
Computational and Structural Biotechnology Journal 19 (2021) 343–354
journal homepage: www.elsevier .com/locate /csbj
Experimental and bioinformatics considerations in cancer application of
single cell genomics
https://doi.org/10.1016/j.csbj.2020.12.021
2001-0370/� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations: ADO, Allelic dropout; GMM, Gaussian Mixture Model; FP, False
positives; TP, True positives; WGA, Whole genome amplification; SNV, Single
nucleotide variation; CNV, Copy number variation.
⇑ Corresponding authors at: Cancer Therapeutics and Stratified Oncology,

Genome Institute of Singapore, Singapore 138672, Singapore (A. Javed and A.M.
Hillmer).

E-mail addresses: javed@hku.hk (A. Javed), ahillmer@uni-koeln.de (A.M. Hill-
mer).

1 Joint first authors.
Joanna Hui Juan Tan a,c,1, Say Li Kong a,1, Joyce A. Tai a, Huay Mei Poh a, Fei Yao b, Yee Yen Sia a,
Edwin Kok Hao Lim a, Angela Maria Takano d, Daniel Shao-Weng Tan d, Asif Javed a,e,⇑, Axel M. Hillmer a,f,g,⇑
aCancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
bGenome Innovation Lab, Genome Institute of Singapore, Singapore 138672, Singapore
cDepartment of Biochemistry, National University of Singapore, Singapore 117597, Singapore
dDepartment of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
e School of Biomedical Sciences, University of Hong Kong, Hong Kong Special Administrative Region
f Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
gCenter for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
a r t i c l e i n f o

Article history:
Received 28 September 2020
Received in revised form 15 December 2020
Accepted 16 December 2020
Available online 23 December 2020

Keywords:
Single cell genomics
Whole genome amplification
Single cell somatic variant caller
Protocol aware bioinformatics
a b s t r a c t

Single cell genomics offers an unprecedented resolution to interrogate genetic heterogeneity in a
patient’s tumour at the intercellular level. However, the DNA yield per cell is insufficient for today’s
sequencing library preparation protocols. This necessitates DNA amplification which is a key source of
experimental noise. We provide an evaluation of two protocols using micro-fluidics based amplification
for whole exome sequencing, which is an experimental scenario commonly used in single cell genomics.
The results highlight their respective biases and relative strengths in identification of single nucleotide
variations. Towards this end, we introduce a workflow SoVaTSiC, which allows for quality evaluation
and somatic variant identification of single cell data. As proof of concept, the framework was applied
to study a lung adenocarcinoma tumour. The analysis provides insights into tumour phylogeny by iden-
tifying key mutational events in lung adenocarcinoma evolution. The consequence of this inference is
supported by the histology of the tumour and demonstrates usefulness of the approach.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Background

