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Abstract

Naturally occurring proteins vary the precise geometries of structural elements to create distinct 

shapes optimal for function. Here we present a computational design method termed LUCS that 

mimics nature’s ability to create families of proteins with the same overall fold but precisely 

tunable geometries. Through near-exhaustive sampling of loop-helix-loop elements, LUCS 

generates highly diverse geometries encompassing those found in nature but also surpassing 

known structure space. Biophysical characterization shows that 17 (38%) out of 45 tested LUCS 

designs encompassing two different structural topologies were well folded, including 16 with 

designed non-native geometries. Four experimentally solved structures closely match the designs. 
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LUCS greatly expands the designable structure space and provides a new paradigm for designing 

proteins with tunable geometries that may be customizable for novel functions.

One Sentence Summary:

A computational method to systematically sample loop-helix-loop geometries expands the 

structure space of designer proteins.

Design of proteins with new and useful architectures and functions requires precise control 

over molecular geometries1,2. In nature, proteins adopt a limited set of protein fold 

topologies3–5 that are reused and adapted for different functions. Here we define “topology” 

as the identity and connectivity of secondary structure elements (Fig. 1A). Within a given 

topology, geometric features including length and orientations of secondary structure 

elements are often highly variable3,4. These considerable geometric differences between 

proteins with the same topology are necessary as they define the exquisite shape and 

physicochemical complementarity characteristic of protein functional sites. Creating 

proteins with new functions de novo therefore requires the ability to design proteins not only 

with different topologies, but also distinct custom-shaped geometries within these topologies 

optimal for each function (Fig. 1A).

Computational design has been successful in mimicking the ability of evolution to generate 

diverse protein structures spanning alpha-helical6–10, alpha-beta11–13 and beta-sheet14,15 

fold topologies, including novel folds16. However, most design methods do not include 

explicit mechanisms to vary geometric features within a topology. For instance, successful 

design methods assemble protein structures from peptide fragments using a definition of the 

desired fold and topological rules derived from naturally occurring structures12. Subsequent 

iterative cycles of fixed-backbone sequence optimization and fixed-sequence structure 

minimization16 refine atomic packing interactions, but do not create substantial changes in 

geometry. An exception are methods that use parametric equations to sample backbone 

variation17 or take advantage of modular protein elements, but these methods are restricted 

to helical bundles6,8,10 or repeat protein18 architectures, respectively.

Here we sought to develop a generalizable computational design approach that mimics the 

ability of evolution to create geometric variation within a given fold topology (Fig. 1). When 

analyzing geometric variation in protein fold families, we found that 84% of naturally 

occurring fold families contain variations in loop-helix-loop (LHL) elements (Fig. S1). We 

hence reasoned that a method that systematically samples geometric variation in these units 

would not only be able to recapitulate a large fraction of geometric diversity in naturally 

occurring structures but also to create fold families of de novo designed proteins with 

tunable geometries (Fig. 1B).

To develop a generalizable method that systematically samples geometries of LHL, we first 

examined the individual connecting loop elements in native LHL units. For all LHL 

elements from all CATH superfamilies3 of non-redundant structures, 72.8% of the loops 

contained 5 residues or less (Fig. S2A). We extracted 313,072 loops of length 2 to 5 

connecting to helices from the Rosetta non-redundant fragment database19 and sorted loops 
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into 12 libraries based on loop length and type of adjacent secondary structure (Table S1). 

For each library, only non-redundant loops were kept (Supplementary Methods); this 

procedure yielded between 224 and 5,826 loops per library. The loop libraries had 

degeneracies (total number of loops divided by the number of non-redundant loops in each 

library) ranging from 4.4 to 202 (Fig. S2B), indicating that evolution frequently used similar 

loop structures in different proteins. This suggests that the identified loop element libraries 

could also be used to computationally sample novel protein structures that have not been 

explored by nature.

We developed a protocol called loop-helix-loop unit combinatorial sampling (LUCS, Fig. 

