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Gridded precipitation datasets are becoming a convenient substitute for gauge measurements in
hydrological modeling; however, these data have not been fully evaluated across a range of
conditions. We compared four gridded datasets (Daily Surface Weather and Climatological
Summaries [DAYMET], North American Land Data Assimilation System [NLDAS], Global Land
Data Assimilation System [GLDAS], and Parameter-elevation Regressions on Independent Slopes
Model [PRISMY]) as precipitation data sources and evaluated how they affected hydrologic model
performance when compared with a gauged dataset, Global Historical Climatology Network-Daily
(GHCN-D). Analyses were performed for the Delaware Watershed at Perry Lake in eastern
Kansas. Precipitation indices for DAYMET and PRISM precipitation closely matched GHCN-D,
whereas NLDAS and GLDAS showed weaker correlations. We also used these precipitation data
as input to the Soil and Water Assessment Tool (SWAT) model that confirmed similar trends in
streamflow simulation. For stations with complete data, GHCN-D based SWAT-simulated
streamflow variability better than gridded precipitation data. During low flow periods we found
PRISM performed better, whereas both DAYMET and NLDAS performed better in high flow
years. Our results demonstrate that combining gridded precipitation sources with gauge-based
measurements can improve hydrologic model performance, especially for extreme events.

Keywords

gridded precipitation; SWAT; watershed modeling; streamflow; calibration

INTRODUCTION

Precipitation is a major input for hydrological modeling and streamflow simulation (Tuo et
al. 2016). The simulation of watershed processes requires accurate precipitation input that
captures the spatial and temporal changes in watershed processes; so that improving the
accuracy of precipitation provides better representation of soil moisture, soil water
movement, surface runoff, baseflow, and streamflow for accurate simulation of watershed
processes (Douglas-Mankin et al. 2010). Precipitation measurements from weather stations
may not fully capture spatial and temporal patterns and variability due to low station density.
To overcome limitations of gauged data, multiple precipitation sources (gauge, radar, and/or
satellite) have been incorporated into gridded datasets (Abatzoglou 2013). These include
gauge-only estimates, model-based estimates, ground-based radar estimates, satellite-only
estimates, and merged products that represent observed data for input into various
hydrologic models and applications. It is important to understand how using these gridded
data sources would compare with using gauge data.

One of the most widely used watershed-scale models is the Soil and Water Assessment Tool
(SWAT) model (Arnold et al. 1998). SWAT is a semidistributed, process-based, continuous,
daily time step watershed-scale model which has been used extensively throughout the world
(Gassman et al. 2007; Douglas-Mankin et al. 2010; Tuppad et al. 2011; Arnold, Moriasi, et
al. 2012). SWAT was developed in the early 1990s by the United States (U.S.) Department
of Agriculture (USDA)-Agricultural Research Service (Arnold et al. 1998; Neitsch et al.
2011; Arnold, Kiniry, et al. 2012) and has undergone continuous review and expansion of its
capabilities (Neitsch et al. 2011). SWAT uses weather data, soil properties, topography, land
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use/cover, and land management to predict the impact of management practices on water,
nutrient, sediment, and agricultural chemical yields. SWAT is a robust watershed model
(Arnold and Allen 1996; Arnold et al. 1999; Abbaspour et al. 2007; Gassman et al. 2007)
and has been used to assess land use/cover effects and climate change influences on water
resources worldwide (Carvalho-Santos et al. 2016; Gabriel et al. 2016; Mwangi et al. 2016).
In the U.S., SWAT is often used by federal and state agencies to support water resources
management (Gassman et al. 2007; Arabi et al. 2008; Douglas-Mankin et al. 2010) and Total
Maximum Daily Load development (Borah et al. 2006; Kang et al. 2006). SWAT has been
used at various scales from field scale, small watersheds to bigger, regional watersheds
(Gassman et al. 2007; Luo et al. 2008; Douglas-Mankin et al. 2010; Tuppad et al. 2011) and
different environmental conditions (Gassman et al. 2007). Many different precipitation
sources have been used for these applications.

Recent SWAT studies show an increasing trend toward using alternatives to rain gauge
networks. Examples include high-resolution radar precipitation such as the National Weather
Service (NWS), Next Generation Weather Radar — NEXRAD (Tuppad et al. 2010; Zhang
and Srinivasan 2010; Gali et al. 2012; Price et al. 2014; Gao et al. 2017); interpolated
gridded datasets from the Parameter-elevation Regressions on Independent Slopes Model
(PRISM) from the PRISM Climate Group of Oregon State University (Gao et al. 2017,
Radcliffe and Mukundan 2017); and Daily Surface Weather and Climatological Summaries
(DAYMET) (Baskaran et al. 2010; Mehan et al. 2017). Other precipitation data sources,
which are rarely used in SWAT but have high potential, include the North American Land
Data Assimilation System (NLDAS) and the Global Land Data Assimilation System
(GLDAS). Nigro et al. (2010) indicated that incorporating NLDAS precipitation as input
improved the water quality model performance mainly because NLDAS captures
precipitation events accurately.

The type of precipitation data source affects the calibration and the simulation outputs,
especially for larger watersheds with complex, heterogeneous terrains. Studies (Moon et al.
2004; Kalin and Hantush 2006; Sexton et al. 2010; Tuppad et al. 2010; Gali et al. 2012;
Tobin and Bennett 2013; Gao et al. 2017; Radcliffe and Mukundan 2017) have evaluated the
SWAT model parametrization to precipitation data sources, along with how data spatial and
temporal resolutions impact simulated streamflow, model calibration, and associated
uncertainties. Prior studies (Moon et al. 2004; Kalin and Hantush 2006; Sexton et al. 2010;
Tuppad et al. 2010; Gali et al. 2012; Tobin and Bennett 2013; Price et al. 2014; Gao et al.
2017) concluded that there are spatial-scale dependencies for accuracy of model simulation,
however, the studies compared only one or two gridded sources to gauged data. Many of
these studies calibrated SWAT with monitored precipitation (from National Climatic Data
Center [NCDC]) and then ran simulations using the parameters of that SWAT model with
gridded precipitation with no further calibration.

