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Abstract
Single-cell RNA sequencing provides exciting opportunities to unbiasedly study hematopoiesis. However, our
understanding of leukemogenesis was limited due to the high individual differences. Integrated analyses of
hematopoiesis and leukemogenesis potentially provides new insights. Here we analyzed ~200,000 single-cell
transcriptomes of bone marrow mononuclear cells (BMMCs) and its subsets from 23 clinical samples. We constructed a
comprehensive cell atlas as hematopoietic reference. We developed counterpart composite index (CCI; available at
GitHub: https://github.com/pengfeeei/cci) to search for the healthy counterpart of each leukemia cell subpopulation,
by integrating multiple statistics to map leukemia cells onto reference hematopoietic cells. Interestingly, we found
leukemia cell subpopulations from each patient had different healthy counterparts. Analysis showed the trajectories of
leukemia cell subpopulations were similar to that of their healthy counterparts, indicating that developmental
termination of leukemia initiating cells at different phases leads to different leukemia cell subpopulations thus
explained the origin of leukemia heterogeneity. CCI further predicts leukemia subtypes, cellular heterogeneity, and
cellular stemness of each leukemia patient. Analyses of leukemia patient at diagnosis, refractory, remission and relapse
vividly presented dynamics of cell population during leukemia treatment. CCI analyses showed the healthy
counterparts of relapsed leukemia cells were closer to the root of hematopoietic tree than that of other leukemia cells,
although single-cell transcriptomic genetic variants and haplotype tracing analyses showed the relapsed leukemia cell
were derived from an early minor leukemia cell population. In summary, this study developed a unified framework for
understanding leukemogenesis with hematopoiesis reference, which provided novel biological and medical
implication.

Introduction
Early studies suggested hematopoiesis occurs through a

stepwise process from pluripotent, to multipotent, to

oligopotent, to unipotent progenitors and finally to mature
blood cells based on dissecting their differentiation poten-
tials ex vivo and in vitro settings1,2. However, the hemato-
poiesis model has to be constantly revised to fit conflicting
branches arisen from later studies3–6. Single-cell RNA
sequencing (scRNA-seq) provides unbiased gene expression
profiling of individual cells that is highly complementary to
the immunological phenotyping approaches7. Recent mas-
sively parallel scRNA-seq enabled routine analyses of a large
number of single cells for inferring cellular heterogeneity
and developmental trajectories8–12. In particular, single-cell
analysis of hematopoietic stem and progenitor cells (HSPCs)
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demonstrated hematopoiesis is a continuous process rather
than discrete stepwise process13–18. However, inconsistency
persists among those studies, e.g. Velten et al.13 proposed
the CLOUD-HSPCs model in which HSPCs directly give
rise to distinct lineage-committed populations, while Tusi
et al.15 proposed a continuously hierarchies model.
The dynamics of gene expression during hematopoiesis

has to be precisely regulated, and dysregulation may lead to
serious disorders such as leukemia17,19. Some leukemia
patients have received customized therapy based on genetic
variants/mutations they carried, leading to efficient killing
of leukemia cells. However, leukemia patients are still under
the threat of relapse and drug resistance due to leukemia
heterogeneity. Analyses of cancer stem cell in chronic
myeloid leukemia identified distinct subpopulations of
therapy-resistant stem cells20–22. Recent single-cell study on
acute myeloid leukemia (AML) revealed primitive leukemia
cells aberrantly co-expressed stemness and myeloid priming
genes21. However, our knowledge about the relationship
between leukemia cell subpopulations and progression of
leukemia are still limited. Especially, study of different leu-
kemia patients leads to different results, or even conflicting
conclusions, potentially due to the individual difference. In
this study, we constructed a comprehensive cell atlas of
hematopoietic cells, and proposed a hierarchically con-
tinuous transition model for hematopoiesis. We developed
counterpart composite index (CCI) that integrates multiple
statistics to map leukemia cells to reference hematopoietic
cells, and proposed a model for the origin of leukemia
heterogeneity. The identification of the healthy counter-
parts of leukemia cells by CCI also could predict leukemia
subtype and clinical outcome. Single-cell RNA-seq analysis
of a patient at diagnosis, refractory, remission, and relapse
vividly demonstrated dynamics of leukemia progression.

Results
A comprehensive cell atlas of healthy bone marrow
mononuclear cells (BMMCs)
Bone marrow is the primary tissue for blood cell pro-

duction, and generates hundreds of billions of blood cells
and immune cells per day. In order to gain further bio-
logical insights into hematopoiesis and leukemogenesis,
we established approaches and pipelines for single-cell
analysis of BMMCs and its subsets from 5 healthy samples
and 18 leukemia samples (Fig. 1a and Supplementary Fig.
S1a, c and Table S1). The 18,751 cells from 4 healthy
BMMCs were clustered into distinct cell clusters and
visualized by t-Distributed Stochastic Neighbor Embed-
ding (tSNE)23 (Fig. 1b). We identified the cell type of each
cluster based on their specific highly expressed genes
(Fig. 1c, d). The frequencies of major identified cell types
in BMMCs were essentially consistent with the expecta-
tions (Fig. 1b–d): 1.39% HSPCs (AVP and CD34), 10.15%
erythroid progenitor cells (EPCs) (GYPA and KLF1),

0.08% megakaryocytes (Mk) (PF4 and GP9), 1.25% mye-
locytes (ELANE and MPO), 2.91% monocytes (LYZ and
CD14), 17.67% B cells (CD79A), 53.11% T cells (CD3D),
11.62% natural killer cells (NK) (FCGR3A and NCAM1),
0.04% stromal cells (CXCL12 and COL6A1). Furthermore,
the frequencies of cell types were highly consistent across
different samples (r2= 0.96; Supplementary Fig. S1d).
Interestingly, we identified two distinct plasma cell

populations both highly expressed SDC1, CD27, and
TNFRSF17 (Fig. 1b, d). Plasma cell #1 highly expressed
IGHG1, IGHG2, IGHG3, IGHG4 and IGKC, while plasma
cell #2 highly expressed IGHA1, IGHA2 and translation
associated genes (Fig. 1d and Supplementary Fig. S1e),
indicating their different cellular status and functions. We
further identified lots of T cell subsets in BMMCs (Sup-
plementary Fig. S1f). Compared with peripheral blood
mononuclear cells (PBMCs)24, BMMCs contain much
more cells in active proliferation (Supplementary Fig. S1g, h).

