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Background. Head and neck squamous cell carcinoma (HNSCC) is a common malignancy that emanates from the lips, mouth,
paranasal sinuses, oropharynx, larynx, nasopharynx, and from other pharyngeal cancers. The availability of high-throughput
expression data has made it possible to use global gene expression data to analyze the relationship between metabolic-related
gene expression and clinical outcomes in HNSCC patients. Method. In this study, we used RNA sequencing (RNA-seq) data
from the cancer genome atlas (TCGA), with validation in the GEO dataset to profile the metabolic microenvironment and
define potential biomarkers for metabolic therapy. Results. We extracted data for 529 patients and 327 metabolic genes (198
upregulated and 129 downregulated genes) in the TCGA database. Carbonic anhydrase 9 (CA9) and CA6 had the largest logFCs
in the upregulated and downregulated genes, respectively. Our Cox regression model data showed 51 prognostic-related genes
with lysocardiolipin acyltransferase 1 (LCLAT1) and choline dehydrogenase (CHDH) being associated with the highest risk
(HR = 1:144, 95% CI = 1:044 ~ 1:251) and the lowest risk (HR = 0:580, 95% CI = 0:400 ~ 0:839) in HNSCC, respectively. We
next used the ROC curve to evaluate whether the differentially expressed metabolic-related genes could serve as early predictors
of HNSCC. The findings showed an AUC of 0.745 and 0.618 in the TCGA and GEO analysis, respectively. Besides, the ability
for the genes to predict clinicopathological HNSCC status was analyzed and the data showed that the AUC for age, gender,
grade, stage, T, M, and N was 0.520, 0.495, 0.568, 0.606, 0.577, 0.476, and 0.673, respectively, in the TCGA dataset. On the other
hand, the AUC for age, gender, stage, T, M, N, smoking, and HPV16-pos was 0.599, 0.531, 0.622, 0.606, 0.616, 0.550, 0.614,
0.519, and 0.397, respectively, in the GEO dataset. Conclusion. Taken together, our study unearths a novel metabolic gene
signature for the prediction of HNSCC prognosis based on the TCGA dataset. Our signature might point out the metabolic
microenvironment disorders and provides potential treatment targets and prognostic biomarkers.

1. Background

Head and neck squamous cell carcinoma (HNSCC) is a
malignancy that originates from the lips, mouth, paranasal
sinuses, larynx, nasopharynx, and from other pharyngeal
cancers [1]. The HNSCC is the sixth most common type of
malignant tumors, with more than 655,000 new cases and
90,000 deaths every year [2]. Smoking, drinking, and human
papillomavirus (HPV) infections are considered risk factors

for the occurrence and development of HNSCC [3]. Worry-
ingly, due to the lack of early manifestation of symptoms or
diagnosis, local recurrence, and metastasis, the 5-year sur-
vival rate still lags at below 50% [4]. The occurrence and
development of HNSCC are complex processes that are
mediated by multiple molecules and pathways. Kim et al.
reported the mechanistic and functional roles of CXCR7 as
a key regulator of oncogenic TGF-β1/Smad2/3 signaling in
HNSCC [5]. In addition, Hsu et al. defined the oncogenic

Hindawi
Mediators of Inflammation
Volume 2020, Article ID 6716908, 12 pages
https://doi.org/10.1155/2020/6716908

https://orcid.org/0000-0003-4977-6478
https://orcid.org/0000-0002-0370-5116
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6716908


driver role of atypical cadherin 1 (FAT1) in the mediation of
proliferation, cell-death evasion, and chemoresistance in oral
squamous cell carcinoma (OSCC) [6]. Moreover, another
study revealed that the expression of E6 and E7, the HPV
virus oncogenes, inactivates p53 and retinoblastoma (RB),
respectively [7]. However, there is a wide spectrum of histo-
logical tumor markers for HNSCC and multiple anatomical
sites. Therefore, it is possible to identify more valuable
HNSCC drug targets by screening for changes in gene func-
tion networks linked to tumor formation and progression.