Compared to previous work, our study uses four gridded, publicly available, and differently
scaled precipitation data sources (DAYMET, GLDAS, NLDAS, and PRISM) and the Global
Historical Climatology Network-Daily (GHCN-D) over 25 years (1988-2013). We
calibrated each SWAT model using each of the different precipitation sources. This allowed
us to account for the impact of each type of data source on the calibration and associated
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parameter sensitivity. In addition, we began our analysis by comparing gridded and gauged
precipitation, using standard statistical measures and extreme precipitation indices (Zhang et
al. 2011).

The specific objectives of this study were to: (1) assess how well the datasets (DAY MET,
GLDAS, NLDAS, and PRISM) captured precipitation conditions when compared with
GHCN-D, based on standard statistical measures and precipitation indices (annual number
and maximum consecutive wet and dry days) within the study watershed; (2) evaluate the
sensitivity of the SWAT model flow parameters under different precipitation settings; (3)
assess the impact of precipitation input on SWAT calibration and validation; and (4) evaluate
impacts of gridded precipitation sources on simulations of streamflow and other water
balance components.

Watershed Background

The Delaware watershed at Perry Lake (hydrologic unit code [HUC] 10270103, Figure 1), a
HUC-8 level subwatershed of the Kansas River Basin in northeast Kansas, was the study
area. It was chosen because of researchers’ familiarity with this agricultural watershed from
previous work (Sinnathamby 2014). The site has a drainage area of approximately 2,988
km? that includes one federal reservoir, Perry Lake, managed by U.S. Army Corps of
Engineers. The watershed covers parts of five Kansas counties (Atchison, Brown, Jackson,
Jefferson, and Nemaha) and extends over parts of two U.S. Environmental Protection
Agency (USEPA) level IV ecoregions: Western Corn Belt (83.7%) and Central Irregular
Plains (16.3%). The region has an average annual precipitation of 762 mm, and about 82%
of that (~625 mm) falls from April to September. Mean annual temperature ranges from
11.1°C to 12.2°C (52°F-54°F) (Sophocleous 1998). Elevation of the watershed ranges from
252 to 428 m, with an average slope of 5.2%. The watershed has mostly (~77%) fine-
textured (silt and clay) soils, dominated by moderately high (hydrologic soil group C) and
high (hydrologic soil group D) runoff potentials; it consists primarily of Pawnee clay
(30.5%), Grundy silt clay (30.0%), and Kennebec silt (16.1%) soil groups. Agriculture is the
dominant land use (68.9%), followed by rangeland (15.4%) and forest land (12.48%);
primary crops are hay (32.3%), dryland corn (14.0%), and soybean (13.4%).

Precipitation Inputs and Processing

Five precipitation data sources (four interpolated and gridded, and one set of measured data)
were used in this study. Gridded data included DAYMET, GLDAS, NLDAS, and PRISM.
DAYMET (Thornton et al. 1997; NASA-ORNL-DAAC 2018) is a collection of gridded
estimates of daily weather parameters, generated by interpolation and extrapolation from
daily meteorological observations at a 1 x 1 km spatial resolution for North America. Its
interpolation method accounts for topo-climatic factors such as elevation, aspect, slope,
distance to coast, and land surface temperature (Oyler et al. 2015).

PRISM (PRISM-Climate-Group 2018) is a regression-based model that uses point
meteorological observations, elevation, and other spatial datasets to generate gridded
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climatic elements (Daly et al. 2002). It was developed by the PRISM Climate Group at
Oregon State University, and it provides long-term interpolated climate products from plot-
to watershed-scale. PRISM incorporated data from point measurements from multiple
networks, including the NWS’s Cooperative Observer Network (COOP). PRISM
precipitation and temperature datasets (1981—present) are available throughout the
contiguous U.S. at 2.5 arcmin (~4 km) spatial resolution (Daly et al. 2008). Detailed
descriptions of PRISM’s algorithms, structure, input grids, and operation can be found in
Daly et al. (2002) and Daly et al. (2008).

NLDAS (Xia et al. 2012; NASA-LDAS 2018b) provides higher temporal resolution (hourly)
total precipitation in kg/m? at 1/8th-degree grid spacing. It is derived by combining National
Oceanic and Atmospheric Administration’s (NOAA) daily National Center for
Environmental Prediction Climate Prediction Center gauge-based precipitation analyses and
hourly National Weather Service Doppler radar-based (WSR-88D) precipitation analyses
(Nigro et al. 2010). GLDAS (NASA-LDAS 2018a) precipitation, however, is globally
available at three-hour temporal and 1/4th-degree spatial resolution. It is derived from an
uncoupled land surface modeling system that drives multiple models and integrates a large
quantity of observation-based data. Detailed information on GLDAS can be found in Rodell
et al. (2004).

The most comprehensive source of ground-based observed weather data in the U.S. is the
GHCN (Menne et al. 2012). GHCN-Daily, hereafter GHCN-D (NOAA-NCEI 2018), is an
integrated database of daily climate summaries from land surface stations across the globe.
GHCN-D in the U.S. is a composite of climate records dating back to the 1800s from more
than 20 sources, with more than 40,000 stations in the contiguous U.S., which were merged
and then subjected to a specialized suite of quality assurance procedures and reviews
(Peterson et al. 1998). GHCN-D includes most data from stations operated by COOP
stations. As in a recent study (Behnke et al. 2016) we used GHCN-D precipitation data as
“reference” data.