HSPCs form a single-connected entity on tSNE projection
Owing to the limited number of HSPCs in BMMCs

(Fig. 1b), CD34+ cells, representing HSPCs, were enriched
by fluorescence-activated cell sorting (FACS) for investi-
gating hematopoiesis. The HSPCs essentially formed a
single-connected entity extending in several directions on
tSNE projection and were clustered into 27 clusters for
better understanding of the hematopoietic process
(Fig. 1e). We inferred the cell type of each cluster by
checking the expression of hematopoietic lineage-specific
genes (Fig. 1f and Supplementary Fig. S2a), such as HSC
(EMCN, THY1, MEG3, HES1; cluster 1), megakaryocytic
progenitors (MkP) (PF4, GP9; clusters 6, 7), early ery-
throid progenitors (EEP) (APOE, CD36, CA1; clusters 8-
11), neutrophil, monocyte and DC progenitors (CSF3R,
MPO, and LYZ; clusters 13–20), lymphoid progenitors
(CD79A, IGHM, VPREB1; clusters 21-27) (Fig. 1f and
Supplementary Fig. S2a).
Cluster 12 highly expressed mast cell and basophil-specific

genes, including HDC, TPSAB1, and MS4A2, as well as
eosinophil-specific gene including PRG2 (Fig. 1f and Sup-
plementary Fig. S2a), which matched Basophil/Eosinophil/
Mast progenitors (Ba/Eo/MaP), a novel cell type has been
reported recently14,24. We did not detect any cluster with
gene expression patterns similar to common myeloid pro-
genitor (CMP) (CD34+, CD38+, CD123+, CD45RA−,
CD10− and Lin−), consistent with recent studies showing
that CMP is a heterogeneous mixture of erythroid and
myeloid primed progenitors6,14,25. Moreover, we observed
multiple subpopulations within predefined MkP, EEP, GMP,
Pro-B and so on (Fig. 1e). The expression levels of many
genes are gradually changing along the three EEP popula-
tions, among which the expression levels of HBA1, TFRC,
GYPA, ALAS2, PLK1, and MKI67 gradually increased as the
distance to HSC increased (Supplementary Fig. S2a).
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Fig. 1 The cell atlas of bone marrow mononuclear cells (BMMCs) and HSPCs (CD34+) cells in healthy individuals. a The schematic of this
study. b tSNE projection of BMMCs, colored by inferred cell type. c tSNE projection of BMMCs with each cell colored based on their normalized
expression of CD3D, FCGR3A, CD79A, CD14, GYPA, and AVP, respectively. d Normalized expression level and expression percentage of the cell type-
specific genes in 17 cell populations in BMMCs. e tSNE projection of HSPCs (CD34+) cells, colored by inferred cell type. f tSNE projection of HSPCs
with each cell colored based on their normalized expression of AVP, LYZ, CD79A, CA1, PF4, and MS4A2.
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Overall, HSPCs contain a substantial higher fraction of cells
in active cell cycles and cell states than that of BMMCs
(Supplementary Fig. S2b–g). Interestingly, major early stem
and progenitor cells (HSC, MPP and LMPP) are in resting
phase while major later progenitors are in active prolifera-
tion (Supplementary Fig. S2d, e), potentially indicating early
progenitors constitute the major cell pool for regulating
hematopoiesis while later progenitors are in simple transi-
tional states.

Continuous hematopoietic lineages with hierarchical
structure
We implemented Slingshot26 and SPRING27 on HSPCs

to conduct pseudotime inference. Pseudo-time ordering of
HSPCs exhibits a tree-like structure in which HSC forms
the root, from which seven lineages gradually emerged
with a hierarchical structure (Fig. 2a–c), essentially con-
sistent with the cell lineages based on PCA projection

(Supplementary Fig. S3a). The results are consistent with
recent reports that hematopoiesis is a continuous pro-
cess13–15,28, while showing different hierarchical structure
and lineage relationship compared to previous reports.
Clusters 4–5, derived from HSC/MPP, are progenitors of
Ba/Eo/Ma lineage, Mk lineage and erythroid (Ery) lineage,
were called BMEP, which is consistent with recently
identified megakaryocyte–erythroid–mast cell progenitor
(MEMP)29. This study also showed that neutrophil lineage
was derived from GMP while Ba/Eo/Ma lineage was
derived from BMEP, different from the classic hemato-
poietic model in which granulocytes shared a common
progenitor30,31.
Heatmap analysis showed the expression of early

hematopoietic marker genes, such as AVP, HES1, CRHBP,
MEG3, EMCN and HLF, are gradually decreasing along
pseudotime (Fig. 2d). Although cells were clustered into
different populations, their expressions do not show

Fig. 2 Hematopoietic cell lineages and hierarchically continuous transition model for hematopoiesis. a Hematopoietic lineages visualized by
SPRING, with cells colored by cell type as in Fig. 1e. b, c Expressions of AVP (b) and EMCN (c) are decreasing along hematopoietic lineages. d Heatmap
of normalized expression level of early hematopoietic markers along lineages. e Heatmap of transcriptomic dynamics during lymphopoiesis.
f–i Coordinated TFs and networks underlying lymphoid lineage. The top 10 coordinated TFs (f); correlation of the coordinated TFs (g); network of
coordinated TFs, in which the size of each node represents the magnitude of expression (h); dynamics of TFs expression in regulatory networks along
lymphoid lineage (i), in which each node was colored by average expression level. j Hierarchically continuous transition model for hematopoiesis.
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significant changes across the boundaries, further sup-
porting a gradual decrease of stemness along hemato-
poietic lineage. Attenuations of expression vary greatly
from gene to gene, and different cells showed different
gene expression patterns (Fig. 2d), indicating each cell
holds a unique status during hematopoiesis. Furthermore,
by integrating HSPCs and BMMCs together (Supple-
mentary Fig. S3b), we constructed a more comprehensive
cell atlas (Supplementary Fig. S3c, d), in which HSPC
located in the center while erythrocytes, lymphocytes and
monocytes from BMMCs extended at terminal branches
(Supplementary Fig. S3e).