The activation of oncogenes and lack of tumor suppres-
sors contribute to metabolic reprogramming in cancer, lead-
ing to improved nutrient uptake that feed biosynthetic
pathways [8]. In the 1920s, Otto Warburg first reported that
tumors took up distinctly more levels of glucose compared
with normal tissues, indicating that these cells were biased
towards shuttling glucose via the glycolytic pathway [9].
Recent studies have shown that immune cells have unique
metabolic characteristics that affect their immune function.
For example, macrophage polarization is associated with
unique metabolic characteristics related to iron, energy, and
lipid metabolism [10, 11]. Whereas a number of studies have
investigated that the prognostic role of these metabolic genes
in cancer, data on the role, and mechanism of metabolism
still remains scant. In their studies, Hu et al. found that muta-
tionally activated KRAS robustly increased the glutathione
biosynthesis and intracellular cystine level in lung adenocar-
cinoma [12]. On the other hand, Yoo et al. found that the

Table 1: Prognostic related metabolic genes, HR > 1 is a high-risk
gene, and HR < 1 is a low-risk gene.

Id HR HR.95L HR.95H P value

HEXB 1.038 1.006 1.071 0.019

ACAT1 1.087 1.034 1.143 0.001

P4HA1 1.019 1.007 1.030 0.001

GNPDA1 1.065 1.013 1.119 0.013

POLE2 0.882 0.791 0.982 0.023

ACACB 0.649 0.445 0.945 0.024

SMS 1.007 1.002 1.011 0.001

AGPS 1.053 1.010 1.097 0.014

PYGL 1.009 1.003 1.014 0.003

ACAA1 0.890 0.802 0.988 0.029

MTHFD2 1.035 1.017 1.052 4.745

PLCB3 1.027 1.008 1.045 0.005

POLE 0.857 0.764 0.960 0.008

POLD2 1.013 1.003 1.022 0.006

MINPP1 1.082 1.015 1.153 0.016

KYNU 1.074 1.014 1.136 0.013

PIK3C2B 0.825 0.729 0.932 0.002

CHDH 0.580 0.400 0.839 0.003

G6PD 1.003 1.000 1.006 0.033

POLD1 0.959 0.924 0.994 0.025

PTDSS1 1.016 1.001 1.030 0.031

ENTPD1 0.813 0.710 0.930 0.002

LCLAT1 1.144 1.044 1.251 0.003

PFKP 1.012 1.001 1.021 0.024

PIP4K2A 0.927 0.859 0.998 0.046

DNMT1 0.959 0.932 0.986 0.003

ADK 1.040 1.017 1.061 0.001

NEU1 1.033 1.001 1.066 0.041

GATM 0.897 0.827 0.972 0.008

TXNDC12 1.022 1.000 1.043 0.046

ADA 1.036 1.019 1.053 2.829e-05

PAFAH1B2 1.043 1.013 1.074 0.004

PLA2G2D 0.864 0.778 0.958 0.005

DGKQ 0.908 0.845 0.974 0.007

NAGK 0.922 0.869 0.976 0.005

FTH1 1.002 1.000 1.002 0.010

ADH7 1.006 1.000 1.010 0.030

ACOX3 0.897 0.830 0.969 0.005

SHMT1 0.923 0.861 0.988 0.022

ASNS 1.030 1.011 1.049 0.001

HPRT1 1.029 1.016 1.041 5.217e-06

ATIC 1.038 1.016 1.061 0.001

LDHA 1.002 1.000 1.003 0.007

PRPS1 1.035 1.014 1.055 0.001

NADSYN1 1.037 1.001 1.074 0.040

GSTO1 1.003 1.000 1.006 0.049

Table 1: Continued.

Id HR HR.95L HR.95H P value

TXNRD1 1.005 1.000 1.010 0.034

RDH11 1.029 1.006 1.052 0.012

PAICS 1.024 1.005 1.043 0.010

Table 2: Then Lasso-penalized Cox analysis found 30 genes to build
the prognostic model.