1C, Fig. S3). LUCS starts with an input protein fold, which can be naturally occurring or as 

in our case de novo designed (Supplementary Methods), and a definition of gaps in which to 

insert LHL units. The first step systematically samples all individual loop elements from our 

libraries (Table S1). For each gap, loops are inserted at each end of the gap and any loops 

that clash with the input structure are removed. In a second step all pairs of remaining loops 

are tested for supporting LHL units by growing helices from each loop. If helices grown 

from the two ends meet in the middle, excess residues are removed in the third step and the 

gap closed by energy minimization with a chain-break penalty and hydrogen bond restraints. 

Closed LHL units with distorted hydrogen bonds geometries, steric clashes or suboptimal 

interactions between designed backbones and the environment are discarded (Supplementary 

Methods). In a fourth step, combinations of LHL units at different positions can be screened 

to yield final structures that have multiple compatible LHL units with systematically 

sampled lengths and orientations.

To validate the ability of LUCS to generate distinct geometries within given fold topologies, 

we applied the method to three design problems (Fig. 1D). In the first two design problems, 

we varied one (RO1) or two (RO2) LHL units of a de novo designed protein12 (PDB:2LV8) 

with a Rossmann fold topology. In the third problem, we varied two LHL units of a de novo 
designed protein20 (PDB:5TPJ) with a nuclear transport factor 2 (NTF2) fold topology (NT). 

In principle, LUCS can sample topologies with an arbitrary number of LHL units. For the 

systems we tested, systematic geometry sampling generated approximately 104 LHL 

elements for each gap. To limit the required computing power, we screened 106 random 

combinations of LHL units and generated between 104-105 final backbone structures for 

each design problem (Table S2). We then applied the Rosetta FastDesign protocol 

(Supplementary Methods) to optimize sequences for all residue positions within 10 Å from 

the new LHL elements. The number of designed residues for each backbone was between 33 

and 87. We note that Rosetta FastDesign also introduces structural changes outside the 

reshaped LHL elements of the designed fold through gradient-based torsion minimization, 

although these changes are small (backbone heavy atom root-mean-square deviation 

(RMSD) < 1 Å). Following sequence design, we filtered the design models computationally 

using a set of quality criteria that included a minimal number of buried unsatisfied hydrogen 

bond donors/acceptors, tight atomic packing interactions in the protein core, and 

compatibility between sequences and local structures (Supplementary Methods).

For each of the three design problems, we selected 50 low Rosetta energy21 designs from 

models that passed the quality filters and had diverse conformations for further 
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computational characterization. The Rosetta FastDesign simulations optimized low-energy 

sequences given a desired structure. To determine the converse, whether the desired structure 

is also a low energy conformation given the sequence, we conducted ab initio protein 

structure prediction simulations in Rosetta22. For the Rossman fold designs, we required the 

lowest-energy predicted structure to be within 1 Å Cα RMSD of the design model. For the 

NTF2 fold designs, we used a less strict criterion requiring a number of low-energy models 

to be close to the design model, to account for the more difficult problem of sampling 

native-like structures for proteins larger than 100 amino acids. 10, 25 and 10 designs that 

passed these tests were chosen for experimental characterization for each of the three design 

problems, respectively (Fig. 1D, Data S1, S2). The designed proteins were recombinantly 

expressed in E. coli and purified using His-tag affinity and size exclusion chromatography. 

5/10, 8/25 and 4/10 designs were found to be monomeric and well folded for each of the 

three design problems, respectively, as determined by far-UV circular dichroism and one 

dimensional 1H and 2-dimensional 15N HSQC nuclear magnetic resonance (NMR) 

spectroscopy (Fig. 1D, Fig. S4, Table S3).

To assess whether the designed structures adopted their intended geometries, we solved 

structures for three designs (RO2–1, RO2–20, and RO2–25) that sampled two LHL units in 

the Rossmann fold topology using NMR spectroscopy, and one structure for the NTF2 fold 

topology designs (NT-9) by X-ray crystallography (Supplementary Methods, Fig. S5, Tables 

S4–5). The experimentally solved RO2 design structures closely matched the computational 

models (Fig. 2 A–C), with backbone heavy atom RMSDs between models and solved 

structures within 1.3 Å, core hydrophobic side chains in good agreements with the designed 

models (Fig. S6) and 5 of the loops in designed LHL units well converged (Fig. S7). In the 

crystallographic electron density map obtained at 1.5 Å resolution for the NTF2 fold design 

(NT-9), strong signal was clearly identifiable inside a surface pocket (Fig. 2D), which was 

interpreted as a bound phospholipid (1,2-diacyl-sn-glycero-3-phosphoethanolamine, see 

Supplementary Methods). The two N- and C-terminal helices (residues 1–20 and 113–128), 

which had not been reshaped by LUCS, were pushed apart to accommodate the ligand, 

leading to an overall backbone heavy atom RMSD between design and model of 2.7 Å. 

