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Gridded precipitation datasets are becoming a convenient substitute for gauge measurements in 

hydrological modeling; however, these data have not been fully evaluated across a range of 

conditions. We compared four gridded datasets (Daily Surface Weather and Climatological 

Summaries [DAYMET], North American Land Data Assimilation System [NLDAS], Global Land 

Data Assimilation System [GLDAS], and Parameter-elevation Regressions on Independent Slopes 

Model [PRISM]) as precipitation data sources and evaluated how they affected hydrologic model 

performance when compared with a gauged dataset, Global Historical Climatology Network-Daily 

(GHCN-D). Analyses were performed for the Delaware Watershed at Perry Lake in eastern 

Kansas. Precipitation indices for DAYMET and PRISM precipitation closely matched GHCN-D, 

whereas NLDAS and GLDAS showed weaker correlations. We also used these precipitation data 

as input to the Soil and Water Assessment Tool (SWAT) model that confirmed similar trends in 

streamflow simulation. For stations with complete data, GHCN-D based SWAT-simulated 

streamflow variability better than gridded precipitation data. During low flow periods we found 

PRISM performed better, whereas both DAYMET and NLDAS performed better in high flow 

years. Our results demonstrate that combining gridded precipitation sources with gauge-based 

measurements can improve hydrologic model performance, especially for extreme events.
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INTRODUCTION

Precipitation is a major input for hydrological modeling and streamflow simulation (Tuo et 

al. 2016). The simulation of watershed processes requires accurate precipitation input that 

captures the spatial and temporal changes in watershed processes; so that improving the 

accuracy of precipitation provides better representation of soil moisture, soil water 

movement, surface runoff, baseflow, and streamflow for accurate simulation of watershed 

processes (Douglas-Mankin et al. 2010). Precipitation measurements from weather stations 

may not fully capture spatial and temporal patterns and variability due to low station density. 

To overcome limitations of gauged data, multiple precipitation sources (gauge, radar, and/or 

satellite) have been incorporated into gridded datasets (Abatzoglou 2013). These include 

gauge-only estimates, model-based estimates, ground-based radar estimates, satellite-only 

estimates, and merged products that represent observed data for input into various 

hydrologic models and applications. It is important to understand how using these gridded 

data sources would compare with using gauge data.

One of the most widely used watershed-scale models is the Soil and Water Assessment Tool 

(SWAT) model (Arnold et al. 1998). SWAT is a semidistributed, process-based, continuous, 

daily time step watershed-scale model which has been used extensively throughout the world 

(Gassman et al. 2007; Douglas-Mankin et al. 2010; Tuppad et al. 2011; Arnold, Moriasi, et 

al. 2012). SWAT was developed in the early 1990s by the United States (U.S.) Department 

of Agriculture (USDA)-Agricultural Research Service (Arnold et al. 1998; Neitsch et al. 

2011; Arnold, Kiniry, et al. 2012) and has undergone continuous review and expansion of its 

capabilities (Neitsch et al. 2011). SWAT uses weather data, soil properties, topography, land 
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use/cover, and land management to predict the impact of management practices on water, 

nutrient, sediment, and agricultural chemical yields. SWAT is a robust watershed model 

(Arnold and Allen 1996; Arnold et al. 1999; Abbaspour et al. 2007; Gassman et al. 2007) 

and has been used to assess land use/cover effects and climate change influences on water 

resources worldwide (Carvalho-Santos et al. 2016; Gabriel et al. 2016; Mwangi et al. 2016). 

In the U.S., SWAT is often used by federal and state agencies to support water resources 

management (Gassman et al. 2007; Arabi et al. 2008; Douglas-Mankin et al. 2010) and Total 

Maximum Daily Load development (Borah et al. 2006; Kang et al. 2006). SWAT has been 

used at various scales from field scale, small watersheds to bigger, regional watersheds 

(Gassman et al. 2007; Luo et al. 2008; Douglas-Mankin et al. 2010; Tuppad et al. 2011) and 

different environmental conditions (Gassman et al. 2007). Many different precipitation 

sources have been used for these applications.

Recent SWAT studies show an increasing trend toward using alternatives to rain gauge 

networks. Examples include high-resolution radar precipitation such as the National Weather 

Service (NWS), Next Generation Weather Radar — NEXRAD (Tuppad et al. 2010; Zhang 

and Srinivasan 2010; Gali et al. 2012; Price et al. 2014; Gao et al. 2017); interpolated 

gridded datasets from the Parameter-elevation Regressions on Independent Slopes Model 

(PRISM) from the PRISM Climate Group of Oregon State University (Gao et al. 2017; 

Radcliffe and Mukundan 2017); and Daily Surface Weather and Climatological Summaries 

(DAYMET) (Baskaran et al. 2010; Mehan et al. 2017). Other precipitation data sources, 

which are rarely used in SWAT but have high potential, include the North American Land 

Data Assimilation System (NLDAS) and the Global Land Data Assimilation System 

(GLDAS). Nigro et al. (2010) indicated that incorporating NLDAS precipitation as input 

improved the water quality model performance mainly because NLDAS captures 

precipitation events accurately.

The type of precipitation data source affects the calibration and the simulation outputs, 

especially for larger watersheds with complex, heterogeneous terrains. Studies (Moon et al. 

2004; Kalin and Hantush 2006; Sexton et al. 2010; Tuppad et al. 2010; Gali et al. 2012; 

Tobin and Bennett 2013; Gao et al. 2017; Radcliffe and Mukundan 2017) have evaluated the 

SWAT model parametrization to precipitation data sources, along with how data spatial and 

temporal resolutions impact simulated streamflow, model calibration, and associated 

uncertainties. Prior studies (Moon et al. 2004; Kalin and Hantush 2006; Sexton et al. 2010; 

Tuppad et al. 2010; Gali et al. 2012; Tobin and Bennett 2013; Price et al. 2014; Gao et al. 