A workflow using the Hydrologic Micro Services infrastructure (HMS), an USEPA
developed collection of web services, was used to download and process weather data at
daily scale (USEPA 2018). Detailed descriptions on HMS workflow can be found in
Supporting Information (S1) and brief descriptions of precipitation data sources used in this
study are given in Table 1. Spatial coverage and grid resolution of precipitation data sources
with centroids of SWAT model subwatersheds are presented in Figure 2.

Precipitation Comparison

Precipitation comparison was performed to evaluate how well the gridded datasets correlated
with GHCN-D data. The analysis compared the GHCN-D and gridded precipitation at
GHCN-D location points to better understand parameter sensitivity and the runoff response
of the calibrated SWAT model. Daily precipitation from each gridded dataset was extracted
only for grid cells that contained GHCN-D stations. As a result, seven GHCN-D stations
within or near the study watershed with daily records from 2001 to 2013, were used for the
analysis (Figure 2). The analysis years were determined to include similar years of all
dataset since GLDAS availability (with the same spatial resolution) starts in 2000 (Table 1).
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Except for one station (Hiawatha 9 ESE which had 9.3% missing days), there were fewer
than 7% missing days in the whole study period (Table 2). Missing days were removed from
gridded data during precipitation analysis. Daily precipitation values flagged by quality
control procedures for GHCN-D (Durre et al. 2010) were also excluded.

Statistical measures such as standard deviation, correlation coefficient () and root mean
square error (RMSE) were used to assess how well precipitation extracted from each gridded
source at GHCN-D gauge locations matched GHCN-D precipitation. A Taylor diagram
(Taylor 2001), commonly used in climatology, were used to visually depict the standard
measures results. In addition, six precipitation indices checked how well the gridded data
captured relatively extreme weather conditions (Table 3); these have been used in many
studies (Alexander et al. 2006; Donat et al. 2013; Sillmann et al. 2013; Behnke et al. 2016).
Mean bias-based matrix plots were used to compare the performance of gridded products to
GHCN-D.

SWAT Model Development

ArcSWAT 2012, built for ArcGIS 10.3 (ESRI, Redlands, CA), was used to construct a model
of the Delaware watershed at Perry Lake with 39 subwatersheds (Figure 1) and 4,161
hydrologic response units with unique land-use, slope, and soil attributes. Soil data were
extracted from the State Soil Geographic Dataset soil dataset in the SWAT database; slope
was derived from a 30-m digital elevation model (DEM); and land cover was calculated
from the 2005 Kansas Level IV land cover map developed by Kansas Applied Remote
Sensing Program. Cropland Data Layer from the USDA National Agricultural Statistics
Services from 2008 to 2010, and the National Land Cover Database layer from 2006 were
overlaid to determine dominant crop rotations (Srinivasan et al. 2010). Detailed model setup
can be found in Sinnathamby (2014).

Following initial SWAT model setup using the same model inputs, five SWAT models
(GHCN-D SWAT, DAYMET SWAT, GLDAS SWAT, NLDAS SWAT, and PRISM SWAT)
were created by incorporating the respective precipitation sources. We did this because we
are interested in how each SWAT model performs using solely the specified precipitation
dataset. In the GHCN-D SWAT model, seven GHCN-D stations located within or near the
Delaware watershed (Figures 1 and 2), with data for the reference period (1983-2013), were
used. Four other sources of gridded precipitation were downloaded using USEPA’s HMS
workflow by providing centroids of the SWAT subwatersheds; geographic locations of the
centroids are shown in Figure 2. These were used to download precipitation data because
SWAT takes one weather station input per subwatershed — thus, 39 points representing
centroids of each SWAT subwatershed were used. In the case of NLDAS and GLDAS,
multiple subwatersheds’ centroids were on the same grid cell of the precipitation source,
whereas centroids in DAYMET and PRISM were on different spatial grids (Figure 2). This
enabled the SWAT models for DAYMET and PRISM to capture more spatial variability
when compared with the SWAT models for NLDAS and GLDAS. Four other weather
variables at daily scale (temperature, solar radiation, relative humidity, and wind speed) were
generated by SWAT.
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SWAT Sensitivity Analysis, Calibration, and Validation

Calibration and validation are routine steps in watershed modeling that assess performance
and confirm a model’s readiness for further analysis. Sensitivity analysis helps to
characterize variation of model input factors on model output and identifies influential
parameters. It also guides model calibration and validation and informs how to prioritize
efforts to reduce uncertainties (Norton 2015; Pianosi et al. 2016). The first five years of the
total simulation period (January 1983-December 2013) were a warm-up to allow the model
to reach hydrologic equilibrium and were excluded from the analysis. The 13-year
calibration period was from January 1, 2001 to December 31, 2013; selected since all
precipitation sources were available. The 13-year validation period ran from January 1, 1988
to December 31, 2000. Calibration was carried out using a monthly time-step at the outlet of
a headwater stream (Delaware near Muscotah, U.S. Geological Survey [USGS] 06890100);
the watershed outlet (Delaware at Perry Lake, USGS 06890898); and the reservoir outlet
using SWAT Calibration and Uncertainty Program (SWAT-CUP). Daily flow at the reservoir
outlet was obtained from the U.S. Army Corps of Engineers Kansas City office.