Gene Coef Gene Coef

HEXB 0.01247 DNMT1 -0.01837

ACAT1 0.01996 ADK 0.00435

GNPDA1 0.02995 ADA 0.01480

POLE2 -0.17051 PAFAH1B2 0.00517

SMS 0.00156 PLA2G2D -0.03567

AGPS 0.00050 DGKQ -0.03222

PYGL 0.00442 ADH7 0.00527

ACAA1 -0.00201 ACOX3 -0.00481

MTHFD2 0.00689 ASNS 0.00862

PLCB3 0.02056 HPRT1 0.00982

POLD2 0.00170 ATIC 0.00835

KYNU 0.03766 PRPS1 0.01487

ENTPD1 -0.01556 NADSYN1 0.01067

LCLAT1 0.02843 RDH11 0.00258

PIP4K2A -0.00409 HADHB 0.01222
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SLC1A5 variant is a mitochondrial glutamine transporter
used for metabolic reprogramming of pancreatic cancer,
and the knockout or overexpression of the SLC1A5 variant
alters the growth of cancer cells and tumors, thus, supporting
carcinogenesis [13]. There is, however, no data on systematic
assessment of the metabolic-related genes that could reliably
predict the overall survival (OS) in HNSCC patients or char-
acterize the patient response to immunotherapy. The avail-
ability of high-throughput expression data has made it
feasible to utilize global gene expression data to analyze the
relationships between the metabolic-related gene expression
and clinical outcomes in HNSCC patients. In this study, we
used RNA sequencing (RNA-seq) data from The Cancer
Genome Atlas (TCGA) with validation from the Gene
Expression Omnibus (GEO) dataset to profile the metabolic
molecular microenvironment and assess their importance
as biomarkers for metabolic therapy.

2. Methods

2.1. Data Collection.We extracted RNA-seq data for HNSCC
patients from TCGA (http://www.cancergenome.nih.gov), a
web-based resource that provides a user-friendly interface
and depository for mRNA expression data. We validated all
the data from the GSE65858 data set obtained from the
GEO database and then extracted all the metabolic-related
genes contained in the Gene set enrichment analysis (GSEA)
database. One millionth transcript normalization and log2
transformation were used for expression profiling. The selec-
tion of metabolic-related genes for prognostic analysis was
not only consistent with the expression patterns in the TCGA
cohort but also listed in the GSE65858 data set.

2.2. Development of the Metabolic-Related Prognostic Gene
Signature. Lasso-penalized Cox regression and Univariate

Cox regression analyses were used to build the metabolic-
related prognostic gene signature [14]. The signature was
defined as risk score = ðcoefficientmRNA1 × expression of
mRNA1Þ + ðcoefficientmRNA2 × expression of mRNA2Þ +⋯+
ðcoefficientmRNAn × expressionmRNAnÞ. The related clinical
data for HNSCC patients were also downloaded and evalu-
ated. Based on the median, we denoted the data as either
low-risk (<median number) or high-risk (≥median number)
group. We used Kaplan–Meier survival analysis to analyze
the survival rate for both the study and control groups.

2.3. Building and Validating a Predictive Nomogram. Here,
we developed a nomogram [15] for the prediction of the
occurrence of cancer events, such as recurrence or death.
We then used the time-dependent receiver operating charac-
teristic (ROC) curve to assess the predictive accuracy of the
developed prognostic signatures for patients with HNSCC.
Univariate and multivariate Cox regression analyses were
employed to analyze the relationship between immune-
related genes and clinicopathological manifestations.

2.4. External Validation of the Prognostic Gene Signatures.
We downloaded the validated GSE65858 dataset in the GEO
database. Following the assessment of the risk scores for the
patients with genetic characteristics and carrying out the
ROC analysis as well as the Kaplan-Meier analysis, we robustly
demonstrated the similarity between the constructed nomo-
gram and the TCGA-HNSCC cohort. To understand the
mechanisms underlying defining the gene signatures in the
Kyoto Encyclopedia of Genes and Genomes (KEGG), we used
GSEA to search for rich terms in C2 in the TCGA-HNSCC or
GSE65858 cohort. A P < 0:05 and a false discovery rate q <
0:25were considered to be statistically significant. The mRNA
expression level (Oncomine and TIMER database) and pro-
tein expression profile (The Human Protein Atlas database)
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Figure 1: Overall survival (OS) analysis demonstrated that HNSCC with high-risk group had a more terrible prognosis than that with low-
risk group (P < 0:01).
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Figure 2: Continued.
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further verified the expression of the genes included in the
prognostic signatures. We then used CBioportal to study
genetic alterations in the gene signatures.

2.5. Statistical Analysis. We filtered the data to ensure the
complete exclusion of any sample with missing values. We
used the Benjamini–Hochberg’s method to convert the P
values to FDR. Data were analyzed using R (version 3.5.3)
and R Bioconductor software packages. We used Perl lan-
guage for data matrix and data processing. A P value of
0.05 was considered significant.

