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• Enhanced atmospheric oxidation capac-
ity is observed in the Yangtze River
Delta during COVID-19 lockdown.

• NOx reduction is the reason for increases
of oxidants (OH, HO2, and NO3).

• O3 is increased in the central Yangtze
River Delta, corresponding to atmo-
spheric oxidation capacity enhancement.
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Aggressive air pollution control in China since 2013 has achieved sharp decreases in fine particulate matter
(PM2.5), along with increased ozone (O3) concentrations. Due to the pandemic of coronavirus disease 2019
(COVID-19), China imposed nationwide restriction, leading to large reductions in economic activities and associ-
ated emissions. In particular, large decreases were found in nitrogen oxides (NOx) emissions (>50%) from trans-
portation. However, O3 increased in the Yangtze River Delta (YRD),which cannot be fully explainedby changes in
NOx and volatile organic compound (VOCs) emissions. In this study, the Community Multi-scale Air Quality
model was used to investigate O3 increase in the YRD. Our results show a significant increase of atmospheric ox-
idation capacity (AOC) indicated by enhanced oxidants levels (up to +25%) especially in southern Jiangsu,
Shanghai and northern Zhejiang, inducing the elevated O3 during lockdown. Moreover, net P(HOx) of 0.4 to
1.6 ppb h−1 during lockdown (Case 2) was larger than the case without lockdown (Case 1), mainly resulting
in the enhanced AOC and higher O3 production rate (+12%). This comprehensive analysis improves our under-
standing on AOC and associated O3 formation, which helps to design effective strategies to control O3.

© 2020 Published by Elsevier B.V.
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1. Introduction

In recent decades, rapid economic growth significantly deteriorates
air quality in China due to lack of emission controls (Hall et al., 2010;
Zhao et al., 2012). In response, the Air Pollution Prevention and Control

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2020.144796&domain=pdf
https://doi.org/10.1016/j.scitotenv.2020.144796
mailto:peng.ce.wang@polyu.edu.hk
mailto:zhanghl@fudan.edu.cn
Journal logo
https://doi.org/10.1016/j.scitotenv.2020.144796
Unlabelled image
http://www.sciencedirect.com/science/journal/00489697
www.elsevier.com/locate/scitotenv


Table 1
Emission reduction factors for Case 2 during the lockdown period in this study. The scaling
factors are from Huang et al. (2020).

Species Province NOx SO2 VOC PM CO BC OC

Reduction factors Shanghai 48% 42% 45% 34% 35% 54% 42%
Jiangsu 50% 26% 41% 16% 23% 35% 7%
Zhejiang 50% 29% 45% 30% 41% 49% 20%
Anhui 56% 22% 31% 11% 14% 22% 4%
Jiangxi 53% 21% 43% 19% 24% 30% 9%
Fujian 51% 30% 42% 19% 29% 31% 7%
Henan 57% 22% 41% 18% 23% 35% 8%
Shandong 50% 25% 39% 19% 23% 35% 9%
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Action Planwas implemented in 2013 to improve air quality (Feng et al.,
2019; Zheng et al., 2017). As fine particulate matter (PM2.5) concentra-
tion is decreasing due to strict control measures (Geng et al., 2019;
Zhang et al., 2018), ozone (O3) concentration has an increasing trend
(Chen et al., 2019; Wang et al., 2018), especially in populated and eco-
nomically vibrant regions such as the Yangtze River Delta (YRD) (Ding
et al., 2013; Shao et al., 2016; Xu et al., 2017). In recent years, the highest
hourly O3 frequently exceeded 160 μg/m3 in the YRD (Li et al., 2019;
Wang et al., 2019; Yang et al., 2020).

The sudden outbreak of the Coronavirus Disease 2019 (COVID-19)
pandemic emerged significant social impacts in China (Atar and Atar,
2020; Nicola et al., 2020). To prevent the spread of COVID-19, a strict na-
tional lockdown was implemented since late January (Chinazzi et al.,
2020; Tang et al., 2020). During the lockdown period, most transporta-
tion and commercial activities were terminated and almost all outdoor
human activities were prohibited throughout the country, which gives
an important opportunity to investigate the changes in air quality due
to drastic emissions reduction. In the YRD, the alleviation of PM2.5 was
reported that attributed to the decrease in nitrogen oxides (NOx) emis-
sions (Bao and Zhang, 2020; Gautam, 2020; Ogen, 2020). However, ele-
vated O3 concentrations were observed in the YRD (Huang et al., 2020),
indicating that challenges exist in O3 control. The increase of O3 is likely
due to complex non-linear processes in O3 formation and changes in at-
mospheric oxidation capacity (AOC) (Kentarchos and Roelofs, 2003; Li
et al., 2015; Tan et al., 2019b). Thus, this is a need to investigate the
change of AOC during COVID-19 outbreak and its relationship with O3