SWAT-CUP has different tools for calibration, sensitivity analysis, and uncertainty analysis.
These include: Sequential Uncertainty Fitting ver. 2 (SUFI-2); Particle Swarm Optimization;
Generalized Likelihood Uncertainty Estimation; Parameter Solution; and Markov Chain
Monte Carlo algorithms (Abbaspour 2015). SUFI-2, a widely used calibration and
uncertainty analysis procedure, was used for sensitivity analysis and calibration. It has been
recommended as an efficient program for large-scale models (Yang et al. 2008; Abbaspour
et al. 2015) and has also been identified as achieving good prediction of uncertainty ranges
using a reasonable number of data points with the fewest runs (Yang et al. 2008). Global
sensitivity analysis (GSA) available under SUFI-2 helps to rank input parameters by relative
influence on the model output, based on the #stat and p-value statistics. The #stat is the
coefficient of the parameter divided by its standard error (Abbaspour 2015): the larger the &
stat (absolute value), the more sensitive the parameter. The p-value measures the
significance of the sensitivity of that parameter. Ranking parameters by significance
enhances model understanding and identifies the most important controls of model behavior
(van Werkhoven et al. 2008; Matott et al. 2009).

For each of the five models, the automated calibration process was conducted with an
identical range of parameter values and calibration/validation periods for comparison
purposes. Detailed description of the 21 parameters used in calibration is shown in Table 4.
Automated calibration ensures consistency of the process for all models and minimizes the
modeler bias in calibration exercises conducted for different precipitation sources. Similar
procedures were followed in other recent studies (Bitew et al. 2012; Tobin and Bennett
2013; Yang et al. 2014; Radcliffe and Mukundan 2017; Ren et al. 2018). Initial parameter
ranges were selected based on professional judgment and literature. The precipitation source
assessment was evaluated by assessing the ability of the model to reproduce observed
streamflow. Through individual sensitivity analysis and calibration, each precipitation source
was given an equal chance to adjust relevant sensitive parameters and converges different
parameter intervals to match observed flow.
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Each model executed 500 simulations for each autocalibration iteration. An initial 300-500
simulations are recommended for studying model performance and for regionalizing
parameters (Arnold, Moriasi, et al. 2012). At the end of an iteration with 500 simulations,
parameter sensitivities were determined through GSA. Only one iteration was used to avoid
re-calibration using a different range of parameter values for each model in the subsequent
calibration. The Nash- Sutcliffe efficiency (NSE) was used to estimate model performance
during calibration (Nash and Sutcliffe 1970) since it is a commonly used statistical measure
in SWAT studies (ASCE 1993; Moriasi et al. 2007).

In addition to the sensitivity analysis, a visual inspection of the simulated inputs and the
relative changes in NSE were analyzed to identify parameter distributions over precipitation
sources and model performance using loess plots (Cleveland et al. 1991). One-way ANOVA
and Tukey multiple pairwise-comparisons were used to identify performance differences
between each precipitation dataset. A similar procedure was carried out with the 20 best
calibration sets of parameters to verify precipitation source performance during validation.
This helped to control uncertainty and ensure the autocalibration was not randomly fitting
parameters, and that simulated streamflow was not statistically significant.

NSE, coefficient of determination (/2), and Kling-Gupta efficiency (KGE) (Gupta et al.
2009) were used as model evaluation statistics. These are standard regression statistics in
watershed modeling (Moriasi et al. 2007). NSE is a normalized index that measures the
magnitude of residual variance, compared to observed variance (Nash and Sutcliffe 1970;
Moriasi et al. 2007). NSE ranges between —oo and 1, with 1 being ideal. /2 describes the
degree of linear relationship between observed and model output. A2 ranges from 0 to 1.
NSE and A2 are sensitive to high streamflow values during storms (Krause et al. 2005;
Moriasi et al. 2007; Moriasi et al. 2015). To overcome this issue, we included KGE. KGE is
the goodness-of-fit measure developed by Gupta et al. (2009), which provides
decomposition of NSE and mean squared error; KGE facilitates the analysis of relative
importance of correlation, bias, and variability in hydrologic modeling (KGE-hydroGOF
2017). KGE ranges from —oo and 1. The closer the value to 1, the more accurate the model
is. The RMSE-observations standard deviation ratio (RSR), an error index statistic, was also
used in model evaluation. For stream flow, Moriasi et al. (2015) proposed NSE values > 0.50
and /2 > 0.60 to be a satisfactory level for monthly scales. A KGE value > 0.50 (Gupta et al.
2009) and RSR value < 0.60 are considered satisfactory (Moriasi et al. 2007). In addition,
NSE values > 0.65, /2 > 0.80, KGE values > 0.60, and RSR value < 0.50 are considered
satisfactory at an annual scale in this study.

Two other SWAT-CUP performance measures (P-factor and /-factor) were used to indicate
the strength of model calibration and uncertainty assessment (Arnold, Moriasi, et al. 2012;
Abbaspour et al. 2015). Abbaspour et al. (2015) defined the P-factor as the percentage of
measured data covered by 95% prediction uncertainties (95PPU). It measures the ability to
capture uncertainties, and its value ranges from 0 to 1, where 1 indicates that 100% of the
observed data are covered by 95PPU. The R-factor indicates thickness of the 95PPU, since it
is the ratio of the average width of the 95PPU band and the standard deviation of observed
data; a lower value of the R-factor is better. A P-factor value > 0.7 and R-factor < 1.5 are
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recommended for flow modeling (Abbaspour et al. 2015) and used to measure prediction
uncertainty.