2017) concluded that there are spatial-scale dependencies for accuracy of model simulation, 

however, the studies compared only one or two gridded sources to gauged data. Many of 

these studies calibrated SWAT with monitored precipitation (from National Climatic Data 

Center [NCDC]) and then ran simulations using the parameters of that SWAT model with 

gridded precipitation with no further calibration.

Compared to previous work, our study uses four gridded, publicly available, and differently 

scaled precipitation data sources (DAYMET, GLDAS, NLDAS, and PRISM) and the Global 

Historical Climatology Network-Daily (GHCN-D) over 25 years (1988–2013). We 

calibrated each SWAT model using each of the different precipitation sources. This allowed 

us to account for the impact of each type of data source on the calibration and associated 
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parameter sensitivity. In addition, we began our analysis by comparing gridded and gauged 

precipitation, using standard statistical measures and extreme precipitation indices (Zhang et 

al. 2011).

The specific objectives of this study were to: (1) assess how well the datasets (DAYMET, 

GLDAS, NLDAS, and PRISM) captured precipitation conditions when compared with 

GHCN-D, based on standard statistical measures and precipitation indices (annual number 

and maximum consecutive wet and dry days) within the study watershed; (2) evaluate the 

sensitivity of the SWAT model flow parameters under different precipitation settings; (3) 

assess the impact of precipitation input on SWAT calibration and validation; and (4) evaluate 

impacts of gridded precipitation sources on simulations of streamflow and other water 

balance components.

METHODS

Watershed Background

The Delaware watershed at Perry Lake (hydrologic unit code [HUC] 10270103, Figure 1), a 

HUC-8 level subwatershed of the Kansas River Basin in northeast Kansas, was the study 

area. It was chosen because of researchers’ familiarity with this agricultural watershed from 

previous work (Sinnathamby 2014). The site has a drainage area of approximately 2,988 

km2 that includes one federal reservoir, Perry Lake, managed by U.S. Army Corps of 

Engineers. The watershed covers parts of five Kansas counties (Atchison, Brown, Jackson, 

Jefferson, and Nemaha) and extends over parts of two U.S. Environmental Protection 

Agency (USEPA) level IV ecoregions: Western Corn Belt (83.7%) and Central Irregular 

Plains (16.3%). The region has an average annual precipitation of 762 mm, and about 82% 

of that (~625 mm) falls from April to September. Mean annual temperature ranges from 

11.1°C to 12.2°C (52°F–54°F) (Sophocleous 1998). Elevation of the watershed ranges from 

252 to 428 m, with an average slope of 5.2%. The watershed has mostly (≈77%) fine-

textured (silt and clay) soils, dominated by moderately high (hydrologic soil group C) and 

high (hydrologic soil group D) runoff potentials; it consists primarily of Pawnee clay 

(30.5%), Grundy silt clay (30.0%), and Kennebec silt (16.1%) soil groups. Agriculture is the 

dominant land use (68.9%), followed by rangeland (15.4%) and forest land (12.48%); 

primary crops are hay (32.3%), dryland corn (14.0%), and soybean (13.4%).

Precipitation Inputs and Processing

Five precipitation data sources (four interpolated and gridded, and one set of measured data) 

were used in this study. Gridded data included DAYMET, GLDAS, NLDAS, and PRISM. 

DAYMET (Thornton et al. 1997; NASA-ORNL-DAAC 2018) is a collection of gridded 

estimates of daily weather parameters, generated by interpolation and extrapolation from 

daily meteorological observations at a 1 × 1 km spatial resolution for North America. Its 

interpolation method accounts for topo-climatic factors such as elevation, aspect, slope, 

distance to coast, and land surface temperature (Oyler et al. 2015).

PRISM (PRISM-Climate-Group 2018) is a regression-based model that uses point 

meteorological observations, elevation, and other spatial datasets to generate gridded 
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climatic elements (Daly et al. 2002). It was developed by the PRISM Climate Group at 

Oregon State University, and it provides long-term interpolated climate products from plot- 

to watershed-scale. PRISM incorporated data from point measurements from multiple 

networks, including the NWS’s Cooperative Observer Network (COOP). PRISM 

precipitation and temperature datasets (1981–present) are available throughout the 

contiguous U.S. at 2.5 arcmin (~4 km) spatial resolution (Daly et al. 2008). Detailed 

descriptions of PRISM’s algorithms, structure, input grids, and operation can be found in 

Daly et al. (2002) and Daly et al. (2008).

NLDAS (Xia et al. 2012; NASA-LDAS 2018b) provides higher temporal resolution (hourly) 

total precipitation in kg/m2 at 1/8th-degree grid spacing. It is derived by combining National 

Oceanic and Atmospheric Administration’s (NOAA) daily National Center for 

Environmental Prediction Climate Prediction Center gauge-based precipitation analyses and 

hourly National Weather Service Doppler radar-based (WSR-88D) precipitation analyses 

(Nigro et al. 2010). GLDAS (NASA-LDAS 2018a) precipitation, however, is globally 

available at three-hour temporal and 1/4th-degree spatial resolution. It is derived from an 

uncoupled land surface modeling system that drives multiple models and integrates a large 

quantity of observation-based data. Detailed information on GLDAS can be found in Rodell 

et al. (2004).

The most comprehensive source of ground-based observed weather data in the U.S. is the 

GHCN (Menne et al. 2012). GHCN-Daily, hereafter GHCN-D (NOAA-NCEI 2018), is an 

integrated database of daily climate summaries from land surface stations across the globe. 

GHCN-D in the U.S. is a composite of climate records dating back to the 1800s from more 

than 20 sources, with more than 40,000 stations in the contiguous U.S., which were merged 

and then subjected to a specialized suite of quality assurance procedures and reviews 

(Peterson et al. 1998). GHCN-D includes most data from stations operated by COOP 

stations. As in a recent study (Behnke et al. 2016) we used GHCN-D precipitation data as 

“reference” data.