increase to help establish more effective strategies in controlling PM2.5

and O3 synergistically.
AOC is defined as the sum of individual oxidation rates of primary

pollutants (such as volatile organic compounds, VOCs) by oxidants in-
cluding hydrogen oxide radicals (HOx = OH + HO2), and nitrogen
oxide radical (NO3) (Jacob, 2000; Monks, 2005; Singh et al., 1995).
These oxidants are regarded as indicators to assess AOC, which deter-
mines characteristics of pollutants formation in the atmosphere
(Geyer et al., 2001; Mao et al., 2010; Murray et al., 2014). In particular,
hydroxyl radical (OH, major component of HOx) plays important role
in O3 formation (Bloss et al., 2005; Sheehy et al., 2010). OH oxidizes
VOCs to produce peroxy radicals, then peroxy radicals (such asHO2) ox-
idize NO to produce NO2 in competition with O3 after NO2 photolysis,
leading to accumulation of O3 (Fig. S1) (Pollack et al., 2013; Ren et al.,
2013; Tan et al., 2019b).

Previous studies on AOC only focused on radical chemistry
(Keywood et al., 2004; von Sonntag, 2007; Xue et al., 2016; Zheng
et al., 2020). Limited studies have related to AOC changes with O3 for-
mation. Recent studies modeled the highest ever-reported concentra-
tions of OH at urban site in the YRD (Zheng et al., 2020; Zhu et al.,
2020), which indicates AOC is strong in this region. Therefore, it is nec-
essary to study the changes of AOC due to NOx emission and O3 eleva-
tion during the COVID-19 lockdown period.

In this study, we use the Community Multiscale Air Quality (CMAQ)
model to investigate AOC characteristics and associated O3 changes in
the YRD during the COVID-19 lockdown. Major oxidants and their
sources are also determined and analyzed. The study aims to conduct
an in-depth analysis on correlation of AOCandO3 in the YRDwith impli-
cations for formulating effective O3 control policy in future.

2. Materials and methods

2.1. Model application

CMAQ version 5.0.2 with modified SAPRC-11 photochemical mech-
anism (Carter and Heo, 2013; Ying et al., 2015) was applied to simulate
gas pollutants from January 5 to February 29, 2020 that comprises the
pre-lockdown (January 5 to 22) and lockdown (January 23 to February
29) periods. Two-level nested domainswere usedwith horizontal reso-
lutions of 36-km and 12-km, respectively. The 36-km (197 × 127 grid
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cells) domain covered most of East Asia and the 12-km (97 × 88)
domain included the YRD (Fig. S2). TheWeather Research and Forecast-
ing model (WRF) v3.6.1 was utilized to generate meteorology inputs to
CMAQ with initial and boundary conditions from National Centers for
Environmental Prediction (NCEP) FNL Operational Model Global
Tropospheric Analyses dataset (NCEP, 2000; Zhang et al., 2012). The an-
thropogenic emissions were from Multi-resolution Emission Inventory
for China (MEIC) for 2016 (http://www.meicmodel.org). Biogenic emis-
sions were generated using the Model of Emissions of Gases and
Aerosols from Nature v2.1 (Guenther et al., 2012).

2.2. Emission scenarios

Two simulation scenarios were performed in this study, with the
business as usual case (Case 1) using unchanged emission and Case 2
adopting reduced emissions in the lockdown period. The decreases
of emissions during lockdown were based on Huang et al. (2020).
Provincial changes were made to carbon monoxide (CO, >13%),
NOx (>45%), sulfur dioxide (SO2, >20%), VOCs (>30%), and PM
(>15%). NO2 levels declined the most during lockdown as transpor-
tation is the major source. Table 1 shows the detailed reduction ra-
tios for each province in the YRD. By comparing the two cases, the
impacts of reduced anthropogenic emissions on AOC and O3 concen-
trations were evaluated.