RESULTS AND DISCUSSION
Comparison of GHCN-D and Gridded Precipitation Data

The four gridded precipitation data sources showed different relationships when compared
with reference data (GHCN-D). The correlation matrix of the four sources vs. GHCN-D at
seven locations is shown in Figure 3: darker blue shows the better correlations. For all
stations except Valley Falls, DAYMET and PRISM precipitation matched GHCN-D weather
station records well, with high correlation coefficients (>0.81, most > 0.94) (Figure 3). Five
of the seven stations indicated the highest correlation coefficients for GHCN-D and PRISM
from 2001 to 2013. DAYMET was the second-best fit for GHCN-D. Valley Falls had the
weakest correlation of gridded sources; DAYMET and GHCN-D had a 0.64 correlation
coefficient and PRISM and GHCN-D had 0.54, whereas NLDAS and GLDAS show much
weaker correlations (<0.50). With lower spatial resolution (Figure 2), GLDAS had the
largest discrepancies and lowest correlation coefficients. Both Valley Falls and Perry Lake
lay in the same grid of GLDAS, and neither matched GHCN-D observed data well.

Correlation results were supported by multiple statistical measures depicted by the Taylor
diagram (Figure 4). Based on the standard statistical measurements presented in the figure,
data for five PRISM precipitation stations provided the best match with GHCN-D, in terms
of correlation coefficient, standard deviation (daily variability), and RMSE (Figure 4). Those
PRISM stations indicated very similar variability (standard deviation) to the GHCN-D
stations. After PRISM, DAYMET precipitation was also displayed very close values. Two
other stations of PRISM precipitation, Valley Falls and Holton 7 SE, exhibited similarity to
DAYMET, however, DAYMET was less similar to GHCN-D than other gauge stations. Data
products that exhibited lower correlation coefficients (<0.70) showed much larger RMSE
(Figure 4). A similar observation was found by Behnke et al. (2016), who also reported a
larger mean absolute error for NLDAS than DAYMET and PRISM for the Prairie ecoregion
where the study area is located.

Since GHCN-D, DAYMET, and PRISM were originated using COOP stations, a close
resemblance was expected between them (Thornton et al. 1997; Daly et al. 2002). Golden et
al. (2010) also made similar observations between NCDC COOP stations and PRISM
precipitation from 2001 to 2003. The influence of spatial resolution may also play a part in
these discrepancies. Results presented above show that both precipitation datasets with
relatively higher resolution, DAYMET and PRISM (Figure 2), agreed best overall with
GHCN-D observations, whereas NLDAS and GLDAS had the largest discrepancies. This is
noteworthy because both of NLDAS and GLDAS datasets have relatively coarser spatial
resolution (Figure 2).

A similar situation was observed in analyzing precipitation indices: matrix plots of mean
bias of precipitation indices focused on relatively extreme weather conditions (compared to
GHCN-D) are shown in Figure 5. Results indicate that there were fewer number dry days
and fewer number of consecutive of dry days for all gridded precipitation data sources

JAm Water Resour Assoc. Author manuscript; available in PMC 2021 May 16.



1duosnuel Joyiny vd3 1duosnuep Joyiny vd3

1duosnue Joyiny vd3

Muche et al.

Page 10

compared to GHCN-D (Figure 5c and 5¢). The number of dry days were fewer by 15 or
more — up to 45 — days in NLDAS and GLDAS data, across the sites. The number of
consecutive dry days were also fewer across data sources. Across stations, PRISM showed
closer values of dry day-related indices to GHCN-D, followed by DAYMET. More humber
of wet days and number of consecutive wet days were observed in GLDAS (Figure 5d and
5f). In the case of very wet days (precipitation = 95th percentile), PRISM and DAYMET had
slightly higher; NLDAS had slightly fewer; and GLDAS had fewer days, compared to the
GHCN-D (Figure 5a). For heavy precipitation (precipitation = 10 mm), however, PRISM
(except for one site), DAYMET, and NLDAS had slightly higher; and GLDAS had fewer
days. Consistent with the Taylor diagram, PRISM (mean bias < +2.3 days) and DAYMET
(mean bias < +3.6 days) most closely matched GHCN-D observations in the number of very
wet days, days with heavy precipitation, and number of consecutive wet days. Differences
between GHCN-D and gridded data sources in dry and wet number of days may indicate
that gridded data sources are capturing localized rainfall events that GHCN-D missed. Price
et al. (2014) and Radcliffe and Mukundan (2017) reported that gauges underestimated
rainfall in large storms compared to radar data. Negative bias of rain gauges during heavy
precipitation may be due to water loss caused by wind and erratic behavior of mechanical
aspects of the gauge (Molini et al. 2005; Lanza and Stagi 2008).

Parameter Sensitivity under Different Precipitation Settings

The parameters used in calibration and their sensitivities are shown in Table S1 and Figure 6.
The SCS curve number (CN2); baseflow alpha factor, or recession constant, for bank storage
(Alpha_Bnk); and surface runoff lag coefficient (SURLAG) were similar and the most
sensitive (p < 0.03) parameters in all models. Effective saturated hydraulic conductivity in
main channel alluvium (CH_K2) was sensitive in GHCN-D SWAT, PRISM SWAT,
DAYMET SWAT, and NLDAS SWAT models (p < 0.05). Number of days to reach target
storage from current reservoir storage (NDTARGR) was also identified as one of the five
most sensitive parameters for GHCN-D, DAYMET, and PRISM SWAT models (p < 0.05).
Soil evaporation compensation factor (ESCO) was sensitive in NLDAS (p < 0.05). Even
though it is difficult to point out specific reasons why each parameter is sensitive in one
model and not the other due to the complexity of hydrologic systems, it is believed that it is
related to the differences in each precipitation in capturing different extreme conditions and
related uncertainties. Ren et al. (2018) and Tuo et al. (2016) also showed that different
precipitation inputs affect parameter selection, the best estimate of a parameter, as well as its
uncertainty range.