Intra-tumour heterogeneity (ITH) poses a key challenge for clin-
ical management of cancers as diagnosis and treatment are usually
guided by a single snapshot representing the totality of the under-
lying disease. This single genomic snapshot, based on needle
biopsy or resected tumour mass, does not reflect the complete
genetic and phenotypic diversity, hence may miss cancer drivers
and resistance mechanisms. As a result, personalized therapeutic
intervention may fail without considering these unrepresented
clones, leaving the door open for the tumour to grow unimpeded
using its clonal diversity as a resource for treatment escape. In
the long run, it would lead to patient relapse and potential metas-
tases of these tumour cells to distant sites. Over the years, more
focused efforts have been undertaken to better understand ITH
by sampling multiple sectors within the same tumour [1,2,3,4,5],
or by sequencing single homogenized samples at a greater depth
[6,7]. These efforts have provided key insights to understanding
the evolutionary trajectory of these cancers. However, the muta-
tions thus detected still only represent an average signal of cells
within a tumour population. As a result, it hinders the identifica-
tion of rare tumour cell populations and fails to define co-
occurrence or mutual exclusivity of mutations amongst the clones.
In order to overcome the aforementioned problems, single cell
DNA sequencing has been recognized as a promising technique
that can provide a better resolution to evaluate ITH.
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Single cell DNA sequencing’s greater resolution comes at a tech-
nical cost. Exome-wide approaches with the ability to identify sin-
gle nucleotide variants require whole genome amplification
(WGA). Sequence and locus specific biases in WGA result in non-
uniform distribution of reads across the genome and allelic drop-
outs, while base errors in early amplification cycles introduce false
variants. There are three commonly used WGA strategies namely,
Degenerate Oligonucleotide Primed PCR (DOP-PCR), Multiple Dis-
placement Amplification (MDA), and Multiple Annealing and Loop-
ing Based Amplification Cycle (MALBAC). They differ in their
chemistry, type of enzyme used, and protocol, which leads to dif-
ferences in performance. A few studies have previously compared
their performance[8,9,10,11]. These comparisons have either been
conducted on single cells that were isolated manually (in a tube,
hereon abbreviated as tube based), or are based on nonhuman cells
with different genome complexity (de Bourcy, De Vlaminck et al.
2014). Manual processing is labour intensive, time consuming
and could be a source of operator specific variability. As a result,
the microfluidics platforms that could automate this process are
rapidly increasing in popularity and usage. The performance of
the amplification protocols vary as the methods are translated
from tube-based to microfluidics platforms or from whole genome
to targeted exome sequencing. Previously, other studies have com-
pared the performance of different WGA methods for exome
sequencing[12]. However, the analysis was restricted to tube-
based amplification. Recently, Marie and colleagues have pre-
sented an injection-moulded valveless microfluidic device for sin-
gle cell isolation and DNA release[13]. Using this device followed
by MDA and genome sequencing the authors demonstrate absence
of contamination and high genome coverage. In the present study,
we first evaluated the performance of two WGA protocols per-
formed on a microfluidics device followed by sequencing the
amplified products using exome sequencing. For this comparison,
the fidelity of the two kits was compared based on their perfor-
mance for single nucleotide variant calling.

Finally, as a clinical application, we performed exome sequenc-
ing using the best WGA protocol in the earlier survey on 200 single
cells from a lung cancer patient. These cells were derived from two
distant tumor sectors as well as a far normal tissue. One of the
technical difficulties of a single cell cancer genomics experiment
is to determine the somatic mutations accurately. To date, two sin-
gle cell specific variant callers, MONOVAR[14]and SCcaller[15]
were introduced for single cell genomics. However, these tools pri-
marily aim to identify variants in general and are not specifically
catered towards delineating somatic variants from germline ones.

As such, we provide SoVaTSiC (Somatic Variant Tool for Single

Cell), a workflow that allows quality evaluation of single cells
and somatic variant identification. Practical guidelines were pro-
vided to fine tune the tool to the sample of study. These tweaks
aim to counteract the biases specific to each dataset and leverage
on the availability of less error prone bulk sequencing data which
reflects the genetic landscape in broad strokes.

By applying SoVaTSiC to the lung cancer patient sample, the
variants detected from the lung single cells show high accuracy
and strong concordance with bulk samples. The unsupervised phy-
logenetic inference shows fidelity to the sector-of-origin and iden-
tifies key events in the patient specific tumor evolution. In
addition, SoVaTSiC framework compares favorably to the state-
of-the-art single cell specialized variant caller MONOVAR in sensi-
tivity versus specificity tradeoff. In particular, the somatic infer-
ence steps provide substantial improvement in pruning
MONOVAR results as well, thus highlighting their generalizability,
and broad application. These results are consistent with the perfor-
mance of the two methods on an independent dataset as well [16],
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where SoVaTSiC identifies cancer relevant mutations missed in
previous analyses.
2. Results