A workflow using the Hydrologic Micro Services infrastructure (HMS), an USEPA 

developed collection of web services, was used to download and process weather data at 

daily scale (USEPA 2018). Detailed descriptions on HMS workflow can be found in 

Supporting Information (S1) and brief descriptions of precipitation data sources used in this 

study are given in Table 1. Spatial coverage and grid resolution of precipitation data sources 

with centroids of SWAT model subwatersheds are presented in Figure 2.

Precipitation Comparison

Precipitation comparison was performed to evaluate how well the gridded datasets correlated 

with GHCN-D data. The analysis compared the GHCN-D and gridded precipitation at 

GHCN-D location points to better understand parameter sensitivity and the runoff response 

of the calibrated SWAT model. Daily precipitation from each gridded dataset was extracted 

only for grid cells that contained GHCN-D stations. As a result, seven GHCN-D stations 

within or near the study watershed with daily records from 2001 to 2013, were used for the 

analysis (Figure 2). The analysis years were determined to include similar years of all 

dataset since GLDAS availability (with the same spatial resolution) starts in 2000 (Table 1). 
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Except for one station (Hiawatha 9 ESE which had 9.3% missing days), there were fewer 

than 7% missing days in the whole study period (Table 2). Missing days were removed from 

gridded data during precipitation analysis. Daily precipitation values flagged by quality 

control procedures for GHCN-D (Durre et al. 2010) were also excluded.

Statistical measures such as standard deviation, correlation coefficient (r) and root mean 

square error (RMSE) were used to assess how well precipitation extracted from each gridded 

source at GHCN-D gauge locations matched GHCN-D precipitation. A Taylor diagram 

(Taylor 2001), commonly used in climatology, were used to visually depict the standard 

measures results. In addition, six precipitation indices checked how well the gridded data 

captured relatively extreme weather conditions (Table 3); these have been used in many 

studies (Alexander et al. 2006; Donat et al. 2013; Sillmann et al. 2013; Behnke et al. 2016). 

Mean bias-based matrix plots were used to compare the performance of gridded products to 

GHCN-D.

SWAT Model Development

ArcSWAT 2012, built for ArcGIS 10.3 (ESRI, Redlands, CA), was used to construct a model 

of the Delaware watershed at Perry Lake with 39 subwatersheds (Figure 1) and 4,161 

hydrologic response units with unique land-use, slope, and soil attributes. Soil data were 

extracted from the State Soil Geographic Dataset soil dataset in the SWAT database; slope 

was derived from a 30-m digital elevation model (DEM); and land cover was calculated 

from the 2005 Kansas Level IV land cover map developed by Kansas Applied Remote 

Sensing Program. Cropland Data Layer from the USDA National Agricultural Statistics 

Services from 2008 to 2010, and the National Land Cover Database layer from 2006 were 

overlaid to determine dominant crop rotations (Srinivasan et al. 2010). Detailed model setup 

can be found in Sinnathamby (2014).

Following initial SWAT model setup using the same model inputs, five SWAT models 

(GHCN-D SWAT, DAYMET SWAT, GLDAS SWAT, NLDAS SWAT, and PRISM SWAT) 

were created by incorporating the respective precipitation sources. We did this because we 

are interested in how each SWAT model performs using solely the specified precipitation 

dataset. In the GHCN-D SWAT model, seven GHCN-D stations located within or near the 

Delaware watershed (Figures 1 and 2), with data for the reference period (1983–2013), were 

used. Four other sources of gridded precipitation were downloaded using USEPA’s HMS 

workflow by providing centroids of the SWAT subwatersheds; geographic locations of the 

centroids are shown in Figure 2. These were used to download precipitation data because 

SWAT takes one weather station input per subwatershed — thus, 39 points representing 

centroids of each SWAT subwatershed were used. In the case of NLDAS and GLDAS, 

multiple subwatersheds’ centroids were on the same grid cell of the precipitation source, 

whereas centroids in DAYMET and PRISM were on different spatial grids (Figure 2). This 

enabled the SWAT models for DAYMET and PRISM to capture more spatial variability 

when compared with the SWAT models for NLDAS and GLDAS. Four other weather 

variables at daily scale (temperature, solar radiation, relative humidity, and wind speed) were 

generated by SWAT.
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SWAT Sensitivity Analysis, Calibration, and Validation

Calibration and validation are routine steps in watershed modeling that assess performance 

and confirm a model’s readiness for further analysis. Sensitivity analysis helps to 

characterize variation of model input factors on model output and identifies influential 

parameters. It also guides model calibration and validation and informs how to prioritize 

efforts to reduce uncertainties (Norton 2015; Pianosi et al. 2016). The first five years of the 

total simulation period (January 1983–December 2013) were a warm-up to allow the model 

to reach hydrologic equilibrium and were excluded from the analysis. The 13-year 

calibration period was from January 1, 2001 to December 31, 2013; selected since all 

precipitation sources were available. The 13-year validation period ran from January 1, 1988 

to December 31, 2000. Calibration was carried out using a monthly time-step at the outlet of 

a headwater stream (Delaware near Muscotah, U.S. Geological Survey [USGS] 06890100); 

the watershed outlet (Delaware at Perry Lake, USGS 06890898); and the reservoir outlet 

using SWAT Calibration and Uncertainty Program (SWAT-CUP). Daily flow at the reservoir 

outlet was obtained from the U.S. Army Corps of Engineers Kansas City office.

SWAT-CUP has different tools for calibration, sensitivity analysis, and uncertainty analysis. 