Sensitivity of certain parameters varied for different precipitation sources; and that could be
explained by the differences in several indices described in the precipitation comparison
analysis (Section Comparison of GHCN-D and Gridded Precipitation Data). As explained
earlier, NLDAS was wetter than DAYMET and PRISM, and NLDAS showed higher
deviation by underestimating dry days, and overpredicting heavy precipitation, which
resulted in higher sensitivity of the CN2. The lowest CN2 was observed with GLDAS
SWAT. All models reduced the CN2 (negative t-stat value) (Table 5), which shows all SWAT
models are yielding higher runoff than the observed runoff and adjusting CN2 to account for
a different mean rainfall from precipitation sources. Reductions of CN2 in the GHCN-D,
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PRISM, and DAYMET SWAT models (from 5.88% to 7.72%) were higher than NLDAS and
GLDAS SWAT models (1.16% and 3.96%, respectively). This may be due to the higher
number of very wet days in GHCN-D, PRISM, and DAYMET compared to NLDAS and
GLDAS (Section Comparison of GHCN-D and Gridded Precipitation Data). The larger
negative relative change in CN2 would result in the largest runoff reduction in the GHCN-D,
PRISM, and DAYMET SWAT models, relative to NLDAS SWAT.

The parameter Alpha_BNK characterizes the bank storage recession curve. The higher
Alpha_BNK value observed for the NLDAS SWAT model reveals flatter recessions than do
the GHCN-D and DAYMET SWAT models. The lowest value observed in GLDAS SWAT
denotes a steep recession. Lower SURLAG, compared to the default value (which is 4.0 and
considered to represent the average fraction of surface runoff contribution) in GHCN-D,
DAYMET, and NLDAS SWAT models show lowered contribution of surface runoff to the
main channel. PRISM and GLDAS show (Table S1) higher SURLAG values than the default
which reveal higher model contributions of surface runoff to the main channel when these
precipitation data are used (Neitsch et al. 2011). This may allow GLDAS and PRISM SWAT
models to function better in low flow periods. Higher CH_K2 in GHCN-D, PRISM, and
DAYMET SWAT models show more reduction in discharge through recharging groundwater
than the NLDAS model. A higher number of days to reach target storage from current
reservoir storage (NDTARGR) values than default values (one day) reveal higher reservoir
storage. Even though most sensitive parameters are the same in most cases, their best values
and uncertainty ranges of parameters were different with different precipitation inputs (Ren
et al. 2018).

The five most sensitive parameters (p < 0.05) were the same for GHCN-D, DAYMET, and
PRISM SWAT models, showing these precipitation sources have similar influence on
parameter sensitivity and selection (Tables 5 and S1). This was expected as these three
precipitation sources show higher correlation, lesser standard deviation, and close
resemblance in predicting precipitation indices (Figures 3-5). More interestingly, both
GHCN-D and DAYMET SWAT models had the same “best” fitted values, suggesting very
close resemblance between the two precipitation sources. Again, this similarity between
GHCN-D, DAYMET, and PRISM SWAT model outputs could be related to their
precipitation original sources and how they were modeled. Another critical reason for the
close match between GHCN-D, DAYMET, and PRISM is the spatial resolution. ESCO
parameter selection in the NLDAS SWAT model may also better represent
evapotranspiration (ET) for this precipitation source.

The relative changes in parameters vs. NSE, during 500 simulations for all precipitation
sources, is shown in Figure 7. Distribution of parameters and parameter sensitivity can be
identified using these plots. The curve number (CN2) is identified as the most sensitive
parameter, with best fitting values of <0.1 in relative change. The figure also shows that
parameter distribution is very similar for all precipitation sources, especially DAY MET,
GHCN-D, and PRISM. NLDAS also has a close distribution. GLDAS has a different
distribution than other sources. Results obtained from Tukey multiple comparisons of means
also show that all SWAT models, except GLDAS, are statistically similar for both calibration
and validation periods. (Table S2). These results, along with A- and R-factors observed for
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calibration and validation, suggest that all precipitation models have acceptable prediction
uncertainty and reasonable adjustment of parameters.

These results clearly show that precipitation data sources affect both sensitive parameters
and their corresponding ranges of values for the study area with a specific study period.
Similar regional studies need to note that parameters sensitivity and ranges of values would
not be similar for studies with different data sources and study years. This demands the
importance of a cautious approach when studies that utilize literature information to
determine calibration parameters for given study areas or for studies in ungauged studies that
utilize regional calibrated values.

Effect of Precipitation Input on SWAT Calibration and Validation

Summary statistics obtained through calibration and validation processes at monthly and
annual scales are presented in Tables 6 and S3. All statistical criteria for satisfactory model
performance described in Methods were met with GHCN-D, PRISM, DAYMET, and
NLDAS SWAT models for calibration and validation periods, and at monthly and annual
scales (except A2 for monthly flow with NLDAS during calibration) at the Delaware River
near Muscotah. All statistical criteria for satisfactory model performance were also met with
GHCN-D, PRISM, DAYMET, and NLDAS SWAT models at all three calibration sites,
except KGE at the reservoir outlet with PRISM SWAT. GLDAS SWAT failed to meet
satisfactory conditions at both temporal scales during calibration and validation. Overall, the
Delaware River near Muscotah (the upstream watershed) met criteria with higher statistical
results with all precipitation sources except GLDAS SWAT. P-factor values > 0.70 and ~-
factor values < 1.5 in all conditions indicated adequate strength of model calibration and
uncertainty assessment of this study. Using GHCN-D and DAYMET SWAT models resulted
in a better fit for both monthly and annual streamflow simulations for calibration and
validation periods, with satisfactory values for NSE, /2, and RSR for all sites (Table S3).
NLDAS SWAT also met satisfactory conditions and performed equally well at the annual
scale. In the case of the Delaware River at Perry Lake and the reservoir, DAYMET SWAT
performed better with higher NSE, RSR, and /2 at the monthly scale, whereas NLDAS
SWAT had a higher KGE. At both sites, however, the P-factor was always slightly higher
with DAYMET SWAT (Table 6). It is also worth mentioning that even though several model
evaluation statistics (NSE, /2, KGE, RSR, AP-factor, and A-factor) used in subsequent
analysis, the initial autocalibration used a commonly applied single statistical measure
(NSE) in SWAT studies (ASCE 1993; Moriasi et al. 2007).

