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the sparse representation classifier SRC/CRC will be nega-
tive, which in practice makes the problem of the corre-
sponding weights of positive and negative coding
coefficients offset, which affects the sample classification
accuracy to some extent. Nonnegative representation of
classification NRC coding coefficients for classification
ideas are restricted to nonnegative, and non-negative rep-
resentation enhances the representation of homogeneous
samples’ capabilities while limiting the representation of
heterogeneous samples. Despite the success of the three
classifiers, SRC/CRC/NRC, in the image recognition task,
they have their corresponding localization. When using
the entire training image to reconstruct the test image y,
on the one hand, both SRC and CRC are generated in
the coding coefficient vector deviation. The reason is that
from a generative point of view, it is not physically feasible
to reconstruct real-world images from training images
with complex negative (minus) and positive (plus) coeffi-
cients. NRC constrains the coding coefficients to be non-
negative, but due to the lack of proper regularization,
NRC classification is not flexible enough to deal with
real-world problems. NSCR [23] combines the advantages
of sparse, collaborative, and nonnegative representations
to be physically more robust and generalizable than previ-
ous sparse, collaborative, and nonnegative representations.

The NSCR classifier can be reconstructed as a bivariate
problem bounded by a linear equation and can be solved
under the alternate direction [24] method (ADMM) of the
multiplicative subframe. Each subproblem can be solved effi-
ciently in closed form and can converge to a global optimum.
Extensive experiments of NSCR on various visual classifica-
tion datasets have verified the effectiveness of NSCR classi-
fier, and NSCR classification is better than advanced
classification algorithms such as SVM and SRC. Based on
the above discussion, the NSCR algorithm for a given test
sample and training sample matrix X, X consists of several
classes of samples, where X = ½X1,⋯, X′k� ∈ RD×N ; its algo-
rithmic idea is shown in Table 1:

2.3. Evaluation Metrics. In this paper, the evaluation metrics
[25] include accuracy, sensitivity, specificity, F-score value,
and Matthews correlation coefficient (MCC), which are
described as follows:

Accuracy, sensitivity, and specificity were calculated by
true positive (TP), false positive (FP), true negative (TN),
and false negative (FN). TP indicates a benign tumor was
predicted correctly, FP indicates a malignant tumor was pre-

dicted incorrectly, TN indicates a malignant image was pre-
dicted correctly, and FN indicates that benign tumors were
predicted incorrectly. They are calculated by the following
formulae. The calculation formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, ð3Þ

Specificity =
TP

TP + FN
, ð4Þ

Specificity =
TN

TN + FP
: ð5Þ

The F value is a summed average of the percentages of
completeness and accuracy. It is used as a trade-off between
accuracy and recall. The calculation formula is as follows:

F =
2 × TP

2 × TP + FP + FN
: ð6Þ

MCC is a more comprehensive evaluation metric that
reflects the reliability of the algorithm. When the number
of categories is different, the value of the measure considered
to be balanced ranges from -1 to +1. The MCC takes the
value of 1 when the prediction error is 0 for both FP and
FN, which means that the classification is completely correct;
when the prediction error is 0 for both TP and TN, the MCC
takes the value of -1, which means that the classification is
completely wrong. It is calculated as follows:

MCC =
TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp : ð7Þ

3. NSRC-Based DenseNet Model

Target the network degradation problem when training
CT modal medical images using convolutional neural net-
works, high dimensionality, and data redundancy during
feature extraction and other problems. This paper com-
bines the DenseNet-based feature extraction method and
the classification recognition method based on nonnega-
tive, sparse, and collaborative representation, in the pro-
posal of a DenseNet-based nonnegative, sparse, and
collaborative representation (DenseNet-NSCR) classifica-
tion of benign and malignant lung tumors. The steps of
the calculation as a whole are divided into image

Table 1: The NSCR-based classifier.

The NSCR based classifier

1 Input: training sample matrix X = X1,⋯, Xk½ � and query sample y

2 Normalize each column of matrix X and query sample y to the unit L_2 norm

3 The encoding vector of y on X is solved by the NSCR model

4 Calculate the coefficient matrix: ĉ = arg minc y′ = Xc
�� �� + α ck k22 + βc s:t:c ≥ 0

5 Calculate residual similarity: rk = y − Xkĉkk k2
6 Output label category: label yð Þ = arg min rkf g
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preprocessing, DenseNet feature extraction, and NSCR
classification.