3. Results

3.1. Development and Verification of the Prognostic Metabolic
Gene Signatures. A total of 529 patients in the TCGA data-

base and 327 metabolic genes (198 upregulated genes with
the largest logFC of CA9 and 129 downregulated genes with
the largest logFC of CA6; Table S1) were used to model the
prognostic signature for the HNSCC. The validating
GSE65858 dataset contained 270 HNSCC tissue samples.
Our Univariate Cox regression analysis showed 51 survival-
related genes, with LCLAT1 being associated with the
highest risk (HR = 1:144, 95% CI = 1:044 ~ 1:251) and
CHDH denoting the lowest risk (HR = 0:580, 95% CI =
0:400 ~ 0:839) (Table 1). The Lasso-penalized Cox analysis
filtered 30 genes (HEXB, ACAT1, GNPDA1, POLE2, SMS,
AGPS, PYGL, ACAA1, MTHFD2, PLCB3, POLD2, KYNU,
ENTPD1, LCLAT1, DNMT1, ADK, ADA, PAFAH1B2,
PLA2G2D, DGKQ, ADH7, ACOX3, ASNS, HPRT1, ATIC,
PRPS1, NADSYN1, RDH11, HADHB, and PIP4K2A) used
to build the prognostic model, and then we calculated the
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Figure 2: Detailed prognostic signature information of HNSCC groups is visualized.
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Figure 3: The result of univariate and multivariate Cox regression analysis showed that our prognostic model is an independent prognostic
factor for OS.
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risk scores (Table 2). The samples were then divided into
high- and low-risk groups using the median risk score value
as a cut-off.

3.2. Survival Results and Multivariate Examination. Our OS
analysis demonstrated that, unlike the low-risk group, the
high-risk HNSCC group was associated with a worse progno-
sis (P < 0:01) (Figure 1). We showed that the mortality rate
was higher in the high-risk HNSCC patients, and the increase
in the patients’ risk score was proportional to the death rate
(Figure 2). Next, we used the univariate and multivariate
COX analyses to determine the risk factors which defined
the prognostic model based on thirty metabolic-related
genes. We demonstrate that the 30 metabolic-related gene
signatures could robustly and independently predict progno-
sis and OS (Figure 3). On the other hand, we evaluated
whether the metabolic-related gene patterns could serve as
an early predictor of incidence in HNSCC. The ROC curve
and the model demonstrated an AUC of 0.745 in the TCGA

and 0.618 in the GEO datasets. Taken together, these data
indicated that the constructed prognostic tool has moderate
sensitivity and specificity. In addition, analysis of the clinico-
pathological factors in HNSCC showed that the AUC for age,
gender, grade, stage, T, M, and N was 0.520, 0.495, 0.568,
0.606, 0.577, 0.476, and 0.673, respectively, in the TCGA
dataset, and the AUC for age, gender, stage, T, M, N, smok-
ing, and HPV16-pos was 0.599, 0.531, 0.622, 0.606, 0.616,
0.550, 0.614, 0.519, and 0.397, respectively, in the GEO data-
set (Figure 4).

3.3. Construction and Validation of the Predictive Nomogram
in the TCGA and GEO Cohorts. The nomogram was con-
structed from the clinicopathological data as well as the
developed prognostic model. Through the LASSO logistic
regression algorithm, the most important prediction markers
were selected in the training data set, which reflected the final
prediction model. The model included 7 features in TCGA:
age, gender, grade, stage, T, M, and N as well as 8 features
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Figure 5: The model ultimately included 7 features in TCGA: age, gender, grade, stage, T, M, and N and 8 features in TCGA: age, gender,
stage, T, M, N, smoking, and HPV16-pos.
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in GEO: age, gender, stage, T, M, N, smoking, and HPV16-
pos (Figure 5). Integrating our prognostic model with clini-
copathological analysis fortified the forecasting sensitivity
and specificity for 1-, 2-, and 3-year OS, thus, increasing
the usefulness in the clinical management of patients.

3.4. Gene Set Enrichment Analyses.Here, we split the samples
into high- and low-risk groups to distinguish the potential
functions and elucidate the significant survival differences
in the GSEA. Annotated gene set c2.cp.kegg.v6.0.sym-
bols.gmt was selected as the reference gene sets, which
included terms with NOM< 0:05. Gene set permutations
were executed multiple times for every examination. A great
majority of the metabolic-related pathways such as galactose
metabolism, nicotinate/nicotinamide, and pantothenate/-
COA biosynthesis or metabolic disease-related perturbations
were enriched in the high-risk group. On the other hand,
most of the nonmetabolic-related pathways such as base
excision repair, spliceosome, homologous recombination,
nucleotide excision, and DNA replication were enriched in
the low-risk group (Figure 6 and Table 3).