2.3. Determining sources and sinks of oxidants

Quantifying contributions of individual processes to atmospheric
oxidants provides a fundamental explanation and identifies key oxi-
dants chemical characteristics related to AOC. Previous AOC studies
have generally used box model to determine the sources and sinks of
HOx (Tan et al., 2017; Tan et al., 2019b; Zhu et al., 2020), which was
constrained to observations of photolysis frequencies, long-lived trace
gases, and meteorological parameters. And in this study, we used the
CMAQ model. The process analysis technique in CMAQ was used,
which includes integrated process rate (IPR) analysis and integrated re-
action rate analysis (IRR) (https://www.cmascenter.org/cmaq/science_
documentation/pdf/ch16.pdf) (Arshadi and Rajaram, 2015; Liu et al.,
2010). The IRR analysis was directly computed from reaction rates at
the beginning and end of each chemistry integration time step. Radical
initiation reactions are almost always photolytic reactions that generate
new radicals. The termination reactions remove radicals through the
formation of stable products.

The budgets of HOx including OH and HO2 were evaluated quantita-
tively, aiming to identify the characteristics of AOC. In the radical produc-
tion process, the major sources of OH and HO2 are photolysis reactions
involving nitrous acid (HONO), O3, and formaldehyde (HCHO) and the
reactions of O3 with alkenes. In radical loss process, reactions that
forms stable compounds such as OH + NO2 = HNO3 are considered.
The detailed process of HOx budget are shown in Table 2 that modified
from Tan et al. (2019b). It should be noted that this study only considers
chemical processes in the budget analysis, while physical processes such
as deposition and transport are not included.

http://www.meicmodel.org
https://www.cmascenter.org/cmaq/science_documentation/pdf/ch16.pdf
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Table 2
Chemical reactions considered in the radical budget analysis of OH and HO2.

Product of HOx

HONO + hν HONO + hν (<400 nm)→ OH + NO R1
O1D + H2O O (1D) + H2O → OH + OH R2
HCHO + hν HCHO + hν (< 335 nm) + 2O2 → 2HO2 + CO R3
O3 + alkenes O3 + alkenes → OH, HO2 + products R4
Loss of HOx

OH + NO2 OH + NO2 → HNO3 R5
HO2+ HO2 HO2 + HO2 → H2O2 + O2 R6

HO2 + HO2 + H2O → H2O2 + H2O + O2 R7
HO2 + RO2 HO2 + RO2 → ROOH + O2 R8
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2.4. O3–NOx–VOC sensitivity

The type of O3 sensitivity regime is critical for the formation of O3.
Transition regime, NOx-limited regime and VOC-limited regime have
been demonstrated to explain the formation of O3. At NOx-limited re-
gime (low NO conditions), VOCs are more competitive than NOx to
react with OH. The main reaction of VOCs and OH can produce peroxy
radicals, leading to the O3 concentration increase. At VOC-limited re-
gimes (high NO conditions), the high levels NO can consume O3 and
suppress the accumulation of O3 (named the “titration effect”) (Chou

et al., 2006). Here the ratio of R (define as
PH2O2
PHNO3

) has been adopted to

evaluate the O3 production sensitivity, where PH 2O 2
is the formation

rate of hydrogen peroxide (H2O2), and PHNO 3
is the formation rate of

nitric acid (HNO3). And we take R < 0.35 as indicating VOC-limited
regime, and R > 0.35 as NOx-limited regime (Milford et al., 1994;
Sillman et al., 1995). The spatial distributions of R reveal the character-
istics of O3 formation over the study area.

3. Results and discussions

3.1. WRF-CMAQ model validation

Meteorological conditions were validated against available ob-
servation data (~200 stations) from the National Climate Data
Center (NCDC) (ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-lite, last
access August 2020) (Table S1). Temperature (T2) and wind speed
(WS) were slightly overpredicted, indicating by positive mean bias
(MB) values. MB values of wind direction was within benchmarks
suggested by Emery and Tai (2001), while gross error (GE) values
exceeded the benchmarks slightly. In general, WRF shows accept-
able performance that is similar to previous studies over China
(Hong et al., 2017; Hu et al., 2016; Hu et al., 2017).