Lineage-coordinated genes, transcription factors (TFs) and
networks
We identified thousands of lineage-coordinated genes

with expression gradually shifting along the hematopoietic
lineages (Fig. 2e and Supplementary Fig. S4a, b). For
instance, the expression levels of CD79A, VPREB3 and
PAX5 were increasing along the lymphoid (Lym) lineage
(Fig. 2e). The observation that many genes changed con-
tinuously along the lineages further supports our pre-
sumption of hematopoiesis being a continuous process.
We further identified lineage-coordinated TFs of each
lineage using gene regulatory networks (GRN) scores32.
Among the top 10 Lym lineage-coordinated TFs (Fig. 2f),
PAX5, LYL1, LEF1, HMGN1, FOS, and JUNB have been
reported to play important roles in lymphopoiesis33, while
YBX1, EGR1, TCF4, and KLF10 are newly identified. We
further identified SPI1, ZEB2, CEBPA and IRF1, and IRF8
in DC lineage; SPI1, CEBPD, JUNB, CEBPA, and KLF2 in
neutrophil lineage; SPI1, JUNB, CEBPA, and FOS in
monocyte lineage; KLF1, GATA1, ZEB2, and MYC in Ery
lineage; ZBTB16, GATA1, ZEB2, and KLF2 in Ba/Eo/Ma
cell lineage; FLI1, GATA1, ZEB2, and GFI1B in Mk lineage
(Supplementary Fig. S4c, h).
We constructed lineage-coordinated TF networks based

on co-expression network of lineage-coordinated TFs. There
are two major subnetworks in Lym lineage-coordinated TF
network with strong intra-subnetwork interactions (Fig. 2g,
h). The subnetwork usage is gradually shifting from the one
highly active in HSC to the one highly active in B-cell pro-
genitor along lymphopoiesis (Fig. 2i). In contrast, there is
only one major connective unit in the neutrophil lineage-
coordinated TF network, in which TF usage is shifting
within the same network during neutrophil genesis (Sup-
plementary Fig. S4d). Overall, we observed two or more
subnetworks in Ery, Mk, Lym, and DC lineages, in which
active networks were gradually shifting from one subnet-
work to another; whereas we only observed one major
compact core in neutrophil, monocyte and Ba/Eo/Ma
lineages with TF usage shifting in the same network (Sup-
plementary Fig. S4c, h), indicating different models for
lineage regulations.

Hierarchically continuous transition model for
hematopoiesis
We propose a hierarchically continuous transition

model to explain the hematopoiesis process from HSC to
distinct hematopoietic lineages (Fig. 2j). In this model, the
hematopoietic system is a dynamic equilibrium system
composed of a large number of transitional states/cells,
among which contiguous states could mutually convert
into each other. Thus, the cell states were only affected by
its previous states and compensation effect promotes the
HSC transition to vacant slots. The cell fate of a stem cell
is not predefined but is gradually determined during cell
differentiation. We could consider the classic stepwise
model as a specific case of our continuous transition
model, in which many transitional states have been mis-
sed with FACS-sorted cell population representing some
sections of the continuum. The continuous transition
model bridges the gap between the classic stepwise
models based on FACS sorting and recent continuous
models based on single-cell sequencing. Our model pro-
vides an essential reference for understanding of leukemia
heterogeneity and leukemogenic process.

Leukemia diversity and shared features among patients
The molecular heterogeneity of the leukemia has sig-

nificant impact on leukemia classification and treat-
ment34. To characterize the heterogeneity of leukemia
cells, we investigated the single-cell transcriptomic data of
BMMCs from 8 leukemia patients. tSNE projection
showed these cells formed two kinds of clusters, either
normal cell clusters with cells from both healthy and
patient samples, or patient-specific clusters that only
comprise of cells from single patient (Fig. 3a). The results
indicate leukemia cells are quite different from patient to
patient, implying high interpatient diversity. The expres-
sion of hematopoietic lineage-specific genes also supports
the uniqueness of patient-specific leukemia cells (Fig. 3b).
Compared with healthy BMMCs, the majority of the
significantly upregulated gene sets or downregulated gene
sets are patient specific, with only a few gene sets being
shared among multiple patients (Fig. 3c, d).
Although leukemia cells exhibited a high diversity

among patients, identification of their shared features may
provide important clinical implications for diagnosis and
treatment. We noticed MIR181A1HG, ITGA4, CD96, and
TXNP were upregulated in 5 patients and no genes
upregulated in all the 8 patients (Supplementary Fig. S5a).
Some gene sets were upregulated or downregulated
among all leukemia patients (Fig. 3e). The presence of
many shared gene sets while absence of shared genes
among all patients indicates patients are genetically spe-
cific but share signatures/pathways during cancer pro-
gression. For instance, the most significantly upregulated
signatures shared by those leukemia patients are
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IL-2-STAT5 signaling, inflammation response, angiogen-
esis, IL-6-JAK-STAT3 signaling, KRAS signaling, allograft
rejection and hypoxia, which have been reported in var-
ious cancers, indicating these signatures played an
important role in cancer progression. The most sig-
nificantly downregulated signatures shared by those leu-
kemia patients are E2F targets, DNA repairs, reactive

oxygen species pathway, MYC targets and G2M check-
point, indicating reduced cell cycle checkpoint and
decreased DNA repair activities play an important role in
leukemia. Indeed, the fraction of cells with active cell cycle
in leukemia patients is much higher than that in healthy
individuals (Supplementary Fig. S5b, e), further indicating
higher cell proliferation of leukemia cells.

Fig. 3 Heterogeneity of leukemia cells and shared features among multiple patients. a tSNE projection of BMMCs from 1 healthy individual
and 8 leukemia patients, colored by different individuals. b tSNE projection of BMMCs from leukemia patients, with each cell colored based on its
expression of CD3E, KLF1, MPO, VPREB3, respectively. c Majority of upregulated genes among leukemia patients are patient specific. d Majority of
downregulated genes among leukemia patients are patient specific. e Pathway or gene sets commonly upregulated and downregulated among
leukemia patients. Z-score > 0 means upregulation of pathways while Z-score < 0 means downregulation. f Shared upregulated and downregulated
TF networks among leukemia patients. Z-score > 0 means upregulation of TF networks while Z-score < 0 means downregulation. g Correlation of TF
networks in leukemia patients, in which TF networks were sorted based on their enrichment score decreasingly.
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Compared to healthy BMMCs, we observed the TF
networks of ZNF266, RORA, GTF3C2, ZNF76, ZNF383,
IRF5 and NFE2L2 being top upregulated in all leukemia
patients (Fig. 3f). RORA is the key regulator of embryonic
development and cellular differentiation, whose upregu-
lation may promote the proliferation of the leukemia
cells35. IRF5 promotes inflammation by activating genes
producing interferons and cytokines36,37. Upregulation of
IRF5 network potentially indicates an increase of inflam-
mation in leukemia patients, although inflammation alone
is inefficient to clean up leukemia cells. The top down-
regulated TF networks sharing among leukemia patients
are RUNX3, KLF4, POU4F1, IKZF2, GTF3A, ATF4,
TFDP1, GTF2A2, BCL11B, GFI1, MAZ, HDAC2 and
KLF1 (Fig. 3f), with majority being hematopoietic lineage
specific, indicating that the healthy hematopoietic process
was repressed in those leukemia patients. Heatmap ana-
lysis showed that upregulated TF networks and repressed
TF networks were correlated, although the correlations of
repressed TF networks were weaker than that between
upregulated TF networks (Fig. 3g).