3.5. Online Database Analysis. To provide new insights into
the potential functions, expression patterns, molecular
mechanisms, and distinct prognostic value, we used multi-
dimensional survey techniques to explore CA6, CA9,
LCLAT1, and CHDH based on variations in the copy num-
bers or gene expression profile in the HNSCC patients. In
agreement with our findings, data from both the TIMER
database and Oncomine showed that CA6 was significantly
downregulated, while CA9 was significantly overexpressed
in HNSCC patients (Figures 7 and 8). Despite the limited
data in the Oncomine, the LCLAT1 mRNA expression
was overexpressed while the CHDH expression was down-
regulated in HNSCC in the TIMER database. Representa-
tive protein expression levels for CA9, LCLAT1, and
CHDH were explored in the HPA database as shown in
Figure 9. We showed that CA9 has the most frequent
genetic variations (10%), and the most pronounced changes
were amplification of mutations (Figure 10). In summary,
we verified the abnormal expression profiles for these genes
in HNSCC, and the genetic changes might explain the
abnormal expression.

Figure 6: Then samples were divided into high- and low-risk groups as training set to distinguish the potential function and elucidate the
significant survival difference utilizing GSEA.

Table 3: Gene sets enriched in phenotype high and low.

Gene set name Size NES NOM P value

KEGG_GALACTOSE_METABOLISM 23 1.62 0.010

KEGG_NICOTINATE_AND_NICOTINAMIDE_METABOLISM 19 1.45 0.034

KEGG_RENAL_CELL_CARCINOMA 64 1.41 0.046

KEGG_PANTOTHENATE_AND_COA_BIOSYNTHESIS 16 1.59 0.031

KEGG_MATURITY_ONSET_DIABETES_OF_THE_YOUNG 25 1.53 0.033

KEGG_BASE_EXCISION_REPAIR 33 -1.88 0.000

KEGG_SPLICEOSOME 109 -1.82 0.002

KEGG_HOMOLOGOUS_RECOMBINATION 24 -1.65 0.020

KEGG_NUCLEOTIDE_EXCISION_REPAIR 44 -1.64 0.022

KEGG_DNA_REPLICATION 36 -1.63 0.013

NES: normalized enrichment score; NOM: nominal; Gene sets with NOM P value < 0.05 are considered as significant.
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4. Discussion

Proliferating cancer cells must maintain sufficient energy and
a library of metabolic intermediates to build the macromole-
cules required for growth. The molecules include DNA, pro-

teins, and lipids [16]. Because the metabolic profile could
distinguish the tumor cells from the normal cells, metabolic
signaling pathways have become ideal targets for therapeutic
intervention for cancer patients. In this study, we identified a
novel and effective metabolic-related prognostic gene
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Figure 7: Differential expression of CA6, CA9, LCLAT1, and CHDH between tumors and normal tissues based on TIMER database.

9Mediators of Inflammation



signature based on the TCGA dataset and validated it in the
GSE65858 dataset. Our constructed signature had a strong
prognostic value and may represent the metabolic status of
patients with HNSCC. Therefore, the signature could be used
as a potential biomarker and therapeutic target in the meta-
bolic signaling pathways.

In our study, we downloaded transcriptome data from
the TCGA database and verified it using the GEO dataset as
well as the metabolic-related genes extract from the GSEA
metabolic signaling pathways. We first evaluated the rela-
tionship between the differentially expressed RNA,
immune-related genes, and transcription factors in HNSCC
patients. Univariate Cox regression model found 51
survival-related genes, whereby LCLAT1 was associated with
the highest risk while CHDH denoted the least risk. Cardioli-
pin (CL) types of polyunsaturated fatty acids, especially DHA
(C22: 6n3), increased in ALCAT1-expressing cells, while
C16-C18 fatty acids significantly decreased [17]. A recent
study showed that ALCAT1 is critical for coupling mitochon-
drial respiration and metabolic plasticity [18]. Wang et al.
reported that forced expression of ALCAT1 in primary hepa-
tocytes led to multiple defects including steatosis, defective
autophagy, and mitochondrial dysfunction [19]. Meanwhile,
ALCAT1 can promote ROS production and is critical for
coupling mitochondrial respiration and metabolic plasticity
[20]. However, there was limited data on the role of ALCAT1
in tumors. Here, we hypothesize that the ALCAT1might play