These include: Sequential Uncertainty Fitting ver. 2 (SUFI-2); Particle Swarm Optimization; 

Generalized Likelihood Uncertainty Estimation; Parameter Solution; and Markov Chain 

Monte Carlo algorithms (Abbaspour 2015). SUFI-2, a widely used calibration and 

uncertainty analysis procedure, was used for sensitivity analysis and calibration. It has been 

recommended as an efficient program for large-scale models (Yang et al. 2008; Abbaspour 

et al. 2015) and has also been identified as achieving good prediction of uncertainty ranges 

using a reasonable number of data points with the fewest runs (Yang et al. 2008). Global 

sensitivity analysis (GSA) available under SUFI-2 helps to rank input parameters by relative 

influence on the model output, based on the t-stat and p-value statistics. The t-stat is the 

coefficient of the parameter divided by its standard error (Abbaspour 2015): the larger the t-
stat (absolute value), the more sensitive the parameter. The p-value measures the 

significance of the sensitivity of that parameter. Ranking parameters by significance 

enhances model understanding and identifies the most important controls of model behavior 

(van Werkhoven et al. 2008; Matott et al. 2009).

For each of the five models, the automated calibration process was conducted with an 

identical range of parameter values and calibration/validation periods for comparison 

purposes. Detailed description of the 21 parameters used in calibration is shown in Table 4. 

Automated calibration ensures consistency of the process for all models and minimizes the 

modeler bias in calibration exercises conducted for different precipitation sources. Similar 

procedures were followed in other recent studies (Bitew et al. 2012; Tobin and Bennett 

2013; Yang et al. 2014; Radcliffe and Mukundan 2017; Ren et al. 2018). Initial parameter 

ranges were selected based on professional judgment and literature. The precipitation source 

assessment was evaluated by assessing the ability of the model to reproduce observed 

streamflow. Through individual sensitivity analysis and calibration, each precipitation source 

was given an equal chance to adjust relevant sensitive parameters and converges different 

parameter intervals to match observed flow.

Muche et al. Page 7

J Am Water Resour Assoc. Author manuscript; available in PMC 2021 May 16.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Each model executed 500 simulations for each autocalibration iteration. An initial 300–500 

simulations are recommended for studying model performance and for regionalizing 

parameters (Arnold, Moriasi, et al. 2012). At the end of an iteration with 500 simulations, 

parameter sensitivities were determined through GSA. Only one iteration was used to avoid 

re-calibration using a different range of parameter values for each model in the subsequent 

calibration. The Nash- Sutcliffe efficiency (NSE) was used to estimate model performance 

during calibration (Nash and Sutcliffe 1970) since it is a commonly used statistical measure 

in SWAT studies (ASCE 1993; Moriasi et al. 2007).

In addition to the sensitivity analysis, a visual inspection of the simulated inputs and the 

relative changes in NSE were analyzed to identify parameter distributions over precipitation 

sources and model performance using loess plots (Cleveland et al. 1991). One-way ANOVA 

and Tukey multiple pairwise-comparisons were used to identify performance differences 

between each precipitation dataset. A similar procedure was carried out with the 20 best 

calibration sets of parameters to verify precipitation source performance during validation. 

This helped to control uncertainty and ensure the autocalibration was not randomly fitting 

parameters, and that simulated streamflow was not statistically significant.

NSE, coefficient of determination (R2), and Kling–Gupta efficiency (KGE) (Gupta et al. 

2009) were used as model evaluation statistics. These are standard regression statistics in 

watershed modeling (Moriasi et al. 2007). NSE is a normalized index that measures the 

magnitude of residual variance, compared to observed variance (Nash and Sutcliffe 1970; 

Moriasi et al. 2007). NSE ranges between −∞ and 1, with 1 being ideal. R2 describes the 

degree of linear relationship between observed and model output. R2 ranges from 0 to 1. 

NSE and R2 are sensitive to high streamflow values during storms (Krause et al. 2005; 

Moriasi et al. 2007; Moriasi et al. 2015). To overcome this issue, we included KGE. KGE is 

the goodness-of-fit measure developed by Gupta et al. (2009), which provides 

decomposition of NSE and mean squared error; KGE facilitates the analysis of relative 

importance of correlation, bias, and variability in hydrologic modeling (KGE-hydroGOF 

2017). KGE ranges from −∞ and 1. The closer the value to 1, the more accurate the model 

is. The RMSE-observations standard deviation ratio (RSR), an error index statistic, was also 

used in model evaluation. For stream flow, Moriasi et al. (2015) proposed NSE values > 0.50 

and R2 > 0.60 to be a satisfactory level for monthly scales. A KGE value > 0.50 (Gupta et al. 

2009) and RSR value < 0.60 are considered satisfactory (Moriasi et al. 2007). In addition, 

NSE values > 0.65, R2 > 0.80, KGE values > 0.60, and RSR value < 0.50 are considered 

satisfactory at an annual scale in this study.

Two other SWAT-CUP performance measures (P-factor and R-factor) were used to indicate 

the strength of model calibration and uncertainty assessment (Arnold, Moriasi, et al. 2012; 

Abbaspour et al. 2015). Abbaspour et al. (2015) defined the P-factor as the percentage of 

measured data covered by 95% prediction uncertainties (95PPU). It measures the ability to 

capture uncertainties, and its value ranges from 0 to 1, where 1 indicates that 100% of the 

observed data are covered by 95PPU. The R-factor indicates thickness of the 95PPU, since it 

is the ratio of the average width of the 95PPU band and the standard deviation of observed 

data; a lower value of the R-factor is better. A P-factor value > 0.7 and R-factor < 1.5 are 
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recommended for flow modeling (Abbaspour et al. 2015) and used to measure prediction 

uncertainty.

RESULTS AND DISCUSSION

Comparison of GHCN-D and Gridded Precipitation Data

The four gridded precipitation data sources showed different relationships when compared 

with reference data (GHCN-D). The correlation matrix of the four sources vs. GHCN-D at 

seven locations is shown in Figure 3: darker blue shows the better correlations. For all 

stations except Valley Falls, DAYMET and PRISM precipitation matched GHCN-D weather 

station records well, with high correlation coefficients (>0.81, most > 0.94) (Figure 3). Five 

of the seven stations indicated the highest correlation coefficients for GHCN-D and PRISM 

from 2001 to 2013. DAYMET was the second-best fit for GHCN-D. Valley Falls had the 

weakest correlation of gridded sources; DAYMET and GHCN-D had a 0.64 correlation 

coefficient and PRISM and GHCN-D had 0.54, whereas NLDAS and GLDAS show much 

weaker correlations (<0.50). With lower spatial resolution (Figure 2), GLDAS had the 

largest discrepancies and lowest correlation coefficients. Both Valley Falls and Perry Lake 

lay in the same grid of GLDAS, and neither matched GHCN-D observed data well.