Results showed that when the number of stations in the watershed increased and there were
fewer missing days, GHCN-D SWAT captured the natural variability in the streamflow
better than any SWAT model with other gridded precipitation sources used here (Table 6 and
Figure 8). In the case of the Delaware River near Muscotah, three stations (Horton, GOFF 3
WSW, and Hiawatha) represented precipitation for that local region. Horton, which had
99.1% precipitation data, covered more than 50% of the subwatersheds. The Delaware River
at Perry Lake and the reservoir were covered by Valley Falls and Perry Lake. Valley Falls
had only 93.3% data coverage and Perry Lake had 98.2% data coverage. Valley Falls also
had continuous missing data for more than 260 days. In that case, DAYMET SWAT
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outperformed GHCN-D SWAT at the monthly scale and NLDAS SWAT outperformed all
other precipitation sources incorporated into models at an annual scale. It is also true that the
flow of the Delaware River at Perry Lake is highly influenced by the reservoir operation
(Figure 8), since the reservoir outlet is only about 6.5 river kilometers above the calibration
point (Figure 1).

DAYMET data are projected on a denser grid (1 x 1 km) than PRISM (~4 x 4 km), NLDAS
(1/8th degrees, ~14 x 10.5 km) and GLDAS (1/4th degrees, ~28 x 21 km for the study area).
This gave DAYMET an advantage in reflecting the spatiotemporal variability of
precipitation, whereas NLDAS and GLDAS were coarser in providing accurate precipitation
for a relatively small area (Figure 2). Also, GHCN-D collection at NOAA National Center
for Environmental Information has been used as spatially referenced ground observations
input to DAYMET, which meant DAYMET closely resembled GHCN-D. The effect of
resolution on SWAT simulation can be seen in monthly simulations, however, annual
simulations were not influenced by the precipitation source resolution (Tables 6 and S3).
GHCN-D, DAYMET, and NLDAS SWAT maodels performed in a similar manner on an
annual scale in this watershed, which shows users can select appropriate precipitation source
model based on goal and temporal scale requirements.

Evaluation of Impacts of Precipitation on Flow and Other Parts of the Water Balance

Simulation

Major hydrologic components from different precipitation data sources at watershed scale
are presented in Figure 9. DAYMET, PRISM, and NLDAS SWAT models overpredicted
streamflow compared to GHCN-D (and GLDAS SWAT underpredicted), during dry years
when precipitation was less than the annual average flow of the study area. This was
expected since DAYMET, PRISM, and NLDAS showed fewer dry days and slightly higher
very wet days, heavy precipitation, number of wet days, and number of consecutive dry days
over GHCN-D. These conditions resulted in higher ET for these precipitation source models
compared to GHCN-D, mainly because real ET components are directly related to water
availability in the SWAT model. Higher ET with higher precipitation was reported by Ren et
al. (2018). Gao et al. (2017) also found higher ET in gridded source precipitation models
than the SWAT GHCN-D model. However, more research is needed to determine the factors
why models with gridded precipitation sources deliver higher ET. Although GLDAS
exhibited a greater number of wet days and number of consecutive wet days, GLDAS SWAT
underpredicted streamflow since it also had fewer very wet days and heavy precipitation
days (Figure 5). Surface runoff in most cases paralleled streamflow patterns; underpredicted
surface runoff was observed in GLDAS and PRISM SWAT models during validation. Water
balance defines a dynamic threshold moisture deficit where additional water becomes excess
and contributing to runoff and/or percolating deeper to the soil profile (Easton et al. 2011).
The effect of precipitation dataset is also noticed with percolation. The higher percolation
was observed with the higher precipitation and therefore percolation follows the
precipitation trend. Also, negative correlation was observed between percolation and ET.
This was expected as SWAT calculate percolation as a function of soil moisture content
(Tripathi et al. 2006).
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All 26 simulation years were divided into low or high flow years, based on the Delaware
River near Muscotah average annual flows. For low flow years, in which streamflow is <
90% total average annual flow, GHCN-D, DAYMET, and GLDAS SWAT models
overpredicted streamflow (Table 7). With slight deviations from observed streamflow,
PRISM and NLDAS SWAT models predicted better than models with other sources during
low flow years. Even though GHCN-D and DAYMET SWAT models captured temporal
variability (Table 7, /2 values), PRISM SWAT had matched better with observed streamflow
during low flow periods. This is mainly because of adjustment of SURLAG and CH_K?2
during PRISM SWAT calibration. Radcliffe and Mukundan (2017) also found that the
PRISM model performed better during low flow periods compared to NCDC (GHCN-D)
model, mainly by including more groundwater recharge parameters during calibration. In
wet flow years (flow > 110% average annual flows), all SWAT models underpredicted
streamflow (Table 7), with DAYMET and NLDAS most closely resembling the observed
streamflow. These specific nature of better simulating dry flow and high flows of PRISM
and DAYMET and NLDAS can be effectively used in low flow and high flow specific
scenarios such as the effect of low flow on aquatic ecosystem in riverine ecology and
nonpoint control planning during high flow events.