However, when excluding the N- and C-termini helices and aligning the remainder of the 

design, the backbone heavy atom RMSD between the model and the solved structure was 

1.4 Å (Fig. 2E). Moreover, the designed side chain packing interactions between the 

reshaped helices were in excellent agreement with the design (Fig. 2F). Taken together, our 

structural analysis confirmed the designed geometry in the reshaped regions for all 4 

designs. The presence of a ligand in the NT-9 design is consistent with the known ability of 

the NTF2 fold to bind to diverse hydrophobic small molecules, and highlights the exciting 

possibility to introduce new functions such as ligand binding by reshaping protein 

geometries.

We next analyzed the magnitude of the geometric differences between our designs. We first 

compared the backbone heavy atom RMSDs between the reshaped helices of all well folded 

designs (Fig. 1D) after aligning the non-reshaped regions using both the design models and 

experimentally solved structures (Fig. 3A, Fig. S8). For the designs with one LHL unit 

reshaped, 18 out of 20 off-diagonal differences are more than 3 Å (Fig. 3A, left). For the 

designs with two LHL units reshaped, 55 out of 68 off-diagonal differences are more than 4 
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Å (Fig. 3A, middle and right). This scale of variation exceeds the backbone changes 

generated by existing flexible backbone design methods23,24 that are typically smaller than 2 

Å RMSD. For each well-folded design, we also identified the closest structures in the 

protein data bank (PDB) using TM-align25. 15 out of the 17 designed LHL units were 

significantly different (RMSD > 3 Å for one LHL reshaped designs and RMSD > 4 Å for 

two LHL reshaped designs) from their closest match in the PDB (Fig. 3A, Fig. S9), 

indicating that the design protocol not only generates stable structures with considerable 

conformational divergence, but also geometries not observed in known structures. We 

further analyzed the distribution of sampled geometries and their coverage of designable 

backbone structure space, where a structure is defined as designable if at least one sequence 

folds into that structure. As a computational approximation, we defined the models that 

passed the quality filters after the first iteration of sequence design (Supplementary 

Methods) as designable because they had good core packing, hydrogen bond satisfaction and 

local sequence structure compatibility with the designed sequence. We projected the center 

and directions of the helices onto the underlying beta sheets (Fig. 3B). The sampled helices 

from designable models at each position encompassed the distributions derived from native 

protein structures in the PDB (Fig. 3B, right panels). For the NTF2 fold, the distributions 

sampled in the designs were slightly shifted to the upper left when compared to the 

distributions in known structures (Fig. S8). This difference could be a result of the presence 

of a C-terminal helix in our designs occupying the region shown in the right of the space 

projection, whereas C terminal helices were often missing in the ensemble of known 

structures. Overall, since the number of known protein structures for a given topology is 

limited, the structure space covered by the known structures is much sparser than the space 

covered by the sampled structures. We quantified the size of structure space by dividing the 

6-dimensional space of helix centers and orientations into bins (Supplementary Methods, 

Fig. S10). For the geometries sampled in this work, the known structures covered between 

12 and 26 bins, while LUCS generated structures covered between 63 and 221 bins (Fig 3C; 

the smaller number of geometries in the NT designs (relative to the RO designs) could be a 

consequence of the additional C-terminal helix present on our NT designs restricting the 

accessible space of the two sampled helices). The 17 well folded designs (Fig. 1D) sampled 

between 3 and 7 bins for each helix, respectively, and the majority (18/22) of these bins were 

not covered by known structures (Fig. 3D). All but one of the well folded designs had at 

least one helix in a novel bin. Five well folded designs had both helices in novel bins (Fig. 