2.1. Evaluation of the impact of amplification biases on single
nucleotide variant calling in exome sequencing

A single cell genomics experiment usually requires the sequenc-
ing of a large number of single cells. As a result, manual tube-based
methods which require large volumes of chemicals and enzymes,
are laborious and time-consuming may not be practical for such
experiments. Droplet based single cell sequencing methods on
the other hand are tailored for the analysis of thousands of cells
in particular for single cell RNA-seq. As single cell whole genome
sequencing at a depth that allows single nucleotide variant calling
is still prohibitively expensive when hundreds of cells need to be
sequenced single cell exome sequencing might currently be con-
sidered the most comprehensive nucleotide-resolution single cell
sequencing approach that is realistic at medium scale. We first
compared the two most common whole genome amplification
concepts Multiple Displacement Amplification (MDA) and Multiple
Annealing and Looping Based Amplification Cycle (MALBAC) for
their fidelity using single cell shallow whole genome sequencing.
For this analysis, we selected the lymphoblastoid cell line
GM12878 as it has been intensely characterized by deep, whole-
genome sequencing as part of a three-generation pedigree where
a range of variant callers and haplotype transmission information
were used to create a phased ‘‘Platinum” genome[17]. We found
a higher genome coverage and a lower error rate per read for the
MDA-based protocols (Supplementary Fig. 1 and Supplementary
Material). In the interest of scalability, we transferred the MDA-
based approaches to the microfluidics-based device, the C1 Auto-
prep System (Fluidigm), which allows the automatic processing
of 96 cells at a time and noted comparable characteristics for the
MDA approaches used in manual tube-based and the microfluidics
protocols (Supplementary Fig. 1). We then focused on the microflu-
idics platform to compare two WGA chemistries, the C1 canonical
illustra GenomiPhi V2 DNA Amplification Kit (GE Healthcare Life
Sciences, hereafter C1-GE) and the commonly used REPLI-g single
cell kit (Qiagen, hereafter C1-REPLI) in more detail (Fig. 1A). For
this experiment, a total of five cells of the lymphoblastoid cell line
GM12878 were used for the two amplification methods, and a pool
of GM12878 cells was used as the bulk control.

Both methods show similar performance in terms of duplication
and mapping rates with C1-GE doing slightly better on the former
while C1-REPLI does marginally better on the latter (Fig. 1B, C).
Moreover, when using only confidently mapped reads (mapping
quality � 20), cells amplified by the C1-GE method have a higher
percentage of exome regions covered (Fig. 1D). The allelic drop
out (ADO) rate and false positive (FP) rate were calculated by com-
paring SNVs detected in single cells against the gold standard
GM12878 variants detected in the platinum genome project[17].
Based on this analysis, the C1-GE method has a slightly higher
ADO rate (Fig. 1E). However, the difference is not significant
(p-value = 0.21). On the other hand, the C1-REPLI method has a
significantly higher false positive rate compared to C1-GE
(p-value = 0.04) (Fig. 1F). Marie and colleagues defined p as the
probability of an allele being detected as a measure of estimating
allelic dropout performance [13]. Based on this measure, C1-GE
significantly outperforms C1-REPLI (p -value = 0.0018) despite no
significant difference in ADO (Supplementary Fig. 2B). This is due
to a higher true positive variant detectability of the former protocol
which is ignored in the traditional ADO definition. The uniformity



Fig. 1. Comparison metrics for GM12878 single cells amplified by microfluidics based WGA methods for exome sequencing. (A) Summary of experimental setup for
comparison of WGA methods for whole exome sequencing. Two microfluidics methods were used for this experiment and a total of five single cells evaluated for each
method. (B-F) Barplots compare the mapping rate, duplication rate, target region coverage, allelic drop out (ADO) and per base false positive (FP) rate respectively. C1-GE
outperforms C1-REPLI to varying degrees across majority of the core statistics related to SNV calling (panels B, C, D, and F).
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of coverage of each method is depicted as Lorenz curves of the
samples (Supplementary Fig. 2A). It is further quantified by Gini
coefficients (Supplementary Fig. 2C) and Evenness score metrices
(Supplementary Fig. 2D). C1-GE significantly outperforms
C1-REPLI by both these measures (p-value = 0.0023 for Gini
coefficients and p-value = 0.0082 for Evenness score). In summary,
C1-GE outperforms C1-REPLI to varying degrees across majority of
the core statistics related to SNV calling. Therefore, the C1-GE
method is used for the following experiments.