Correlation results were supported by multiple statistical measures depicted by the Taylor 

diagram (Figure 4). Based on the standard statistical measurements presented in the figure, 

data for five PRISM precipitation stations provided the best match with GHCN-D, in terms 

of correlation coefficient, standard deviation (daily variability), and RMSE (Figure 4). Those 

PRISM stations indicated very similar variability (standard deviation) to the GHCN-D 

stations. After PRISM, DAYMET precipitation was also displayed very close values. Two 

other stations of PRISM precipitation, Valley Falls and Holton 7 SE, exhibited similarity to 

DAYMET, however, DAYMET was less similar to GHCN-D than other gauge stations. Data 

products that exhibited lower correlation coefficients (<0.70) showed much larger RMSE 

(Figure 4). A similar observation was found by Behnke et al. (2016), who also reported a 

larger mean absolute error for NLDAS than DAYMET and PRISM for the Prairie ecoregion 

where the study area is located.

Since GHCN-D, DAYMET, and PRISM were originated using COOP stations, a close 

resemblance was expected between them (Thornton et al. 1997; Daly et al. 2002). Golden et 

al. (2010) also made similar observations between NCDC COOP stations and PRISM 

precipitation from 2001 to 2003. The influence of spatial resolution may also play a part in 

these discrepancies. Results presented above show that both precipitation datasets with 

relatively higher resolution, DAYMET and PRISM (Figure 2), agreed best overall with 

GHCN-D observations, whereas NLDAS and GLDAS had the largest discrepancies. This is 

noteworthy because both of NLDAS and GLDAS datasets have relatively coarser spatial 

resolution (Figure 2).

A similar situation was observed in analyzing precipitation indices: matrix plots of mean 

bias of precipitation indices focused on relatively extreme weather conditions (compared to 

GHCN-D) are shown in Figure 5. Results indicate that there were fewer number dry days 

and fewer number of consecutive of dry days for all gridded precipitation data sources 
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compared to GHCN-D (Figure 5c and 5e). The number of dry days were fewer by 15 or 

more — up to 45 — days in NLDAS and GLDAS data, across the sites. The number of 

consecutive dry days were also fewer across data sources. Across stations, PRISM showed 

closer values of dry day-related indices to GHCN-D, followed by DAYMET. More number 

of wet days and number of consecutive wet days were observed in GLDAS (Figure 5d and 

5f). In the case of very wet days (precipitation ≥ 95th percentile), PRISM and DAYMET had 

slightly higher; NLDAS had slightly fewer; and GLDAS had fewer days, compared to the 

GHCN-D (Figure 5a). For heavy precipitation (precipitation ≥ 10 mm), however, PRISM 

(except for one site), DAYMET, and NLDAS had slightly higher; and GLDAS had fewer 

days. Consistent with the Taylor diagram, PRISM (mean bias ≤ ±2.3 days) and DAYMET 

(mean bias ≤ ±3.6 days) most closely matched GHCN-D observations in the number of very 

wet days, days with heavy precipitation, and number of consecutive wet days. Differences 

between GHCN-D and gridded data sources in dry and wet number of days may indicate 

that gridded data sources are capturing localized rainfall events that GHCN-D missed. Price 

et al. (2014) and Radcliffe and Mukundan (2017) reported that gauges underestimated 

rainfall in large storms compared to radar data. Negative bias of rain gauges during heavy 

precipitation may be due to water loss caused by wind and erratic behavior of mechanical 

aspects of the gauge (Molini et al. 2005; Lanza and Stagi 2008).

Parameter Sensitivity under Different Precipitation Settings

The parameters used in calibration and their sensitivities are shown in Table S1 and Figure 6. 

The SCS curve number (CN2); baseflow alpha factor, or recession constant, for bank storage 

(Alpha_Bnk); and surface runoff lag coefficient (SURLAG) were similar and the most 

sensitive (p ≤ 0.03) parameters in all models. Effective saturated hydraulic conductivity in 

main channel alluvium (CH_K2) was sensitive in GHCN-D SWAT, PRISM SWAT, 

DAYMET SWAT, and NLDAS SWAT models (p ≤ 0.05). Number of days to reach target 

storage from current reservoir storage (NDTARGR) was also identified as one of the five 

most sensitive parameters for GHCN-D, DAYMET, and PRISM SWAT models (p ≤ 0.05). 

Soil evaporation compensation factor (ESCO) was sensitive in NLDAS (p ≤ 0.05). Even 

though it is difficult to point out specific reasons why each parameter is sensitive in one 

model and not the other due to the complexity of hydrologic systems, it is believed that it is 

related to the differences in each precipitation in capturing different extreme conditions and 

related uncertainties. Ren et al. (2018) and Tuo et al. (2016) also showed that different 

precipitation inputs affect parameter selection, the best estimate of a parameter, as well as its 

uncertainty range.

Sensitivity of certain parameters varied for different precipitation sources; and that could be 

explained by the differences in several indices described in the precipitation comparison 

analysis (Section Comparison of GHCN-D and Gridded Precipitation Data). As explained 

earlier, NLDAS was wetter than DAYMET and PRISM, and NLDAS showed higher 

deviation by underestimating dry days, and overpredicting heavy precipitation, which 

resulted in higher sensitivity of the CN2. The lowest CN2 was observed with GLDAS 

SWAT. All models reduced the CN2 (negative t-stat value) (Table 5), which shows all SWAT 

models are yielding higher runoff than the observed runoff and adjusting CN2 to account for 

a different mean rainfall from precipitation sources. Reductions of CN2 in the GHCN-D, 
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PRISM, and DAYMET SWAT models (from 5.88% to 7.72%) were higher than NLDAS and 

GLDAS SWAT models (1.16% and 3.96%, respectively). This may be due to the higher 

number of very wet days in GHCN-D, PRISM, and DAYMET compared to NLDAS and 

GLDAS (Section Comparison of GHCN-D and Gridded Precipitation Data). The larger 

negative relative change in CN2 would result in the largest runoff reduction in the GHCN-D, 

PRISM, and DAYMET SWAT models, relative to NLDAS SWAT.