3E). Taken together, these results show that LUCS generates highly diverse geometries 

encompassing those found in nature but also exceeding known structure space, indicating 

that a large part of designable protein structure remains unexplored.

We next sought to understand in more detail how the backbone geometries of the designed 

proteins were defined by the precise details of their non-covalent intramolecular interactions. 

The three experimentally solved Rossmann fold topology structures had distinct sequence 

patterns (Fig. 4A) resulting in distinct packing arrangements (Fig. 4B, C) in their 

hydrophobic cores. The beta sheets favored beta branched residues as expected, but the side 

chain sizes varied across different designs and resulted in differential hydrophobic packing. 

In particular, we observed previously described knob-socket type packing motifs26 (Fig. 4C, 

Fig. S11) where nonpolar side chains fit into pockets formed by three residues on helices. 
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These arrangements result in matched geometries between the side chains from sheets and 

helices that likely contribute to specifying the three-dimensional arrangement of the helices 

(Supplementary Text, Fig. S12). We also applied tertiary motif analysis using MASTER27. 

For all well-folded designs, we were able to match tertiary motifs to both the designed loops 

and interacting secondary structure elements (Fig. S13). Moreover, we identified side chains 

mediating helix-helix, helix-sheet and helix-loop interactions that are similar in our designs 

and the corresponding matched tertiary motifs (Fig. 4D). Despite the close match between 

the local structures in the design and the tertiary motifs, the source proteins of the motifs had 

overall structures very different from the designs (Fig. S13). Since tertiary motif information 

was not used directly in LHL backbone sampling or sidechain design, we conclude that 

recurrent tertiary motifs can be recapitulated solely by our LUCS sampling protocol and the 

Rosetta energy function21.

Previous key achievements in de novo design11–15,20 focused on designing one or a few 

structures for diverse non-helical-bundle topologies by deriving design rules for specific 

topologies to identify the most favorable “idealized” geometries. This topology-centric 

strategy typically finds deep energy minima and thereby succeeds in overcoming errors in 

energy functions to create highly stable de novo folds. In contrast, natural and LUCS 

generated structure families adopt non-ideal geometric features such as diverse helix 

positions, orientations, lengths and conformations of connector elements, and exploring 

these non-ideal regions presents extra challenges28. Nevertheless, we show here that LUCS 

achieves accurate atom-level control over diverse geometries, and our designs are not 

notably less stable than their de novo designed starting points (Fig. S4). This success could 

at least partially be explained by the ability of LUCS to recover three-dimensional packing 

arrangements that are recurrent in nature (Fig. 4D, Fig. S13), but without using this 

information as input.

We envision many applications for LUCS to precisely tune protein geometries for new 

protein functions that require atom-level control. The generalizable strategy underlying 

LUCS (Fig. 1C) does not require prior definition of structural variation based on design 

rules identified in native structures20,29. New protocols could exploit this ability to flexibly 

tune protein geometries during design simulations while simultaneously building new 

functional sites for ligand binding or protein-protein recognition. The systematic sampling 

of protein geometries should also enable designing dynamic proteins30 that can switch 

between multiple distinct de novo designed conformations. Methods such as LUCS bring 

control over designable protein geometry space for arbitrary functions within reach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. LUCS sampling strategy to create de novo designed protein fold families with tunable 
geometries.
A. In nature, protein fold topologies (left) are diversified to create families of proteins with 

distinct geometries (right) optimized for function. Alpha-helices are shown as cylinders and 

beta-strands as arrows. The box shows schematic representations of common types of 

geometric variation. B. The LUCS computational design protocol seeks to mimic the ability 

of evolution to diversity protein geometries to generate de novo designed fold families. C. 
Schematic of the LUCS protocol for sampling LHL geometries. The reshaped LHL units are 

colored in red and blue. Typical numbers of models generated at major stages of the protocol 

are indicated. D. Designed fold families. Schematic shows fold topologies and design 

problems (Rossman fold with 1 or 2 reshaped LHL units, and NTF2 fold with 2 reshaped 

LHL units). Also shown are numbers for geometries generated by LUCS, designed models 

that passed quality filters, and experimentally characterized designs for three design 
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problems. % folded indicates the fraction of experimentally tested designs that adopted 

folded structures.
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Figure 2. Close agreement between models and experimentally determined structures of 
designed proteins.
A–C, designs for the Rossmann fold topology and D–F, design for the NTF2 fold topology. 