2.2. Performance of single cell somatic variant calling in a lung cancer
patient

As a proof of concept for a single cell study of clinical applica-
tion, the experimental and analytical framework was applied to
study the intra-tumour heterogeneity in a treatment naive lung
adenocarcinoma patient. Two distant sectors from the tumour
(hereon abbreviated as T1 and T2) along with far normal tissue
were interrogated using exome sequencing in both bulk and single
cell analysis (Fig. 2A). The two sectors showed different histologi-
cal characteristics. T1 showed a mixture of acinar, papillary and
micropapillary histology while T2 showed a solid subtype
(Fig. 2A). A total of 135 and 225 somatic mutations were detected
in the two bulk sectors of which 42 were shared. The patient had
been clinically screened for EGFR mutations and EGFR exon 19
deletion delE746_A750 was observed. EGFR activating mutations
are known drivers of lung cancer that can be therapeutically tar-
geted by tyrosine kinase inhibitors [18]. EGFR exon 19 in frame
deletions, which result in constitutive activation of EGFR sig-
nalling, are the most abundant driver mutations in lung cancer
patients [19]. Moreover, EGFR driver mutations are of particularly
high frequency amongst lung cancer patients of Asian ethnicity
[20,21,22]. We found the EGFR exon 19 deletion delE746_A750 in
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both sectors with high mutation allele frequency in the bulk anal-
ysis (42.5% and 35.5% in T1 and T2, respectively) indicating high
likelihood of it being an early cancer development event and hence
observed throughout the tumour. No other genes known to be fre-
quently mutated in lung cancer such as TP53, KRAS, STK11, KEAP, or
PIK3CA were found to be mutated in either sector.

Exome sequencing was carried out on 66 single cells from T1,
95 single cells from T2 and 39 single cells from the far normal tis-
sue following the C1-GE protocol (Supplementary Table 1). Patient
samples tend to exhibit more experimental variability than the
more docile established cell lines. This experimental noise stems
from quality of cells obtained from primary tissue and the harsh
environment they endure during and post-surgery. Each single cell
library was thus first interrogated following a stringent quality
control criterion based on coverage distribution, allelic dropout
and false negative variant rates (see Fig. 2B, Methods for details).
Of note, the latter two statistics are based on the true positive
germline variant set derived from the bulk samples. 18 single cells
from T1, 21 single cells from T2 and 27 single cells from the far nor-
mal passed this evaluation and were retained for further analysis.
Key quality control measures of the retained cells estimating the
coverage evenness and ADO are shown in Supplementary Fig. 3.

A key challenge in identifying somatic mutations in bulk
tumour samples is the variability of mutant allele frequency due
to the presence of normal cells and clonal heterogeneity. In partic-
ular it is difficult to discriminate between true somatic mutations
and experimental noise at the lower end of the allele frequency
spectrum. Single cell sequencing obviates this challenge as all vari-
ants (germline and somatic) are present at a germline-like allelic
frequency albeit with a noisy distribution and potential focal
amplifications. To identify somatic mutations in single cell data,
a two-step procedure was adopted. In the first step, true positive
variants (both SNPs and INDELs) were curated for each cell (Sup-