CMAQ simulations were validated by comparing prediction with
hourly observations from China National Environmental Monitoring
Center (https://quotsoft.net/air, last access August 2020) (Table S2).
Predicted O3 (both O3–1 h and O3–8 h) and PM2.5 were within the
criteria suggested by US EPA with slightly overestimation (EPA, 2007).
In three representative cities of YRD (Nanjing, Shanghai, and Hang-
zhou), predicted O3 agreed well with observation, with MNB values of
−0.03 to 0.01 (Fig. S3). The model performance is acceptable for NO2

in Shanghai, while for Hangzhou and Nanjing, the model trend is the
same, but there is a significant overestimation, which could be related
to the inventory adjustment ratio in Zhejiang Province and Jiangsu
Province (Fig. S4). Overall, CMAQmodel gives robust results for follow-
ing analysis.

3.2. Changes in AOC

3.2.1. Enhanced AOC in the YRD during the lockdown
During the COVID-19 lockdown, elevated AOCwas predicted in Case

2 with emission reductions in large areas of the YRD, indicating by in-
creased oxidants of OH, HO2, and NO3 (Fig. 1). Compared to Case 1,
3

elevated OH and HO2 in Case 2 occurred in most areas especially in
Jiangsu, Shanghai and larger area of Zhejiang (Fig. 1c and f), with the
growth rate of 15–20% and 10–25%, respectively. HOx showed increases
in similar regions (Fig. 1i) with less sink due to sharply reduced NOx

concentrations (Fig. S5c) (Atkinson et al., 2004; Jacob, 2000; Monks,
2005). Similarly, elevated NO3 occurred in Jiangsu, Shanghai and
northern Zhejiang (Fig. 1l) with highest increase of 17%, mainly
due to reduced reactions with VOCs in HOx and RO2 production reac-
tions (NO3 + alkenes= HOx/RO2 + products, Fig. S6c) (Dentener and
Crutzen, 1993; Fry et al., 2009; Rudich et al., 1998). NO3 level showed
a decrease by 15% in the southern Zhejiang during the lockdown,
mainly due to declining O3 and NO2 (Fig. 4c and Fig. S5c) as the larg-
est sources of NO3 (NO2 + O3 → NO3 + O2) (Brown and Stutz, 2012).
Above all, the model captured AOC from pre-lockdown to lockdown
over the YRD, with 10–25% elevations in Jiangsu, Shanghai and
northern Zhejiang, and 2–10% declines in southern Zhejiang.

Averaged diurnal variations of major oxidants in three major cities
(Nanjing, Shanghai and Hangzhou) are shown in Fig. 2. For HOx, the
peak values were observed at noontime, while, as the dominate oxidant
in the nighttime, the higher levels of NO3 occurred at the night. During
the COVID-19 lockdown, elevated AOC was predicted in the Case 2 in
three major cities, indicating by the rising major oxidants (OH, HO2,
and NO3). Compared to Case 1, the daytime HOx and nighttime NO3

peak values were increased by 33–78% (50–78% in Nanjing, 33–50% in
Shanghai, and 40–49% in Hangzhou) and 50–64% (50% in Nanjing and
Hangzhou, and 64% in Shanghai), respectively. The HOx peak value
were the highest in Hangzhou (0.14 ppt for OH and 5.2 ppt for
HO2) in Case 2, followed by Nanjing (0.12 ppt for OH and 3.2 ppt
for HO2) and Shanghai (0.12 ppt for OH and 3 ppt for HO2), which
were consist with the average net P(HOx) for three major cities
(−0.0688 ppb h−1 in Nanjing, −0.0602 ppb h−1 in Shanghai,
and − 0.0368 ppb h−1 in Hangzhou, see Sect 3.2.2). Similarly, the
NO3 peak value was the highest in Hangzhou (3.1 ppt) in Case 2,
followed by Nanjing and Shanghai (2.2 ppt), demonstrating the
higher AOC level in threemajor cities during the COVID-19 lockdown
period especially in Hangzhou.