Mapping leukemia cells onto reference hematopoietic
lineages
Heterogeneity of the leukemia cells is associated with

disease progression and response to chemotherapy38,39.
Identifying the leukemia cell subpopulations and inferring
their origin could facilitate precise diagnosis and treat-
ments. Here, we developed counterpart composite index
(CCI) with implementing software (https://github.com/
pengfeeei/cci), to search for healthy counterpart of each
leukemia cell subpopulation by mapping leukemia cell
onto reference healthy hematopoietic lineage (Fig. 4a).
CCI integrates multiple statistics, including expression
level, co-expression, embedding space of dimension
reduction et al., by a composite likelihood statistical fra-
mework to improve the statistic power and accuracy (see
“Materials and Methods”). Identification of healthy
counterparts of leukemia cells not only facilitate our
understanding of leukemia progression and leukemia
heterogeneity, but also could provide biological insights
on the features and functions of the leukemia cell sub-
population via their well-annotated healthy counterparts,
thus facilitate prediction of leukemia subtype and clinical
outcome.
The substructure of leukemia cells is clearly visible and

multiple leukemia cell subpopulations could be observed
in each patient (Fig. 4b). The healthy counterparts of
leukemia cell subpopulations were different in the same
patient and were also different from patient to patient
(Fig. 4b, c). The healthy counterparts of leukemia cell in
the 12 AML patients include LMPP, BMEP, GMP, MDP,
pro-mono, pro-mye, MPP, and Ery progenitors. The
leukemia cell subpopulation was named after its healthy

counterpart with “-L” suffix. GMP-L, LMPP-L, BMEP-L
are the most common leukemia cell subpopulations in
AML patients, among which GMP- L showed up in all the
12 AML patients. Interestingly, we found the leukemia
cells of two patients (AML027 and AML035) were pro-
jected into Ery lineage thus indicated different AML
subtypes (Fig. 4b, c). The healthy counterparts of leuke-
mia cell from ALL patients include pro-B II, pre-B I, pre-B
II and ImmatB, which belong to lymphoid progenitors.
PreB I-L showed up in all the three ALL patients and the
heterogeneity of leukemia cells in ALL is weaker than that
in AML. Furthermore, the abundances of leukemia cell
subpopulations are quite different from patient to patient
(Fig. 4c). The accuracy of CCI predictions were validated
by cell type-specific genes and also evaluated in another
leukemia dataset21 (Supplementary Fig. S5f, g).

Leukemia subtypes, heterogeneity, and stemness based
on CCI
Interestingly, mapping of the leukemia cells onto

reference hematopoietic lineages showed that leukemia
cells from each patient occupy a section of hematopoietic
lineage (Fig. 4d), indicating a similar developmental tra-
jectory between leukemia cells and their healthy coun-
terparts. We showed that leukemia cells from different
AML patients were mapping into different positions of
the hematopoietic tree, such as monocyte lineage
(patients: AML1, AML3, AML4, 508084, and 782328), Ery
lineage (patients: AML027 and AML035), root (patients:
AML2, 721214, and 809653), Mk lineage (patient: AML5)
and neutrophil lineage (patient: 548327), indicating dif-
ferent subtypes of AMLs. The AML subtypes inferred by
CCI are essentially consist with classic AML subtypes, but
with comprehensive information (Supplementary Table
S1). The extension and coverage of leukemia cells on
hematopoietic tree indicate the heterogeneity of leukemia
cells, with long extension or big coverage area indicating
high heterogeneity of the leukemia cells, e.g., the AML1,
AML4, and AML5 with the highest heterogeneity, while
AML2 and 721214 with the lowest heterogeneity due to
its shortest extension on hematopoietic tree (Fig. 4d and
Supplementary Table S1). Leukemia cells mapping closer
to the root of hematopoietic tree means the stronger
stemness of leukemia cells, such as AML2, AML5, and
721214. The leukemia cells from ALL patients were
projected to lymphoid lineage, which is consistent with
the clinical diagnosis while shows different heterogeneity
and different stemness (Fig. 4d and Supplementary
Table S1).
The patients with leukemia cells projecting into the

same hematopoietic lineage showed similar features, while
patients with leukemia cells projecting into the different
hematopoietic lineage showed much different features.
Therefore, projection of leukemia cells into hematopoietic
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tree is an accurate and unbiased approach for leukemia
classification. Furthermore, we found the patient with
leukemia cells projecting to the root of the hematopoietic
tree were associated with features such as higher fraction

of leukemia cells, higher proliferation and higher gene
entropy that may lead to worse outcome. Therefore, CCI
does not only have the power to infer the subtypes of
leukemia, but also provide the heterogeneity and stemness

Fig. 4 Searching the healthy counterparts of leukemia cells for comprehensive understanding of leukemogenesis. a Schematic of CCI for
searching healthy counterparts of leukemia cells. b The healthy counterpart of each leukemia cell subpopulation in the ten leukemia patients, in
which the healthy counterparts of leukemia cells from the sample patient are different. Each leukemia cell subpopulation was named after its
counterpart by superscript “-L”. c Bar plot of leukemia cell subpopulations and their abundance. d Mapping of leukemia cells onto hematopoietic
lineages. Gray indicates reference hematopoietic tree while red indicates leukemia cells. The leukemia cells from ALLs were projected into lymphoid
lineage, while leukemia cells from AMLs were projected into different non-lymphoid lineages according to their subtypes.
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information of the leukemia cells, which could facilitate
selection of appreciate treatment.

Hypothesis about the origin of leukemia heterogeneity
Pseudotime inference of leukemia cells further showed

that the trajectories of leukemia cell were similar to that of
their healthy counterparts (Supplementary Fig. S5h). In
this way, we could assume that leukemia cell subpopula-
tions are not a bunch of independent subpopulations but
are a series of lineage-related cells in leukemogenesis.
Therefore, we hypothesize the mutant leukemia initial
cells or progenitors partially maintain its original devel-
opmental trajectory and terminate development at dif-
ferent stages due to loss of different functional genes,
leading to a serial of dysfunctional leukemia cell sub-
populations, instead of developing into a homozygous
population.