The parameter Alpha_BNK characterizes the bank storage recession curve. The higher 

Alpha_BNK value observed for the NLDAS SWAT model reveals flatter recessions than do 

the GHCN-D and DAYMET SWAT models. The lowest value observed in GLDAS SWAT 

denotes a steep recession. Lower SURLAG, compared to the default value (which is 4.0 and 

considered to represent the average fraction of surface runoff contribution) in GHCN-D, 

DAYMET, and NLDAS SWAT models show lowered contribution of surface runoff to the 

main channel. PRISM and GLDAS show (Table S1) higher SURLAG values than the default 

which reveal higher model contributions of surface runoff to the main channel when these 

precipitation data are used (Neitsch et al. 2011). This may allow GLDAS and PRISM SWAT 

models to function better in low flow periods. Higher CH_K2 in GHCN-D, PRISM, and 

DAYMET SWAT models show more reduction in discharge through recharging groundwater 

than the NLDAS model. A higher number of days to reach target storage from current 

reservoir storage (NDTARGR) values than default values (one day) reveal higher reservoir 

storage. Even though most sensitive parameters are the same in most cases, their best values 

and uncertainty ranges of parameters were different with different precipitation inputs (Ren 

et al. 2018).

The five most sensitive parameters (p ≤ 0.05) were the same for GHCN-D, DAYMET, and 

PRISM SWAT models, showing these precipitation sources have similar influence on 

parameter sensitivity and selection (Tables 5 and S1). This was expected as these three 

precipitation sources show higher correlation, lesser standard deviation, and close 

resemblance in predicting precipitation indices (Figures 3–5). More interestingly, both 

GHCN-D and DAYMET SWAT models had the same “best” fitted values, suggesting very 

close resemblance between the two precipitation sources. Again, this similarity between 

GHCN-D, DAYMET, and PRISM SWAT model outputs could be related to their 

precipitation original sources and how they were modeled. Another critical reason for the 

close match between GHCN-D, DAYMET, and PRISM is the spatial resolution. ESCO 

parameter selection in the NLDAS SWAT model may also better represent 

evapotranspiration (ET) for this precipitation source.

The relative changes in parameters vs. NSE, during 500 simulations for all precipitation 

sources, is shown in Figure 7. Distribution of parameters and parameter sensitivity can be 

identified using these plots. The curve number (CN2) is identified as the most sensitive 

parameter, with best fitting values of <0.1 in relative change. The figure also shows that 

parameter distribution is very similar for all precipitation sources, especially DAYMET, 

GHCN-D, and PRISM. NLDAS also has a close distribution. GLDAS has a different 

distribution than other sources. Results obtained from Tukey multiple comparisons of means 

also show that all SWAT models, except GLDAS, are statistically similar for both calibration 

and validation periods. (Table S2). These results, along with P- and R-factors observed for 
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calibration and validation, suggest that all precipitation models have acceptable prediction 

uncertainty and reasonable adjustment of parameters.

These results clearly show that precipitation data sources affect both sensitive parameters 

and their corresponding ranges of values for the study area with a specific study period. 

Similar regional studies need to note that parameters sensitivity and ranges of values would 

not be similar for studies with different data sources and study years. This demands the 

importance of a cautious approach when studies that utilize literature information to 

determine calibration parameters for given study areas or for studies in ungauged studies that 

utilize regional calibrated values.

Effect of Precipitation Input on SWAT Calibration and Validation

Summary statistics obtained through calibration and validation processes at monthly and 

annual scales are presented in Tables 6 and S3. All statistical criteria for satisfactory model 

performance described in Methods were met with GHCN-D, PRISM, DAYMET, and 

NLDAS SWAT models for calibration and validation periods, and at monthly and annual 

scales (except R2 for monthly flow with NLDAS during calibration) at the Delaware River 

near Muscotah. All statistical criteria for satisfactory model performance were also met with 

GHCN-D, PRISM, DAYMET, and NLDAS SWAT models at all three calibration sites, 

except KGE at the reservoir outlet with PRISM SWAT. GLDAS SWAT failed to meet 

satisfactory conditions at both temporal scales during calibration and validation. Overall, the 

Delaware River near Muscotah (the upstream watershed) met criteria with higher statistical 

results with all precipitation sources except GLDAS SWAT. P-factor values > 0.70 and R-

factor values < 1.5 in all conditions indicated adequate strength of model calibration and 

uncertainty assessment of this study. Using GHCN-D and DAYMET SWAT models resulted 

in a better fit for both monthly and annual streamflow simulations for calibration and 

validation periods, with satisfactory values for NSE, R2, and RSR for all sites (Table S3). 

NLDAS SWAT also met satisfactory conditions and performed equally well at the annual 

scale. In the case of the Delaware River at Perry Lake and the reservoir, DAYMET SWAT 

performed better with higher NSE, RSR, and R2 at the monthly scale, whereas NLDAS 

SWAT had a higher KGE. At both sites, however, the P-factor was always slightly higher 

with DAYMET SWAT (Table 6). It is also worth mentioning that even though several model 

evaluation statistics (NSE, R2, KGE, RSR, P-factor, and R-factor) used in subsequent 

analysis, the initial autocalibration used a commonly applied single statistical measure 

(NSE) in SWAT studies (ASCE 1993; Moriasi et al. 2007).