3.2.2. HOx budget
Quantifying the production and loss rates of HOx (P(HOx) and L

(HOx)) is crucial to understand the increase of AOC during the lock-
down. The sources and sinks of HOx in three major cities are shown in
Fig. 3. From both Case 1 and Case 2, P(HOx) was dominated by photoly-
sis reaction involving O3, HONO, and HCHO. The photolysis of HONO
(28%–52%, Table 2 R1), followed by HCHO (15%–25%, Table 2 R3) and
O3 (8%–20%, Table 2 R2) for the three cities in Case 1 (Fig. 3a–c). And
the ozonolysis of alkenes (Table 2 R4) contributed 15%–29% during day-
time and is the only primary source considered here at night. In addi-
tion, total P(HOx) declined in Case 2 compared to Case 1 (Fig. 3),
which was mainly attributed to the lower L(HOx) rates. However, due
to increase in O3 concentrations (Fig. 4d–f), the enhanced ozonolysis
of alkenes (0–0.2 ppb h−1, Fig. S7) in all these cities were found in
Case 2 at night. In Case 2, P(HOx) was dominated by photolysis of O3

and HONO (both 25%–42%) and HONO (18%–35%) for the three cities.
Also, in Case 2, the reaction of O1D + H2O produced OH rates were up
to 0.3 ppb h−1 in Shanghai at noontime, which is lower than that re-
ported by Tan et al. (2019b) (1.4 ppb h−1), due to the relatively low
O3 in winter (up to 56 ppb around noontime, Fig. 4d). In Shanghai,
HCHO produced HO2 rate was up to 0.2 ppb h−1 (Case 2), which
was lower than previous studies (0.8 ppb h−1) (Tan et al., 2019b;
Zhu et al., 2020). The rates of HONO producing OH were (up to
0.2 ppb h−1 for Case 2) slightly lower than previous studies (up to
0.38 ppb h−1) (Tan et al., 2019b; Wang et al., 2014; Zhu et al.,
2020), which could be attributed to the absence of anthropogenic
source emissions of HONO resulting in a lower HONO (Fig. S8). The
ozonolysis of alkenes producing HOx (~0.18 ppb h−1 averagely) are
consistent with previous studies.

ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-lite
https://quotsoft.net/air,%20last


Fig. 1. Predicted the major oxidants and the changes between cases in unit of ppt during the pre-COVID (Pre) and COVID-lock periods (Case1 using unchanged emission and Case 2
adopting reduced emissions).
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The lower L(HOx) rates were found in Case 2 in all these cities,
mainly due to a large decrease in NOx (Fig. S5c) during the lockdown.
From both Case 1 and Case 2, L(HOx) was dominated by the reaction
of OH + NO2 (about 98%, Table 2 R5), followed by the reaction of
HO2 + HO2 (2%, Table 2 R6). The HOx losses via NOx radical reactions
were much larger than that of radical-radical reactions such as
HO2 + HO2 (0.01–0.08 ppb h−1, Table 2 R6-R8) for all the three cities,
indicating a high-NOx chemistry environment in the YRD. Consequently,
total L(HOx) declined significantly in Case 2 compared to Case 1 mainly
due to the lower (30%–40%) NOx emissions (Fig. S5). HOx losses via
NOx–radical reactions were decreased 36% (up to 0.85 ppb h−1), by
30% (up to 0.7 ppb h−1), and 37% (up to 0.75 ppb h−1) in Shanghai,
Nanjing, and Hangzhou, respectively (Fig. S9).

As shown in Fig. S9, there was an imbalance between P(HOx) and L
(HOx) rates (the net P(HOx) = P(HOx) - L(HOx)) from both Case 1
4

and Case 2. Compared with Case 1, the net P(HOx) wasmore significant
in Case 2 ranging from−0.4 ppb h−1 to 1.6 ppb h−1, mainly resulting in
the enhanced AOC in the YRD during the lockdown. From the late after-
noon until nighttime, the higher L(HOx) (0.1 ppb h−1) was observed
compared to P(HOx) from both cases. Similar uncertainties are also re-
ported in Tan et al. (2019a),which could due to the exclusion of physical
processes such as transport and depositions in the budget analysis.

3.3. Impacts of oxidants on O3 formation

O3 concentration during the lockdown was up to 12% higher in eco-
nomically developed areas in comparison to Case 1, especially in south-
ern Jiangsu, Shanghai and northern Zhejiang (Fig. 4a–c), consistingwith
elevated AOC in these areas. Inmajor cities, the important increase in O3

was found at noontime in Case 2, which is consistent with changes of

Image of Fig. 1


Fig. 2. Comparison of diurnal variation of predicted the major oxidants and the changes between cases in three major cities during the pre-COVID (purple squares represent Pre) and
COVID-lock periods (yellow squares represent Case 1 in COVID-19 lockdown and green squares represent Case 2).
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OH, the dominant oxidant (Fig. 4d–f). The diurnal variations of P(HOx)
and L(HOx) further revealed the impacts of oxidants on O3. In Case 2
the net P(HOx) was increased during nighttime (Fig. S7), implying
that enhanced AOC increased O3.