Cell population dynamics of BMMCs in patient ALL3 and
the underlying genes
Patient ALL3, a 4-year old boy, was diagnosed with B-

precursor ALL in Blood Diseases Hospital, Chinese
Academy of Medical Sciences (CAMS)/ Peking Union
Medical College (PUMC) in Nov 201240. The patient was
refractory to a prolonged chemotherapy, and later
achieved remission after Imatinib treatment. The patient
relapsed and no longer responded to Imatinib treatment
5 months after remission (Fig. 5a). scRNA-seq data of
BMMCs at diagnosis (ALL3.1), refractory (ALL3.2),
remission (ALL3.3) and relapse (ALL3.4) were generated,
which allowed us to investigate leukemia progression and
the underlying mechanisms. By integrating healthy
BMMCs and HSPCs as reference, leukemia cells could be
easily distinguished from normal cells since leukemia cells
are patient specific and normal cells are shared by all
samples. Cells from healthy reference formed a notched
circle on the tSNE projection (Fig. 5b, c), while leukemia
cells formed several distinct clusters at the breach or
inside of the notched circle (Fig. 5b). At diagnosis, leu-
kemia cells account for 87.4% of total BMMCs and form a
major cell cluster surrounding with some minor cell
subpopulations (Fig. 5d). After prolonged chemotherapy,
the percentage of leukemia cells in BMMCs slight
decrease while the size of some surrounding minor cell
subpopulation relatively increased (Fig. 5e). After Imatinib
treatment, leukemia cells almost completely disappeared
(~1.9%) during remission (Fig. 5f). However, the leukemia
cells come back and become dominant (~82.7%) after
relapse, with a significant reduction of normal cells
(Fig. 5g). Especially, leukemia cells before and after relapse
were projected to different coordinates of tSNE projection
(Fig. 5b, g), indicating the relapsed leukemia cells are quite
different from the leukemia cells in the early stage. The
relapsed leukemia cell has the highest fraction of cells in

active cell cycle and has the highest entropy among all cell
clusters (Fig. 5h, i and Supplementary Fig. S6a), indicating
the proliferation and transcriptional complexity of leu-
kemia cells significantly increased after relapse. In sum-
mary, these results vividly showed the pronounced
dynamics of leukemia cells during clinical treatments and
relapse.
According to the above observation, we could conclude

that leukemia cells experienced dramatic changes across
time. Identifying the differentially expressed genes and
pathways between pre- and post-relapse leukemia cells
could enhance our understanding of relapse process. We
identified 243 significantly upregulated genes and 79 sig-
nificantly downregulated genes (fold change > 2) after
relapse (Fig. 5j). The upregulated genes include H2AFY,
IGLL1, GYPC, HSPB1, STT3B, C1QTN4, SUSD3, and
PDLIM1 (Fig. 5j), which significantly enriched in E2F
targeted genes, G2M checkpoints, oxidative phosphor-
ylation, MTORC1 signaling and so on (Fig. 5k). These
gene sets have been reported to promote the cell pro-
liferation in tumor, which is consistent with our obser-
vation that relapsed leukemia cells express the highest
level of cell cycle genes and show the highest entropy. The
79 downregulated genes include CXCR4, DUSP1, JUNB,
LST1, LTB, RPS14, RPL31, and RPS4Y2 (Fig. 5j), which
significant enriched in IL-6-JAK-STAT3 signaling, TNFA
signaling pathway, IL-2-STAT5 signaling, interferon alpha
response, hypoxia, inflammatory response, interferon
gamma response, KRAS signaling pathway and hedgehog
signaling and so on (Fig. 5k). Imatinib inhibits the enzyme
activity of tyrosine kinase that has been shown to play a
central role in the pathogenesis of human cancers. We
observed the expressions of a lot of tyrosine kinases were
changing during the treatment and relapse (Fig. 5l).
Therefore, relapsed leukemia cells showed substructure
shift and molecular difference with leukemia cells before
relapse.

Leukemia progress model for patient ALL3
After analyzing the dynamics of BMMCs, we zoomed in

leukemia cell subpopulations to provide biological insight
on leukemia progress. The total leukemia cells from the 4
time points were classified into 6 subpopulations (Fig. 6a).
Using CCI, we found the counterparts of the six leukemia
cell subpopulations were B-cell progenitors, namely pro-B
I, pro-B II, pre-B, and immature-B (Fig. 6b). The major
leukemia subpopulations at diagnosis and refractory
(clusters C1 and C2) were pre-B-L and immature-B-L,
while the major relapsed leukemia cells (clusters C5 and
C6) were pro-B-L (Fig. 6b). Since pro-B is the progenitor
of pre-B and pre-B is the progenitor of immature-B in
heathy hematopoietic lineage, we could assume that
relapsed leukemia cells have increased stemness and
stronger differentiation potential than leukemia cells at
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early stage, which is consistent with our observation that
relapsed leukemia cells were in high proliferation states
with the highest cell cycle activity and the highest entropy
(Fig. 5h, i).
We identified genetic variants from scRNA-seq data at

different phases and found increased variants in relapsed
leukemia cells (Supplementary Fig. S6b), consistent with
the expectation that mutations are progressively accu-
mulated during cancer progress41. We identified the leu-
kemia cell or its subpopulation-specific genetic variants by
comparing the genetic variants between different cell
populations. Among the variants that are significantly
different between leukemia cells and normal cells,
chr1:11055657;T>C on SRM and chr11:9173222;A>C on
DENND5A are two mutations distributed in all leukemia
cell subpopulations and might play an important role in
early leukemogenesis (Fig. 6c, d). On the other hand, the
mutational alleles on IKZF1 (chr7:50382590, G>A, p.
G158S) and RB1 (chr13:48409776, T>C) are extremely
concentrated in relapsed leukemia cells (Fig. 6e, f), indi-
cating these mutations raised during late phase of leuke-
mia progress. Especially, IKZF1G158S is a deleterious
mutation associated with leukemia and is a predictor of
poor outcome in ALL42,43, potentially indicating that
IKZF1G158S mutation might play an functional role in the
relapse of the patient.
We further separate each leukemia cell cluster into