Results showed that when the number of stations in the watershed increased and there were 

fewer missing days, GHCN-D SWAT captured the natural variability in the streamflow 

better than any SWAT model with other gridded precipitation sources used here (Table 6 and 

Figure 8). In the case of the Delaware River near Muscotah, three stations (Horton, GOFF 3 

WSW, and Hiawatha) represented precipitation for that local region. Horton, which had 

99.1% precipitation data, covered more than 50% of the subwatersheds. The Delaware River 

at Perry Lake and the reservoir were covered by Valley Falls and Perry Lake. Valley Falls 

had only 93.3% data coverage and Perry Lake had 98.2% data coverage. Valley Falls also 

had continuous missing data for more than 260 days. In that case, DAYMET SWAT 
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outperformed GHCN-D SWAT at the monthly scale and NLDAS SWAT outperformed all 

other precipitation sources incorporated into models at an annual scale. It is also true that the 

flow of the Delaware River at Perry Lake is highly influenced by the reservoir operation 

(Figure 8), since the reservoir outlet is only about 6.5 river kilometers above the calibration 

point (Figure 1).

DAYMET data are projected on a denser grid (1 × 1 km) than PRISM (~4 × 4 km), NLDAS 

(1/8th degrees, ~14 × 10.5 km) and GLDAS (1/4th degrees, ~28 × 21 km for the study area). 

This gave DAYMET an advantage in reflecting the spatiotemporal variability of 

precipitation, whereas NLDAS and GLDAS were coarser in providing accurate precipitation 

for a relatively small area (Figure 2). Also, GHCN-D collection at NOAA National Center 

for Environmental Information has been used as spatially referenced ground observations 

input to DAYMET, which meant DAYMET closely resembled GHCN-D. The effect of 

resolution on SWAT simulation can be seen in monthly simulations, however, annual 

simulations were not influenced by the precipitation source resolution (Tables 6 and S3). 

GHCN-D, DAYMET, and NLDAS SWAT models performed in a similar manner on an 

annual scale in this watershed, which shows users can select appropriate precipitation source 

model based on goal and temporal scale requirements.

Evaluation of Impacts of Precipitation on Flow and Other Parts of the Water Balance 
Simulation

Major hydrologic components from different precipitation data sources at watershed scale 

are presented in Figure 9. DAYMET, PRISM, and NLDAS SWAT models overpredicted 

streamflow compared to GHCN-D (and GLDAS SWAT underpredicted), during dry years 

when precipitation was less than the annual average flow of the study area. This was 

expected since DAYMET, PRISM, and NLDAS showed fewer dry days and slightly higher 

very wet days, heavy precipitation, number of wet days, and number of consecutive dry days 

over GHCN-D. These conditions resulted in higher ET for these precipitation source models 

compared to GHCN-D, mainly because real ET components are directly related to water 

availability in the SWAT model. Higher ET with higher precipitation was reported by Ren et 

al. (2018). Gao et al. (2017) also found higher ET in gridded source precipitation models 

than the SWAT GHCN-D model. However, more research is needed to determine the factors 

why models with gridded precipitation sources deliver higher ET. Although GLDAS 

exhibited a greater number of wet days and number of consecutive wet days, GLDAS SWAT 

underpredicted streamflow since it also had fewer very wet days and heavy precipitation 

days (Figure 5). Surface runoff in most cases paralleled streamflow patterns; underpredicted 

surface runoff was observed in GLDAS and PRISM SWAT models during validation. Water 

balance defines a dynamic threshold moisture deficit where additional water becomes excess 

and contributing to runoff and/or percolating deeper to the soil profile (Easton et al. 2011). 

The effect of precipitation dataset is also noticed with percolation. The higher percolation 

was observed with the higher precipitation and therefore percolation follows the 

precipitation trend. Also, negative correlation was observed between percolation and ET. 

This was expected as SWAT calculate percolation as a function of soil moisture content 

(Tripathi et al. 2006).
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All 26 simulation years were divided into low or high flow years, based on the Delaware 

River near Muscotah average annual flows. For low flow years, in which streamflow is < 

90% total average annual flow, GHCN-D, DAYMET, and GLDAS SWAT models 

overpredicted streamflow (Table 7). With slight deviations from observed streamflow, 

PRISM and NLDAS SWAT models predicted better than models with other sources during 

low flow years. Even though GHCN-D and DAYMET SWAT models captured temporal 

variability (Table 7, R2 values), PRISM SWAT had matched better with observed streamflow 

during low flow periods. This is mainly because of adjustment of SURLAG and CH_K2 

during PRISM SWAT calibration. Radcliffe and Mukundan (2017) also found that the 

PRISM model performed better during low flow periods compared to NCDC (GHCN-D) 

model, mainly by including more groundwater recharge parameters during calibration. In 

wet flow years (flow > 110% average annual flows), all SWAT models underpredicted 

streamflow (Table 7), with DAYMET and NLDAS most closely resembling the observed 

streamflow. These specific nature of better simulating dry flow and high flows of PRISM 

and DAYMET and NLDAS can be effectively used in low flow and high flow specific 

scenarios such as the effect of low flow on aquatic ecosystem in riverine ecology and 

nonpoint control planning during high flow events.

These results show the potential in using gridded precipitation for hydrological modeling. 

With densely populated stations at the regional scale, it is preferable to use monitored data 

when complete data are available for the study period. Few wide-area gauge monitoring 

networks with dense, continuous data exist, however, especially at larger spatial scales. The 

gridded dataset is advantageous because it provides continuous data at spatial and temporal 

scales across the continental U.S., and for longer periods. Results also showed that gridded 

precipitation performed well in capturing extreme weather conditions, for example, wet and 

dry flows — even better than with monitored data. The recent availability of large-scale 

precipitation grids in a consistent format and improved technology have facilitated the use of 

multiple gridded data in hydrological studies. These grids can be combined by blending 

desirable attributes and daily gauge-based precipitation for better model predictions, 

especially when extreme events are of critical concern.