Experimentally determined structures are shown in yellow and design models in grey with 

the reshaped LHL elements highlighted in red and blue. A–C. Comparison between 

computational models and NMR structures for designs RO2_1(A), RO2_20(B) and 

RO2_25(C). Also shown are the backbone heavy atom RMSDs calculated using the lowest 

energy structure from the NMR ensemble. D. The binding pocket of a 

phosphatidylethanolamine ligand. The 2Fo − Fc electron density map (cyan) for the ligand 

molecule is shown at 1.0 σ level. E. Comparison between computational model and X-ray 

crystal structure for the design NT_9. The phosphatidylethanolamine ligand is shown in 

space fill representation (carbon atoms in yellow, oxygen atoms in red, phosphorus atoms in 

orange, and nitrogen atoms in blue). Also shown are the backbone heavy atom RMSDs 

calculated including or excluding the terminal helices, respectively. F. Alignment between 

the designed helices in the computational model and the experimentally solved structure for 

design NT-9. The hydrophobic residues at the packing interface are shown in stick 

representation. The RMSD shown includes the helix backbone heavy atoms and side chain 

heavy atoms displayed as sticks.
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Figure 3. Geometry space sampled by de novo designed fold families.
In A and B, the columns show the 3 design problems: Left, Rossman fold with one designed 

LHL unit (RO1); middle, Rossmann fold with two designed LHL units (RO2); right: NTF2 

fold with two designed LHL units (NT). A. Heatmaps showing backbone RMSDs between 

the reshaped LHL-regions of well-folded designs, comparing design models (x axis) with 

experimentally determined structures (_exp) or lowest-scoring models from Rosetta 

structure prediction (y axis). Green boxes show RMSDs calculated using experimentally 

solved structures. Red boxes (right columns) show the RMSDs between designs and the 

closest known structures found by TM-align. B. Projection of centers and directions of 

designed helices (arrows) onto the underlying beta sheets. For the RO2 (middle) and NT 

(right) columns, panels show distributions in designable models (Fig. 1D) on the left (helices 

colored red and blue), and in known naturally occurring structures on the right 

(corresponding helices in orange and cyan). The two rows show helices on two z-level 

planes based on their distances from the beta-sheet projection plane. For planes that have 

more than 1000 sampled structures, only 1000 randomly selected helices are shown. For the 

designs, experimentally confirmed folded designs are represented as bold arrows with 

yellow boundaries and designs with experimentally solved structures as bold arrows with 

green boundaries. For the natural proteins, the Rossmann fold structures are from the CATH 

superfamily 3.40.50.1980 and the NTF2 fold structures are from the CATH superfamily 
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3.10.450.50. C. Number of structure bins occupied by known structures (orange, cyan) and 

sampled by designable models generated by LUCS (red, blue). D. Structure bins occupied 

by well folded designs. E. Classification of the well folded structures by the number of novel 

structure bins they occupy.

Pan et al. Page 13

Science. Author manuscript; available in PMC 2021 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Structural features encoding distinct protein geometries.
A. Sequence patterns of the hydrophobic cores in three designed models for the Rossman 

fold, aligned by corresponding secondary structure elements (top). Hydrophobic residues are 

shown as letters in rainbow colors ordered by position in the primary protein sequence and 

scaled by side chain size. Grey underlines indicate positions of surface exposed polar 

residues. The residues in the boxes are the knob residues shown in (C). B. Atomic packing 

of hydrophobic cores in the three experimentally determined structures for the Rossman fold 

(Fig. 2). The hydrophobic side chains in the designed cores are shown as spheres. C. Knob-

socket packing motifs found in the designs. Three residues on a helix (grey sticks and 

surfaces) form a socket accommodating a knob residue shown as colored spheres. D. 
Examples of tertiary motifs matching the designed LHL structures. The designed structures 

are shown in grey and the matched motifs are shown in magenta. Sidechains of the best 
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matched tertiary motifs and design models are shown as sticks. Insets indicate location of 

the tertiary motif in the structure in the same orientation as in B.
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