3.1. Image Preprocessing. (1)Data collection: 5000 raw images
of lung CT models were collected from a hospital in Ningxia
of China between 2014 and 2016. The number of both benign
and malignant lung tumors was 2500 cases [26].

(2) Data preprocessing: the original images of the lung
CT models have numbered accordingly and recolored into
grayscale images. Based on the clinical markers, the focal
areas were intercepted from the full-grayscale images and
normalized to the same size as the ROI images, e.g., 64
px × 64 px, to obtain CT modal samples, which were
divided into benign samples and lung malignancy samples.

The benign sample and the lung malignancy sample were
each 2500 samples. The two types of targets were divided
into a test set and a training set of 4000 and 1000 cases,
respectively, according to a certain ratio, and constructed
with its corresponding binary labels, where the benign
label is 1 and the lung malignancy label is 2.

3.2. Dense Neural Network-DenseNet. (1) Transfer learning:
the dense neural network, DenseNet-201 model is first pre-
trained on a large natural image dataset, ImageNet, with the
parameters from the pretrained network as the initialization
parameters in the network where the growth rate of the Den-
seNet is k = 32 while the compression rate of the transition
layer is θ = 0:5.

(2) DenseNet partial feature extraction: the datasets and
labels are input into the pretrained dense neural network,
DenseNet-201, respectively, and a single-module network
based on the DenseNet model, which is CT-DenseNet, is
constructed; DenseNet is trained to extract the feature vec-
tors of training samples and test samples at the full-joint
layer.

3.3. NSCR Classification Identification. Extract the feature
vectors of training sample matrices and test sample matri-
ces at the full connection layer of a DenseNet, input the
feature matrix as an NSCR classifier, standardize all
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Calculate the coefficient matrix :
ĉ = ARG MIN c ||yʹ–Xʹc|| + 𝛼||c||2

2 + 𝛽c s.t. c ≥0 
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rk = ||yʹ–Xʹkĉk||2
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Figure 3: Flowchart of NRC DenseNet-based algorithm.

Table 2: Accuracy under the regularization parameters.

α

β

0.01 0.05 0.1 0.5 1

0.01 99.37 99.33 99.32 99.15 99.01

0.05 99.47 99.36 99.33 99.17 99.01

0.1 99.48 99.40 99.31 99.20 99.00

0.5 99.03 99.15 99.24 99.12 98.93

1 98.33 97.06 97.05 99.01 98.79
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training sample matrices, and test sample matrices to the
L_2 paradigm and solve the coefficient matrix, which in
turn is used to find the reconstruction error for each cat-
egory. Finally, the final classification identification is com-
pleted based on the similarity of the reconstruction
residuals as follows:

(1) For the training sample X ′ = ½X′1,⋯, X′K �; Xi ∈ CT,
and for the testing sample y′ = ½y′1:⋯, y′n�; yi ∈ CT.
After dense neural network, DenseNet-201 feature
extraction, a training sample matrix X ′ = ½X′1,⋯, X
′K �, and a test sample matrix of the feature space y′
= ½y′1:⋯, y′n� are obtained

(2) Standardize each column X ′ of the matrix and the
query sample y′ to the range of L_2

(3) The nonnegative sparse and collaborative representa-
tion processing of y′ with the training sample X ′ in
feature space is done to obtain the matrix of represen-
tation coefficient ĉ:

ĉ = arg minc y′ = X ′c
�� �� + α ck k22 + βc s:t:c ≥ 0 ð8Þ

(4) Classify the residual similarity of nonnegative, sparse,
and collaborative representation of test samples by
training samples:

rk = y′ − X′kĉk
�� ��

2 ð9Þ

(5) Output the label categories corresponding to the
residual results:

Label y′
� �

= arg min rkf g ð10Þ

The NSCR-based DenseNet model DenseNet-NSCR is
shown in Figure 3.

4. Algorithm Simulation Experiments

4.1. Experimental Environment. Software environment: Win-
dows10 operating system, MatlabR2019a;

Hardware environment: Intel(R)Core(TM)i5-7200U
CPU @2.50GHz 2.70GHz, 4.0GB memory, 500GB hard disk.