a regulatory role in cardiolipin remodeling in response to
oxidative stress and stimulate mitochondrial activity in
HNSCC cancers. Choline dehydrogenase (CHDH) localizes
to the mitochondrion, and variations in this gene can affect
susceptibility to choline deficiency. CHDH strongly predicted
clinical outcome in breast cancer patients receiving tamoxi-
fen monotherapy [21]. Choline is an essential nutrient
required for methyl group metabolism, and CHDH is associ-
ated with an increased risk of breast cancer [22]. There is no
available data on the role of CHDH in HNSCC.

By the use of ROC curves, we next interrogated whether
the metabolic-related gene patterns could serve as an early
predictor for the incidence of HNSCC. Our model demon-
strated an AUC of 0.745 and 0.618 in the TCGA and GEO
datasets. Integrating our prognostic model with the clinico-
pathological indicators enhanced the prediction sensitivity
and specificity for the 1-, 2-, and 3-year OS, thus, better clin-
ical management. Our further analysis of the survival differ-
ence using the GSEA showed that the majority of the
metabolic-related pathways such as galactose and nicotin-
amide metabolism were enriched in the high-risk group
while most of the nonmetabolic-related pathways were
enriched in the low-risk group. Galactose is an essential mol-
ecule and plays a pivotal role in energy transfer and galacto-
sylation of complex molecules. On the other hand,
nicotinamide adenine dinucleotide (NAD) plays a central
role in energy metabolism and integrates cell metabolism
with signaling and gene expression [23]. NAD biosynthesis
is dependent on nicotinamide/nicotinate single-nucleotide
adenylate transferase [24]. Therefore, high-risk patients
may benefit from metabolic therapy, while low-risk patients
may benefit from nonmetabolism-targeted therapy. How-
ever, there is a need for more studies on the relationship
between gene signatures, metabolic microenvironment, and
metabolic therapies. Our data provide a promising direction
in elucidating the underlying molecular mechanisms for the
interrogated signatures. In conclusion, our signatures may
reflect metabolic microenvironment disorders and provide
potential biomarkers for metabolic therapy and prediction
of prognosis after treatment.

Our analysis of the 327 metabolic genes in the TCGA
database showed that the CA9 had the largest logFC in the
upregulated category, while CA6 was downregulated. Car-
bonic anhydrases (CAs) are a large class of zinc metal
enzymes that catalyze the reversible hydration of carbon
dioxide. They are involved in various biological processes,
including bone resorption, respiration, calcification, and
acid-base balance. A previous study showed that pancreatic
ductal adenocarcinoma (PDACs) cells that express an acti-
vated KRAS increase the expression of CA9, via stabilization
of hypoxia-inducible factor 1 subunit alpha (HIF1A) and
HIF2A, which eventually regulates the pH and glycolysis
[25]. Similarly, CA9 is an independent prognostic factor for
OSCC patients and therefore a potential therapeutic target
[26]. CA6 encodes several isoenzymes which are only found
in salivary glands. Saliva and proteins may play a role in the
reversible hydration of carbon dioxide. CA6 is a specific
marker for salivary gland serous acinar cells and acinar cell
carcinoma (AciCC). CA6 has the same sensitivity and
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specificity asDOG1 in the differential diagnosis of AciCC and
breast analogs (MASC) [27]. However, data on the role of
CA9 and CA6 in the prognosis of human HNSCC remains
scant. Our study identified a novel metabolic gene signature
for the prediction of HNSCC prognosis based on the TCGA
data set. Our signatures might reflect the disorders in the
metabolic microenvironment and provide potential bio-
markers for metabolic therapy and monitoring of the treat-
ment response. However, the metabolic gene signatures for
prediction must be verified in more independent cohorts
and functional experiments. It is, however, important to
mention that our study was limited by the relatively small
sample size and the fact that our results were not verified in
clinical samples.

5. Conclusion

Taken together, our data defined a novel metabolic gene
signature for the prediction of HNSCC prognosis based
on the TCGA dataset. Our signatures reflect the metabolic
microenvironment disorders and provide useful bio-
markers for metabolic therapy and prediction of the
response to the treatment.
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