Fig. 2. Overview of lung cancer single cell experiment. (A) Location and histology of the tumour sectors is shown. Two different sectors and far normal tissue were evaluated
in bulk and single cell sequencing. The number of single cells selected from each sector is indicated. Bar in microscopic image, 50 mm. (B) Description of quality control steps
for single cells. Two iterations of Gaussian Mixture Model (GMM) were used to cluster the single cells based on exonic coverage. The low coverage clusters were removed
from further analysis (cells with target coverage < 10%, and cells with coverage between 10% to < 42%). In addition, cells were removed based on the allelic dropout rate (ADO)
and false negative (FN) rate. (C) Contour plot used to determine the threshold for filtering of low quality genotypes. Red indicates region enriched for false positive variants,
whereas blue indicates region enriched for true positive variants. (D)The density plot shows the variant allele frequency distribution for true positive and false positive
variants. (E) The flow chart shows the sequence of serial filters applied to remove germline variants. Numbers of variants that remained after each step are indicated on the
right. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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plementary Figure 4). In the second step, this dataset was pruned
of putative germline calls.

In the first step, to distinguish true variants observed in single
cell data from false positives, once again the bulk samples were
relied upon to define true positive and true negative sites (see
Methods for details). It needs to be emphasized that the variant
calls in the single cells are not restricted to the bulk observations.
Rather these sets are used to define the discriminating characteris-
tics to differentiate the good variants calls from the bad. An
exhaustive search of the variant quality parameters computed by
GATK revealed depth of coverage (DP), genotype quality (GQ)
and variant allele frequency (VAF) to be the most predictive factors
(Fig. 2C, D, Supplementary Figure 5). The exact cut-off for these
parameters is experiment dependent impacted by multiple factors
including DNA quality, amplification kit, and sequencing coverage
(see Methods for details).

In the second step, a series of filters were employed to remove
sites with either insufficient support across tumour cells, or some
evidence of the presence of the variant in normal (bulk or single
cell) libraries. The efficacy of these serial filters is demonstrated
in Fig. 2E, where a candidate set of 31,582 variants were pruned
down to a highly confident set of 71 somatic variants. To evaluate
the performance of these calls, 28 of these loci were interrogated in
deep targeted sequencing. With meagre to none amount of individ-
ual single cell DNA left, we relied on the more abundant bulk DNA
from both tumour sectors as well as normal for this experimental
validation. 24 (out of 28) loci were validated for both presence and
absence in individual sectors (validation rate 86%) (Supplementary
Table 2). 22 (out of 24, 92%) variants previously observed in both,
bulk and single cell, were validated. 2 (out of 4, 50%) variants
which had previously been missed in the bulk calls were now also
confirmed. These validation numbers are likely a conservative esti-
mate as the single-cell specific variants are observed in small num-
ber of cells and may not be present (or at least are
underrepresented) in the cells pooled together for bulk DNA.

To better understand the detectability of variants in single cell
data, all bulk single nucleotide somatic call sites were re-
examined (Supplementary Figure 6). 31.7% of T1, and 21.8% of T2
loci of these have been recapitulated in the single cell data as well
(Fig. 3A). In a large fraction of the sites called in bulk (26.2% in T1
and 58.9% in T2), no variant was detected in single cells even prior
to Bioinformatics filtering (Supplementary Figure 6). This suggests
that these variant alleles are not represented in the sequenced
libraries. These missing variants tend to have lower variant allele
frequencies suggesting their relative rarity in the tumour (Supple-
mentary Figure 7). The intra-tumor heterogeneity of this lung
tumor was particularly high since only 42 somatic mutations
(13% of all somatic mutations) were shared in bulk exome
sequencing between the two sectors T1 (135 somatic mutations)
and T2 (225 somatic mutations). Genetic heterogeneity within
the tumours, whereby none of the cells are expected to have all
these mutations, is one contributing factor towards their absence.
Even more so, since the SoVaTSiC protocol requires somatic vari-
ants to be detected in at least three cells. Allelic dropout/false neg-
ative calls (on average 0.22 and 0.34, respectively, Supplementary
Table 1A) in single cells further contribute to the relatively low
number of on average 14 somatic mutation calls per cell (median
17, Supplementary Table 7).