multiple subpopulations according to time points of data
collection. We found the genetic variants were accumu-
lating during the leukemia progress (Fig. 6g). We further
constructed a hierarchical tree based on correlation
coefficient of gene expression between pairwise sub-
populations, choosing HSCs as the root of the tree. The
results showed cell subpopulations from different time
points in the same cluster located on the same branch
(Fig. 6h). The major relapsed leukemia cells (ALL3.4-C5,
ALL3.4-C6) and a minor leukemia cell subpopulation
from early phase (ALL3.1-C5 and ALL3.2-C5) are located
on the same branch (Fig. 6h), implicating the two sub-
populations are similar to each other and potentially
shared a common progenitor. In this way, we hypothesize
that the relapsed leukemia cells were derived from this
minor leukemia subpopulation in early phase (ALL3.1-
C5 & ALL3.2-C5) that developed resistance to Imatinib
and rapidly expanded to the major subpopulations in

relapse. SSBP2, a tumor suppressor gene involved in the
maintenance of genome stability44, contains two haplo-
types in the leukemia cells, namely reference haplotype
and alternative haplotype. Interestingly, reference haplo-
types concentrated in early leukemia cells and normal
cells, while alterative haplotypes exclusively enriched in
cluster of the major relapse leukemia cells (C5 and C6)
(Fig. 6i). We found the fraction of cells with alternative
haplotype in early leukemia cells (ALL3.1-C5 and ALL3.2-
C5) was nearly as high as that in relapsed leukemia cells
(ALL3.4-C5) (Fig. 6j), which strongly supports the notion
that relapsed leukemia cells originated from the early
minor leukemia cell subpopulation. Furthermore, the
genetic variants in leukemia cells subpopulations support
that relapsed leukemia cells were derived from minor
leukemia cell populations from early phase (Supplemen-
tary Fig. S6c, d). Based on these observations, we proposed
a model for leukemia progress (Fig. 6k), which vividly
showed the dynamics of leukemia cells during diagnosis,
refractory, remission and relapse.

Discussion
Several studies used scRNA-seq to investigate various

HSPC recently13–17, which greatly increased our knowl-
edge about hematopoiesis. Compared with previous stu-
dies, this study focuses on constructing a reference
hematopoietic tree for investigating leukemogenesis. We
inferred comprehensive hematopoietic process by inte-
grating cluster-specific genes and its niche on hemato-
poietic tree. We further proposed a hierarchically
continuous transition model to fit the hematopoietic
development from HSC to 7 hematopoietic lineages
(Fig. 2j), in which we vividly showed the transitional cell
states, as well as the continuous changes of coordinated
genes and TF networks along hematopoietic lineage.
Distinct models have been proposed to explain the

origin of leukemia heterogeneity19,39,45, However, these
studies usually only focus on analyzing relationships
among leukemia cell subpopulation thus lost the whole
picture of leukemogenesis. Integrating both reference
hematopoietic cell and leukemia cell subpopulation has
the potential to provide novel insights. However, it is a big
challenge to identify the healthy counterparts of each
leukemia cell subpopulation based on single signature due
to the huge differences between leukemia cell and healthy

(see figure on previous page)
Fig. 5 Cell population dynamics of cell populations in patient ALL3 and the underlying genes. a Sampling information the patient ALL3 at
diagnosis, refractory, remission and relapse. b tSNE projection of all BMMCs from this patient and reference cells. c–g tSNE projection of reference
cells and BMMCs at each phase. Reference cells only (c), diagnosis (d), refractory (e), remission (f) and relapse (g). h Cell cycle of patient BMMCs and
reference cells. i Entropy of patient BMMCs and reference cells. j Significantly differential genes between pre-and post-relapse leukemia cells.
k Significantly enriched pathway and gene sets between pre- and post-relapse leukemia cells. l The expression dynamics of some tyrosine kinase
(TKs) based on scRNA-seq.
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hematopoietic cells. Consistent results from multiple
signatures could potentially generate more reliable results
because different measurements provide complementary
information about the relationship between cell sub-
population. We developed CCI that integrates multiple
measurements for searching the healthy counterpart of
each leukemia cell subpopulation in reference hemato-
poietic cells. Interestingly, we found leukemia cell sub-
populations from the same patient had different healthy
counterparts. Trajectory analysis of the leukemia cell
subpopulations within patient showed linear trajectory
(Supplementary Fig. S5h). Mapping leukemia cell sub-
populations on the hematopoietic tree showed leukemo-
genesis almost was exactly the same as truncated
hematopoietic development. Therefore, we hypothesize
the mutant stem cells partially maintain its original
developmental trajectory, while it terminates development
at different stages resulting in a serial of different but
related leukemia cell subpopulations. Furthermore, iden-
tification of the healthy counterparts of leukemia cells not
only facilitate our understanding of the leukemia pro-
gression and leukemia heterogeneity, but also provide
biological insights on the features and functions of the
leukemia cell subpopulation via their well-annotated
healthy counterparts. Finally, identification of the heal-
thy counterpart of leukemia cell subpopulations have a lot
clinical implication such as prediction of leukemia sub-
type and clinical outcome.
Analyses of clinical data with multiple time points have

the potential to provide details about leukemia progres-
sions. Our analyses of patient ALL3 with data at four time
points, namely diagnosis, refractory, remission and
relapse, vividly showed dynamics of cell population
shifting during treatment and relapse. Majority of leuke-
mia cells was killed after Imatinib treatment and the
patient achieved remission, However, a minor leukemia
cell subpopulation, with the highest similarity to mal-
function pro-B, developed Imatinib resistance and later
rapid expansion led to relapse. Variants calling from
single-cell transcriptomes identified the leukemia-specific
mutations and relapsed leukemia cells specific mutations
that are potentially associated with leukemia progressions.
The relapsed leukemia cells were closer to the root of

hematopoietic tree than that of other leukemia cells, thus
increased stemness and proliferation. In summary, our
study vividly showed that leukemia heterogeneities were
associated with cancer progression and therapy outcomes.
Application of our single-cell epigenomics approaches on
these samples46,47 in the future could enhance our
understanding of the underlying mechanisms.
In summary, this study developed a unified framework

for understanding leukemogenesis, which provided bio-
logical insights into leukemia heterogeneity. Furthermore,
CCI provided a novel approach for leukemia subtype
classification and clinical outcome prediction.