Meteorological conditions and changes in O3 sensitivity regime
could also be the reasons for O3 increases (Sitnov, 1996; Tuck and
Hovde, 1999; Wang et al., 2017a; Wang et al., 2017b; Wang et al.,
2009). Further analysis was conducted to identify their roles. A slight in-
crease in temperature during the lockdown period was observed
(Fig. S10), which may play a role in increased O3. Wind fields
(Fig. S11) and relative humidity (Fig. S10) remained unchanged in com-
parison to pre-lockdown. As for O3 sensitivity, the spatial distributions
5

revealed the characteristics of O3 formation over the YRD using an indi-
cator (defined as

PH2O2
PHNO3

) (Milford et al., 1994; Sillman et al., 1995). In the
Case 1, VOC-limited regimemainly occurred in urban areas of Shanghai,
southern Jiangsu, and Zhejiang, while NOx-limited regime tended to be
distributed over suburban areas. Compared to Case 1, Case 2 was indic-
ative of noticeable changed from VOC-limited regimes to NOx-limited
regimes in eastern parts of Shanghai, southern Jiangsu, and northern
Zhejiang (Fig. 4i). These areas were characterized by dramatical decline
of NOx emissions from mobile vehicles during the lockdown period,
where O3 increased significantly (Fig. 4c). The low levels NOx can en-
hance AOC and further promote the accumulation of O3 as discussed
in section 3.2.1. VOC-limited regimes were mainly found in developed

Image of Fig. 2


Fig. 3. Comparison of averaged diurnal variations of primary sources and sinks of HOx radicals from model simulations (a-f) in Case 1 and (g-l) in Case 2 during the COVID-lock period.
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urban regions such as most of southern Jiangsu in Case 2. In these re-
gions (except for southern Zhejiang), the rising O3 occurred during the
lockdown, which is induced from the higher AOC in spite of the lower
VOCs emissions. Therefore, elevatedAOCcan bededuced as themain con-
tributor to elevated O3 in YRD during the COVID-19 lockdown periods.

4. Conclusions

In this paper, oxidants and O3 were simulated before and during the
COVID-19 lockdown in the YRD using WRF/CMAQ modeling system
with modified anthropogenic emissions. Results showed that the dra-
matic reductions in NOx (>50%) led to up to 15–20%, 10–25%, and 17%
increases of OH, HO2, and NO3 in Jiangsu, Shanghai, and northern
6

Zhejiang during the lockdown period, respectively. Similarly, O3 level
was higher (up to 12%) in these regions during the lockdown period,
consisting with changes of AOC. During the lockdown period, total P
(HOx) declined significantly in Case 2, compared with Case 1. In con-
trast, the ozonolysis of alkenes process increased at night (up to
0.2 ppb h−1) due to increase in O3 concentration. Total L(HOx) declined
significantly in Case 2, resulting from large reductions in NOx emissions.
The enhanced AOCwasmainly attributed to the higher net P(HOx) rates
in the YRD. For three typical urban cities (Nanjing, Shanghai, and
Hangzhou) in Case 2, P(HOx) was dominated by photolysis of O3 and
HONO (both 25%–42%) and HONO (18%–35%). While the reaction of
OH + NO2 is the most important contributor to L(HOx) (about 98%),
followed by the reaction of HO2 + HO2.

Image of Fig. 3


Fig. 4. (a–c) Spatial distribution of simulated MDA8 O3 concentrations before and during COVID-19 lockdown period. (d–f) Averaged diurnal variations of modeled O3 concentrations in
three major cities (Purple squares represent the three weeks before COVID-19 outbreak, yellow squares represent Case 1 in COVID-19 lockdown, and green squares represent Case 2 in
COVID-19 lockdown). (g–i) Spatial distributions of O3 production sensitivity before and during COVID-19 lockdown.
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Currently, O3 pollution becomes themajor air quality challenge in the
YRD region while PM2.5 concentrations has decreased in the recent de-
cade. Tomitigate O3 pollution, more localized and stringent policies espe-
cially on controlling VOCs emissions should be implemented. This study
also suggests the urgent need for a deep understanding of radical chemis-
try and AOC, so as to design more effective control strategies in the YRD.
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