CONCLUSION

This study evaluated the ability of four spatially gridded datasets (DAYMET, GLDAS, 

NLDAS, and PRISM) to represent precipitation compared to GHCN-D as a reference. For 

the analysis, the SWAT model was configured for a 2,988 km2 Delaware watershed at Perry 

Lake in northeastern Kansas with similar DEM, soil and land use, using five different 

precipitation sources. Five SWAT models were calibrated and validated to assess the relative 

performance of the different precipitation sources. In addition, point measurements of 

gridded precipitation inside the watershed were compared using GHCN-D as a reference to 

evaluate how well gridded datasets captured precipitation, compared to GHCN-D. Standard 

statistical measures revealed that DAYMET and PRISM precipitation matched well with 

GHCN-D weather station records; PRISM and DAYMET also most closely matched 

precipitation indices for GHCN-D.
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The application of calibrated parameter selection and best fit techniques showed different 

model parameterization conditional on the precipitation sources. These parameter 

uncertainties can cause prediction uncertainty, mainly by simulating different water balance 

outputs, which shows the importance of addressing parameter uncertainty in hydrological 

modeling. All the calibrated models developed here have acceptable P-factors and R-factors. 

In addition, except for GLDAS, all calibrated streamflows are statistically similar. This study 

revealed the importance of precipitation source in hydrological modeling and similar 

thorough precipitation analysis is recommended before every hydrological application 

(Figures 4 and 5).

Long-term SWAT flow simulation implies that DAYMET, PRISM, and NLDAS SWAT 

models provided similar output to GHCN-D SWAT at both monthly and annual scales, 

however, GHCN-D SWAT outperformed models using PRISM and DAYMET when stations 

were densely located and had nearly full data coverage. In all conditions, the GHCN-D 

SWAT model represented the temporal pattern and variability of streamflow very well. 

PRISM SWAT performed better during dry flow periods, and DAYMET and NLDAS SWAT 

models performed best during high flow years. It can be concluded that gridded precipitation 

from various sources can be combined with real-time data as a hybrid data source for better 

hydrologic modeling. Gridded precipitation can also be used as an alternative precipitation 

source, especially in areas with less representation from GHCN-D and the model can 

significantly improve its representation of hydrologic processes with repeated iterations of 

calibration. This study reveals precipitation datasets affect both sensitive parameters and 

their corresponding ranges of values during calibration process. This shows why researchers 

need to be cautious when they utilize literature information to determine calibration 

parameters or use previously reported calibrated values in ungauged studies. It is important 

to note that a cautious approach is critical when using regional calibrated values of literature 

such as this study for ungauged studies since results are specific to the data sources used and 

study years. This is promising for modelers, as spatially explicit gridded data are almost 

always available at real time. Further research will investigate additional watersheds at 

different scales and locations and analyze data types at varied simulation timesteps.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research Impact Statement:

Gridded precipitation datasets vary in capturing different extreme events, both dry and 

wet, and different precipitation data sources usage led to varying parameter calibrations 

in watershed modeling.
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FIGURE 1. 
Map of the Delaware watershed at Perry Lake with overlay of National Climatic Data Center 

(NCDC)- Global Historical Climatology Network-Daily (GHCN-D) stations (precipitation), 

United States (U.S.) Geological Survey gauge locations used for flow calibration, Soil and 

Water Assessment Tool (SWAT)-generated reach network, subwatersheds, and dominant 

land-use based on 2005 Kansas Level IV land cover.
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FIGURE 2. 
Spatial resolution of precipitation data sources by spatial grids with centroid points of 

subwatersheds (Note: boundaries and labels of subwatersheds are shown in Figure 1). 

Figure’s grid illustration is based on (Golden et al. 2010).
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FIGURE 3. 
Correlogram of the precipitation correlation matrix for each station (a–g). Positive 

correlations at significance level = 0.05 are displayed in blue. Color intensity and size are 

proportional to the correlation coefficients.
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FIGURE 4. 
Taylor diagram showing the ability of precipitation datasets to represent GHCN-D based on 

daily precipitation (2001–2013).
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FIGURE 5. 
Mean bias of precipitation indices (a–f) for stations and precipitation source. These values 

are calculated compared to observed values (GHCN-D). Note: Positive values show 

overprediction and negative values show underprediction compared to GHCN-D.
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FIGURE 6. 
Sensitivity of parameters during calibration period. The highest sensitive parameter, CN2 

was removed from the plot to identify the outlying observation. The CN t-stat ranges from 

−11.1 to −19.6. The lowest negative value was observed with GLDAS and the highest was in 

NLDAS. DAYMET, GHCN-D, and PRISM had −12.8, −13.9, and −16.3, respectively. Note: 

True means statistically significant and false means not significant based on p-value of 0.05.
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FIGURE 7. 
Scatter plots of likelihood values of 500 simulations along with the variation in parameters 

and their distributions for all precipitation sources during calibration period. Parameter 

distributions were smoothed using default “loess” method. NSE, Nash–Sutcliffe efficiency.
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FIGURE 8. 
GHCN-D, DAYMET, NLDAS, and GLDAS × SWAT model simulations for the (a) 

calibration (2001–2013) and (b) validation (1988–2000) period for all three sites.
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FIGURE 9. 
SWAT annual hydrologic balance components with precipitation data sources for Delaware 

watershed at Perry Lake: (a) annual precipitation, (b) simulated annual streamflow (primary 

axis) and annual precipitation (secondary axis), (c) surface runoff, (d) evapotranspiration 

(ET), and (e) percolation to the soil of five precipitation sources are shown.
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TABLE 3.

Description of precipitation indices used in this study.

Description Units

Very wet days (≥95th percentile) Days

Heavy precipitation days (≥10 mm) Days

Number of dry days (annual) Days

Number of wet days (annual) Days

Annual maximum number of consecutive dry days (days when precipitation < 1 mm) Days

Annual maximum number of consecutive wet days (days when precipitation ≥ 1 mm) Days

Calculated based on 30 years precipitation data.
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