Materials and methods
Clinical samples
In total, 23 BMMCs samples and 1 PBMC sample were

analyzed in this study, with detail information (Supple-
mentary Table S1). Among them, 14 samples were col-
lected in Blood Diseases Hospital, CAMS/PUMC and
Nanfang Hospital, Southern Medical University. This
study was approved by IRB of Southern University of
Science and Technology (SUSTech). All individuals
signed an informed consent form approved by the IRB of
the Blood Diseases Hospital, CAMS/PUMC and SUS-
Tech. The other nine BMMCs samples were from other
studies22,48. The classic diagnosis of leukemia was estab-
lished according to the criteria of the World Health
Organization49. Overall, there are 5 healthy samples, 12
AML samples, 6 ALL samples from 3 patients, among
which the patient ALL3 were sampled at diagnosis,
refractory, remission, and relapse.

Cell preparation and flow cytometry
BMMCs were isolated from whole bone marrow aspi-

rate by Ficoll density gradient separation (GE Healthcare),
resuspended in 90% FBS+ 10% DMSO, and cryopre-
served in liquid nitrogen. To prepare cells for FACS,
frozen BMMCs vials were thawed in a 37 °C water bath
for 2 min. Vials were removed once only a tiny ice crystal
was left. Thawed BMMCs were washed and resuspended
in 1 PBS and 20% FBS. After recovery, FACS sorting was
performed on a Becton Dickinson FACSAria II (BD
Biosciences, Denmark) to remove the dead cells. BMMCs

(see figure on previous page)
Fig. 6 Tracing relapsed leukemia cells and leukemia progression model. a Clustering of leukemia cell subpopulations of ALL3. b Healthy
counterparts of leukemia cell subpopulations, the healthy cell populations are listed by order of lymphoid lineage. c, d Distributions of leukemia cell-
specific high variants on SRM (c) and DENND5A (d). e, f Distribution of relapsed leukemia cell-specific high variants on IKZF1 (e) and RB1 (f).
g Distribution of genetic variants in different cell subpopulations. h Hierarchical tree of leukemia cell subpopulations, in which relapsed leukemia cells
and earlier leukemia cells in C5 were clustering together. i Distribution of reference haplotype and alterative haplotype of SSBP2 in BMMCs.
j Frequencies of relapsed-specific SSBP2 haplotype (alt haplo) in different leukemia cell subpopulations. k Progression model of patient ALL3. Ribbons
with different colors present different leukemia subpopulations across the four stages, in which red ribbon stands for major leukemia cells (C1, C2) of
diagnosis and refractory stages, blue and purple ribbons stand for relapsed leukemia cells (C5, C6), green is the minor population of leukemia cells
from refractory to relapse stage, while light blue is normal cells.
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were stained with pre-conjugated CD34-PE antibody for
15min on ice. Non-specific binding was blocked by
incubation in FACS buffer (Life Technologies). The
unbound antibodies were removed using 5ml wash buf-
fer. The CD34+ cells were sorted out by FACS Aria™ II.
The final concentration of thawed cells was 1 x 106 cells
per ml.

Single-cell library preparation and sequencing
The single-cell RNA sequencing libraries of BMMCs

and CD34+ cells from healthy individuals and leukemia
patients were generated using 10x genomics. In brief, cell
suspensions were loaded on a 10x Genomics Chromium
Single Cell Instrument (10x Genomics, Pleasanton, CA) to
generate single-cell GEMs. Approximately 20,000 cells
were loaded per channel. Single-cell RNA-seq libraries
were prepared using the Chromium Single Cell 3’ Gel
Bead and Library Kit (P/N 120237, 120236, 120262, 10x
Genomics) following the protocols48. Sequencing libraries
were loaded at 2.4 pM on an Illumina HiSeq4000 or
Illumina NovaSeq 6000 with 2 × 75 paired-end kits.

Alignment, demultiplexing, unique molecular identifiers
(UMI) counting, and normalization
The Single Cell Software Cell Ranger Suite 2 was used

to perform reads alignment, barcode demultiplexing,
transcripts assemblies and expression counting (https://
support.10xgenomics.com). The gene-cell barcode matrix
was filtered based on number of genes detected per cell
(any cells with less than 500 or more than 4000 genes per
cell were filtered out), and percentage of mitochondrial
UMI counts (any cells with more than 10% of mito-
chondrial UMI counts were filtered out). UMI normal-
ization was performed by first dividing UMI counts by the
total UMI counts in each cell, followed by multiplication
with the median of the total UMI counts across cells.
Then, we took the natural log of the UMI counts.

Dimension reduction and clustering analysis
Dimension reduction was performed by PCA and

tSNE50, as our previous reports12,51. The highly variable
genes were inferred based on normalized dispersion fol-
lowing Zhou et al.51 The top 30 principal components
(PCs) were chosen for tSNE and clustering analysis,
according to the explained variances. Single-cell cluster-
ing was performed by k-nearest neighbor (KNN) graph
and Louvain algorithm. Raw clusters with few differential
expressed genes were merged to avoid excessive
classification.

Inferences of hematopoietic lineages and lineage-
coordinated genes
Hematopoietic lineages and cell pseudotime of each

hematopoietic lineage was inferred by Slingshot26, in

which PCA was implemented and cell clusters were pre-
defined. The cell clusters inferred by KNN graph were
used as input for Slingshot to infer cell trajectories. The
constructed hematopoietic lineages was visualized by a
force-directed layout in SPRING27, in which dimension
reduction were generated by DiffusionMap52. Differen-
tially expressed genes along the pseudotime were identi-
fied using negative binomial tests in Monocle211,53, with
the smoothing parameter set to three degrees of freedom.
For generating heatmaps of gene expression dynamics, the
normalized UMI counts were log transformed and
smoothed using Loess regression with the degree of
smoothing (span) set to 0.75. Heatmaps for gene expres-
sion profile clustering were generated using heatmap
function in R. While the other graphics were generated
using ggplot2 in R.

Gene regulatory network (GRN) score
The GRN score32 reflect the regulator-target relation-

ships in the context of trajectory progression, which ranks
transcriptional regulators based on their correlation with
the trajectory, the correlation with their predicted targets,
and the extent to which target genes are regulated during
the trajectory, which defined as below

GRNi;j ¼ ci;jmt;jnj;

where GRNi,j is the GRN score for regulator i along
trajectory j. ci,j is the mutual information between
transcriptional regulator i and trajectory j, mt,j is the
average mutual information between predicted target
gene t and trajectory j, nj is the number of predicted
targets regulated along trajectory j.