These results show the potential in using gridded precipitation for hydrological modeling.
With densely populated stations at the regional scale, it is preferable to use monitored data
when complete data are available for the study period. Few wide-area gauge monitoring
networks with dense, continuous data exist, however, especially at larger spatial scales. The
gridded dataset is advantageous because it provides continuous data at spatial and temporal
scales across the continental U.S., and for longer periods. Results also showed that gridded
precipitation performed well in capturing extreme weather conditions, for example, wet and
dry flows — even better than with monitored data. The recent availability of large-scale
precipitation grids in a consistent format and improved technology have facilitated the use of
multiple gridded data in hydrological studies. These grids can be combined by blending
desirable attributes and daily gauge-based precipitation for better model predictions,
especially when extreme events are of critical concern.

CONCLUSION

This study evaluated the ability of four spatially gridded datasets (DAYMET, GLDAS,
NLDAS, and PRISM) to represent precipitation compared to GHCN-D as a reference. For
the analysis, the SWAT model was configured for a 2,988 km? Delaware watershed at Perry
Lake in northeastern Kansas with similar DEM, soil and land use, using five different
precipitation sources. Five SWAT models were calibrated and validated to assess the relative
performance of the different precipitation sources. In addition, point measurements of
gridded precipitation inside the watershed were compared using GHCN-D as a reference to
evaluate how well gridded datasets captured precipitation, compared to GHCN-D. Standard
statistical measures revealed that DAYMET and PRISM precipitation matched well with
GHCN-D weather station records; PRISM and DAYMET also most closely matched
precipitation indices for GHCN-D.
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The application of calibrated parameter selection and best fit techniques showed different
model parameterization conditional on the precipitation sources. These parameter
uncertainties can cause prediction uncertainty, mainly by simulating different water balance
outputs, which shows the importance of addressing parameter uncertainty in hydrological
modeling. All the calibrated models developed here have acceptable P-factors and R-factors.
In addition, except for GLDAS, all calibrated streamflows are statistically similar. This study
revealed the importance of precipitation source in hydrological modeling and similar
thorough precipitation analysis is recommended before every hydrological application
(Figures 4 and 5).

Long-term SWAT flow simulation implies that DAYMET, PRISM, and NLDAS SWAT
models provided similar output to GHCN-D SWAT at both monthly and annual scales,
however, GHCN-D SWAT outperformed models using PRISM and DAYMET when stations
were densely located and had nearly full data coverage. In all conditions, the GHCN-D
SWAT model represented the temporal pattern and variability of streamflow very well.
PRISM SWAT performed better during dry flow periods, and DAYMET and NLDAS SWAT
models performed best during high flow years. It can be concluded that gridded precipitation
from various sources can be combined with real-time data as a hybrid data source for better
hydrologic modeling. Gridded precipitation can also be used as an alternative precipitation
source, especially in areas with less representation from GHCN-D and the model can
significantly improve its representation of hydrologic processes with repeated iterations of
calibration. This study reveals precipitation datasets affect both sensitive parameters and
their corresponding ranges of values during calibration process. This shows why researchers
need to be cautious when they utilize literature information to determine calibration
parameters or use previously reported calibrated values in ungauged studies. It is important
to note that a cautious approach is critical when using regional calibrated values of literature
such as this study for ungauged studies since results are specific to the data sources used and
study years. This is promising for modelers, as spatially explicit gridded data are almost
always available at real time. Further research will investigate additional watersheds at
different scales and locations and analyze data types at varied simulation timesteps.
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Refer to Web version on PubMed Central for supplementary material.
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Gridded precipitation datasets vary in capturing different extreme events, both dry and
wet, and different precipitation data sources usage led to varying parameter calibrations

in watershed modeling.
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FIGURE 1.

Map of the Delaware watershed at Perry Lake with overlay of National Climatic Data Center
(NCDC)- Global Historical Climatology Network-Daily (GHCN-D) stations (precipitation),
United States (U.S.) Geological Survey gauge locations used for flow calibration, Soil and
Water Assessment Tool (SWAT)-generated reach network, subwatersheds, and dominant

land-use based on 2005 Kansas Level 1V land cover.
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FIGURE 2.
Spatial resolution of precipitation data sources by spatial grids with centroid points of

subwatersheds (Note: boundaries and labels of subwatersheds are shown in Figure 1).
Figure’s grid illustration is based on (Golden et al. 2010).
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Taylor diagram showing the ability of precipitation datasets to represent GHCN-D based on
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FIGURE 6.

Sensitivity of parameters during calibration period. The highest sensitive parameter, CN2
was removed from the plot to identify the outlying observation. The CN #stat ranges from
-11.1 to —19.6. The lowest negative value was observed with GLDAS and the highest was in
NLDAS. DAYMET, GHCN-D, and PRISM had -12.8, —13.9, and —16.3, respectively. Note:
True means statistically significant and false means not significant based on p-value of 0.05.
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SWAT annual hydrologic balance components with precipitation data sources for Delaware
watershed at Perry Lake: (a) annual precipitation, (b) simulated annual streamflow (primary
axis) and annual precipitation (secondary axis), (c) surface runoff, (d) evapotranspiration

(ET), and (e) percolation to the soil of five precipitation sources are shown.
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TABLE 3.

Description of precipitation indices used in this study.

Description Units
Very wet days (=95th percentile) Days
Heavy precipitation days (=10 mm) Days
Number of dry days (annual) Days
Number of wet days (annual) Days

Annual maximum number of consecutive dry days (days when precipitation <1 mm)  Days

Annual maximum number of consecutive wet days (days when precipitation =1 mm)  Days

Calculated based on 30 years precipitation data.
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