2.3. Inferring tumour phylogeny from single cell data

Single cell sequencing provides an opportunity to infer their
phylogeny and thereby the clonal evolution of a tumour. Phyloge-
netic clustering of the single cells based on somatic variants
revealed 15 cells (4 T1 and 11 T2) that cluster near the root of
the phylogenetic tree indicating high likelihood of them being nor-
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mal contaminant cells from the patient (Fig. 3B). Lung cancers tend
to have high normal contamination with the current observation of
15 / 39 (or 38.5%) normal contamination being on the lower end of
the spectrum and not far off from the histological estimation of
70% tumour purity for this patient (TCGA lung cancer tumour pur-
ity estimates are ~ 40% on average[23]. The normal inference is fur-
ther supported by the absence of EGFR exon 19 delE746_A750
mutation in these cells. This is a truncal event observed in all (ex-
cept two) of the remaining single cells across both tumour sectors.
In these two cells, based on the somatic mutation profile, this
mutation is inferred and suspected missing due to low coverage
and allelic dropout, respectively.

Amongst the tumour cells, a split in evolutionary trajectory is
observed with most of the T1 cells arising from an earlier clone
with lower mutation burden (Fig. 3C). T2 single cells on the other
hand are representative of a secondary clone which harbours the
truncal events but has a higher genomic instability which has led
it to acquire a higher number of somatic mutations (p
value = 0.007). This phenomenon is consistent with the observa-
tion in the bulk sample as well. Looking across the T2 specific
events, a nonsense mutation in ASPM is potentially a contributing
factor to this instability. ASPM plays an important role in mitotic
cell division via the sonic hedgehog pathway and has been impli-
cated in the growth of several cancers [24,25,26,27,28,29]. Further-
more, deletion of ASPM has been shown to impair tumour growth
and increase DNA damage in medulloblastoma [30]. To our knowl-
edge, loss of function of ASPM has not been associated with
increased DNA damage in lung cancer patients and this link
remains to be validated. A predicted damaging missense mutation
in MEGF10 is also observed which is unique to T2. MEGF10 expres-
sion has been linked to metastatic potential due to its role in cell
adhesion and motility in other cancer types [31,32]. The complete
list of sector specific as well as shared somatic mutations can be
found in Supplementary Tables 3-9.

Beyond SNVs and INDELs, the lung cancer single cell exome
sequencing data was evaluated for variability in coverage reflective
of copy number changes. Single cell clustering based on normal-
ized coverage[33]using all normal and tumour cells nearly per-
fectly recapitulates the earlier somatic variant based results
(Fig. 3D). The exception being a single cell from T1 harbouring
EGFR and LMNA mutations but having a normal copy number pro-
file. This cell is an intermediary between normal and other cancer
cells in Fig. 3B as well. The tumour-derived cells which had
grouped at the root of the somatic SNV based phylogenetic tree,
again cluster with the normal single cells in the coverage based
analysis. Thus, bringing further credence to our earlier hypothesis
of them being normal contaminant cells. The tumour cell group is
further split into two distinct subgroups representative of the two
tumour sectors with one lone single cell from T1 breaking the per-
fect harmony by clustering across groups in both Fig. 3B and 3D,
indicating a minor presence of the more unstable clone in sector
T1 as well. Next, we compared the profiles of individual cells with
the somatic copy number changes inferred in the two bulk sectors.
Copy number changes inferred from bulk samples were observed
at a low resolution in single cells as well (Supplementary Figure 8).
The individual cells showed general concordance with the sector of
origin in both shared as well as sector specific changes (Supple-
mentary Figure 9) indicating that the single cell DNA sequencing
pipeline allows consistent retrieval of both, point mutations and
copy number alterations.