Lineage-coordinated TF networks
Human transcription factors (TFs) were downloaded

from TcoF-DB v254. Lineage-coordinated TF networks
were constructed following Fletcher et al.55. In short, TFs
showing significantly gene expression changing along
inferred lineage are lineage-coordinated TFs. The co-
expression networks of lineage-coordinated TFs was
called lineage-coordinated TF networks. A lineage-
coordinated TF was added into the lineage-coordinated
TF networks if it correlated with at least 5 other lineage-
coordinated TFs (Pearson correlation coefficient > 0.1).
TFs correlation heatmaps were generated with NMF R
package.

Entropy analysis
Entropy was used to assess the diversity of single-cell

transcriptomes. We applied Shannon Index (SI), which
quantifies the level of heterogeneity in potency, to mea-
sure the disorder of transcriptomes. Entropy of each
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single cell was defined as

Entropy ¼ �
Xn

i¼1

pðxiÞlog2pðxiÞ;

where p(xi) represents the probability of gene expression
x= xi, and n is the number of genes.

Gene sets enrichment analysis (GSEA)
GSEA determines whether a priori defined set of genes

shows statistically significant differences between two
biological states. The original GSEA was developed for
gene-expression assays of bulk data36,56, which may lost
accuracy when directly implement on scRNA-RNA data.
In order to take advantage of thousands of single-cell
transcriptomes, we designed an approach as below: (1)
Gene expression was averaged from 30 random cells from
each cluster due to the high dropout rates of scRNA-seq
data. Genes were ranked according to their expression
level for each set of cells. (2) Recovery curve was created
by walking down the gene list, and steps were increased
when we encounter a gene in the gene set. Area under the
curve (AUC) was computed as the indicator of enrich-
ment for a certain gene set. Moreover, only AUC of top
5000 ranked genes was considered. (3) To compare the
different enrichment of two cell populations for a gene
set, we calculate the Z-score of AUC in one cell popula-
tion relative to the AUC distribution in another cell
population. Gene sets from Msigdb3.0 (Molecular Sig-
natures Database) were used for analysis by our approach.

Counterpart composite index (CCI)
It is interesting to systematically compare the develop-

mental trajectories of leukemia cells with that of healthy
hematopoietic cells. However, searching the counterpart
of a leukemia cell subpopulation in healthy hematopoietic
cells is very challenging due to the significant difference
between leukemia cells and healthy hematopoietic cells.
Based on simulated data, our initial analyses showed that
different approaches may produce different results.
However, different statistics have much higher probability
to generate consistent result when two cell populations
have counterpart relationship than these when two cell
populations have uncertain relationship. Thus, the com-
posite likelihood of the statistics is the highest when two
cell populations have counterpart relationship. Here, we
developed an approach, called counterpart composite
index (CCI) and was available on GitHub (https://github.
com/pengfeeei/cci), to search for healthy counterpart of
each leukemia cell subpopulation by integrating multiple
statistics to project leukemia cells into healthy hemato-
poietic cells. CCI integrates Euclidean distance of gene
expression, correlation of gene expression, weighted dis-
tance in top PCs and difference of gene set enrichment for

composite likelihood statistical framework as below:

CCI ¼
YNm

j¼1

PiðSijRjÞPiðRjÞPNr
k¼1 PiðSijRkÞPiðRkÞ

:

In which, Si is the score of measurement i, Rj is the
candidate reference cell population j, Nr is the number of
reference cell population, Nm is the number of composite
measurements in CCI.
The computational details of each statistic were

described as follows:
1) Euclidean distance of gene expression
Considering the prevalent of dropouts and sample size

asymmetry, gene expression level was averaged from 30
random cells from each population. The sampling was
repeat by ten thousand times for each pairwise popula-
tions, from which the median value of expression differ-
ence was used as the statistical measurement of two
populations. In the meanwhile, pairwise statistical dis-
tribution was built from the sampling and computations.
2) Correlation of gene expression
Spearman’s rank correlation coefficient between cell

populations was calculated to measure the similarity of
gene expression. The sampling and distribution con-
struction were following the same strategy as above.
3) Weighted distance in top PCs
The top principal components, which could represent

the distance between cell populations or even single cells,
were integrated into CCI. Euclidean distance in embed-
ding space defined by top 30 eigenvectors was weighted by
their explained variances.
4) Difference of gene set enrichment
It is well known that cells with similar function have

similar biological process and show similar gene set
enrichment. Recovery curve of each gene set was con-
structed and AUC value of top 5000 ranks were used for
the indication of cell similarity. Averaged gene expression
from 30 random cells of each population were used to
calculate the responding AUCs of 50 hallmark gene sets
from Msigdb. Median value and statistical distribution
were derived from ten thousand of samplings.
Facilitated by the comprehensive cell atlas of BMMCs

and HSPCs, we could identify the healthy counterparts of
each leukemia cell subpopulation in HSPCs using CCI,
which could greatly benefit our understanding of the
progression of leukemia.

Identifying the genetic variants in single-cell transcriptome
There are a few reads in each locus of the single-

transcriptomic data; thus, it is very difficult to directly
detect the cell-specific variants. In order to reliably detect
single-cell expressed specific variants, reads from every
single individual were pooled to do variants calling. An in-
house script was used to assign each single cell with its
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associated variants, by checking the variant on indexed
reads. To reduce the artifacts and false positives, we used
following criteria to filter the cell variants: (1) called in at
least 20 cells; (2) at least 5 cells with >2 reads sequenced;
(3) variants observed in at least 3 cells. We found that the
number of detected transcript mutations in each leukemia
patient was much higher than that in each healthy indi-
vidual, partially due to increased number of expressed
genes in leukemia cells.
The single-nucleotide variations (SNVs) identification

could be affected by the copy number variations (CNVs) in
studied regions. We identified genome wide CNVs using
bulk whole-genome sequencing data from the patients, and
we used the deletion regions to filter the covered homo-
zygous SNVs, as well as the associated signals. CNVnator
(v0.3.2) was used to call CNVs from the whole-genome
sequencing data, with a depth of ~30X, of ALL3. The
somatic CNVs was then generated by comparing CNVs at
different time points to CNVs detected from its saliva
sample.

Haplotype tracing
We observed a sequential of homozygous variants of

SSBP2 from the major relapsed leukemia cell sub-
population ALL3.4-C5, which is the alternative haplotype
of SSBP2. We analyzed 39 polymorphisms in SSBP2 to
investigate the distribution of the alternative haplotype in
different cell populations. Any cell with >5 loci showing
the same alleles as that in alterative haplotype (P < 0.05)
were thought containing the alterative haplotype.
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