4.2. Results and Analysis of Experiments. To ensure the reli-
ability of the data, the five-fold crossover method was used
in this experiment. All samples were divided into five equal
parts. Each copy contains equal proportions of the number
of samples in different categories; 4 sets of data were used
as training samples at a time, while the remaining 1 sample
was used as a test sample, and each result was averaged to
get the final result. That is, the number of training samples
each session is 4000, the number of test samples is 1000,
and the average of five experiments is taken. Experiments
are conducted on three different network models, AlexNet,
GoogleNet, and DenseNet, and three classification algo-
rithms: the SVM, the SRC, and the NSCR. The results of
the experimental comparison of the two combined models
are as follows:

4.2.1. Experiment 1: NSCR Regularization Parameter
Optimization. The regularization parameters α and β affect
the performance of the NSCR classifier to achieve the optimal
performance of the NSCR classifier. In this experiment, the
regularization parameters α and β were selected as 0.01,
0.05, 0.1, 0.5, and 1, respectively, with CT medical images
as the dataset, the dataset was randomly divided 7 : 3, and a
five-fold crossover experiment was performed. The optimal
regularization parameters α and β were found with classifica-
tion accuracy as the index.

As shown in Table 2, the selection of different regulariza-
tion parameters α and β affects the performance of the NSCR
classifier. When α = 0:01 and β = 0:1, the NSCR classification
accuracy is 99.48% and the performance of the NSCR
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Figure 4: Regularization parameters α and β.

Table 3: Comparison of accuracy and training time results for
different models.

Dataset CT
Model Accuracy (/%) Training time (/s)

AlexNet+SVM 97.50 224.58

AlexNet+SRC 96.32 604.20

AlexNet+NSCR 98.52 334.39

GoogleNet+SVM 97.90 662.44

GoogleNet+SRC 98.02 1081.21

GoogleNet+NSCR 98.82 773.97

DenseNet-201+SVM 98.26 3182.66

DenseNet-201+SRC 98.32 3962.32

DenseNet-201+NSCR 99.10 3234.63
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classifier is optimal. To better indicate the effect of the selec-
tion of the regularization parameters α and β on the classifi-
cation results, the three indicators were plotted in a three-
dimensional histogram, as shown in Figure 4.

4.2.2. Experiment 2: Comparison of Accuracy of Different
Models and Time. This experiment focuses on the recogni-
tion accuracy and training time of nine algorithms (Alex-
Net+SVM, AlexNet+SRC, AlexNet+NSCR, GoogleNet
+SVM, GoogleNet+SRC, GoogleNet+NSCR, DenseNet
+SVM, DenseNet+SRC, and DenseNet+NSCR) for training
and recognition on CT sampling space and probes the effects
of different network models, different classification algo-
rithms, and different sampling spaces on the recognition rate
and training time of dense neural networks, as shown in
Table 3.

In the first case, different network models are used with
the same classification algorithm. In experiment 1, there are
three sets of comparison experiments, namely, (AlexNet
+SVM, GoogleNet+SVM, and AlexNet+SVM), (AlexNet
+SRC, GoogleNet+SRC, and DenseNet-201+SRC), and
(AlexNet+NSCR, GoogleNet+NSCR, and DenseNet-201
+NSCR). To illustrate with the third group, in the CT sam-
pling space, the accuracy of the DenseNet-201+NSCR model
proposed in this paper is 0.28% and 0.58% higher, and the
training time is 2460.66 s and 2900.24 s higher than the Alex-
Net+NSCR and GoogleNet+NSCR models, respectively. Not
surprisingly, the DenseNet-201 has deep network layers, rich
extracted image features, and high classification accuracy
compared to other models. However, the cost is a significant
increase in training time. The other two sets of results are
similar and will not be recounted here.

In the second case, the same network and different classi-
fication algorithms are used. In experiment 1, there are three
groups of comparison experiments, which are (AlexNet
+SVM, AlexNet+SRC, and AlexNet+NSCR), (GoogleNet
+SVM, GoogleNet+SRC, and GoogleNet+NSCR), and (Den-
seNet-201+SVM, DenseNet-201+SRC, and DenseNet-201
+NSCR). To illustrate the third set, in the CT sample space,
the classification accuracy of the DenseNet-201+NSCR
model proposed in this paper is better than that of the Den-
seNet-201+SVM is 0.84% higher and 0.78% higher than
DenseNet-201+SRC. In terms of training time, it is 51.97 s
more than the DenseNet-201+SVM model and 727.69 s

lower than the DenseNet-201+SRC model. Compared to
the first two cases, the overall training time is significantly
improved. However, after the network model is determined,
the increase in training time complexity compared to the
SVM classifier is relatively reduced. Moreover, the time com-
plexity is significantly reduced compared to the SRC classifi-
cation algorithm. Not surprisingly, under the same network
model, the nonnegative, sparse, and collaborative representa-
tion classification algorithm NSCR has better classification
accuracy, which better solves the optimization problem of
high-dimensional data and with a much lower time cost
compared to SVM and SRC.

4.2.3. Experiment 3: Comparison of Different Combinations of
Networks and Classifier Algorithms. The experiment focuses
on nine algorithms (AlexNet+SVM, AlexNet+SRC, AlexNet
+NSCR, GoogleNet+SVM, GoogleNet+SRC, GoogleNet
+NSCR, DenseNet-201+SVM, DenseNet-201+SRC, and
DenseNet-201+NSCR) trained on CT sampling space, in
terms of accuracy, sensitivity, specificity, F value, and MCC
for a total of five metrics to evaluate the merits of the algo-
rithm. The results are shown in Table 4.

As shown in Table 4, the DenseNet-201+NSCR algo-
rithm performance are all better than The DenseNet-201
+NSCR algorithm has better metrics than other algorithms
in terms of accuracy, sensitivity, specificity, F value, and
MCC on the CT dataset improved by 2.78%, 3.24%, 2.32%,
2.78, and 5.56%, respectively. To point out the differences
between the different algorithms on each indicator more
clearly, the mean values of these five indicators are plotted
on a line graph with the three network models in horizontal
coordinates and the five evaluation indicators in vertical
coordinates, respectively, as shown in Figure 5.

Through these two experiments and the correlation anal-
ysis, one can easily see that, with the same network model,
this paper compares three classification algorithms, SVM,
SRC, and NSCR, and the result of the experiments show that
NSCR classification outperforms SVM and SRC classification
algorithms for DenseNet in medical image extraction. The
NSRC algorithm has better robustness for the problems of
DenseNet in which features extracted from medical images
appear to have high dimensionality and data redundancy.
With the same classification algorithm, this paper compares
three network models, AlexNet, GoogleNet, and DenseNet-

Table 4: Comparison of CT results for different network models and classification algorithms.

Network model Classification algorithm Accuracy (%) Sensitivity (%) Specificity (%) F-score (%) MCC (%)

AlexNet

SVM 97.50 97.40 97.60 97.50 95.00

SRC 96.32 96.36 96.28 96.32 92.64

NSCR 98.52 98.44 98.60 98.52 97.04

GoogleNet

SVM 97.90 97.76 98.04 97.90 95.80

SRC 98.02 99.20 96.84 98.04 96.07

NSCR 98.82 99.20 98.44 98.82 97.64

DenseNet-201

SVM 98.26 98.32 98.20 98.26 96.52

SRC 98.32 99.60 97.04 98.34 96.67

NSCR 99.10 99.60 98.60 99.10 98.20
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201. The results show that DenseNet outperforms AlexNet
and GoogleNet models, and DenseNet effectively uses high-
level information to rediscover new features at the bottom
layer, enhances the propagation of features across networks,

and implements and strengthens feature reuse. The result
shows that DenseNet outperforms AlexNet and GoogleNet,
especially the DenseNet-201+NSCR model with deep net-
work depth, strong network generalization capability, high
classification accuracy, and better accuracy, sensitivity, spec-
ificity, F value, and MCC than the other models.

5. Conclusion

In this paper, a DenseNet based on nonnegative, sparse, and
collaborative representation classification for benign and
malignant classification of lung tumors (DenseNet-NSCR)
is proposed. First, CT medical images were collected and pre-
processed. The dataset is then trained in a DenseNet to con-
struct a DenseNet model to extract the full connection layer
feature vector. Finally, the lung tumor classification results
were obtained in the NSCR classifier and compared by Alex-
Net+SVM, AlexNet+SRC, AlexNet+NSCR, GoogleNet
+SVM, GoogleNet+SRC, GoogleNet+NSCR, DenseNet-201
+SVM, DenseNet-201+SRC, and DenseNet-201+NSCR for
a total of nine models. The DenseNet+NSCR model outper-
forms the other models with better robustness and generali-
zation capabilities.
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