2.4. Comparison of somatic variant identification with Monovar

More recently, two single cell specific variant callers Monovar
and SCcaller have been introduced. The latter identifies allelic drop
out regions from neighboring heterozygous variants in long



Fig. 3. Lung cancer single cell analysis. (A) Venn diagram shows shared somatic point mutations between bulk tumour sectors and single cells. (B) Phylogenetic tree depicts
the relationship between single cells derived from the two tumor sectors. The root of the tree (at the top, indicated by N) consists of putative normal contaminant cells
without EGFR exon 19 delE746_A750 mutation. Progressing down the tree EGFR and LMNAmutations are acquired as early truncal events present in the remaining single cells
below. A split in evolutionary trajectory is observed with a second (on the right) clone acquiring a high number of mutations. The size of each node is proportional to the
number of cells it represents, with the color representing their source (blue from T1 and green from T2). These numbers are indicated next to each node as well. (C) Dot plot
showing the number of mutations observed in cells from different sectors. The Y axis indicates the number of mutations. Blue indicate cells that were derived from T1, while
green indicate cells derived from T2. Grey colour shows cells that were likely to be normal contaminants. ** indicates pvalue � 0.01, *** for pvalue � 0.001, and **** for
pvalue � 0.0001. (D) Clustering of single cells using copy number profiles. The node colors indicate the source of the cell: Red from far normal, blue from T1, and green from
T2. Colour codes at the bottom represent the clustering categories: black indicates outliers, green indicates T2 cluster, blue indicates T1 cluster, while red indicates normal
cluster which also includes the normal contaminant cells. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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stretches (±10 kbp), and hence would be at a severe disadvantage
in the targeted exome sequence data. Hence, it was not included in
this evaluation. For the comparison with Monovar, two-pronged
evaluation criteria were adopted based on the concordance with
bulk (generally expected in true positives), and consistency with
phylogeny (deviation indicative of false calls). Monovar run with
default parameters identifies 1524 somatic variants of which only
92 (6.0%) were observed in the bulk data. In comparison, our pipe-
line showed 84.5% concordance. In addition, Monovar identified 70
putative somatic variants in the cells derived from far normal tis-
sue (Supplementary Figure 10B). Although a very small number
of these might be true events, the somatic inference in normal tis-
sue in general is indicative of false positives. This overcalling of
variants (213, 14.0%) is also observed in tumor derived cells
inferred to be normal contaminants (Supplementary Figure 10B).
To evaluate the generalizability of our recommended somatic
inference pipeline, SoVaTSiC filters were applied to Monovar calls.
The cleaned-up results now show high concordance with the bulk
inferred somatic variants as well as our results (Supplementary
Figure 10A). In total, 1459 variants were pruned out, with a large
percentage (14.6%) initially called in normal contaminant cells as
well.
348
To ensure that these observations were not specific to our data,
both Monovar and SoVaTSiC were applied to a published muscle-
invasive bladder transitional carcinoma dataset[16]) . SoVaTSiC
identifies a total of 151 somatic mutations (98 SNVs and 53
INDELs) amongst the single cells (Supplementary Figure 11A-C.
To compare against Monovar, the analysis was restricted to SNVs.
Our results exhibit high concordance with the bulk (70 out of 98;
71.4%). On the other hand, Monovar with default parameters iden-
tified 12,173 somatic mutations of which only 155 (1.27%) were
observed in the bulk sample. Applying our filters to the set of
somatic variations detected by Monovar, a large majority of the
variants were removed, giving a final set of 117 somatic SNVs, of
which 70 (59.8%) were shared with the bulk. Phylogenetic cluster-
ing of the single cells using the 151 variants detected using SoVaT-
SiC revealed a single branch from the normal, suggesting that the
tumour cells were all derived from a single parental cell (Supple-
mentary Figure 11D). No normal contaminant cells were bioinfor-
matically inferred. This is as per expectation as the cells in this
study have been carefully manually picked. Based on the phyloge-
netic inference, three different tumour sub-populations were
observed, whereby the parent tumour clone gave rise to two differ-
ent sub-clones which contain somatic mutations that are private to
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each clone. This observed phylogenetic tree (Supplementary Fig-
ure 11D) is consistent with the original publications[16,34]. The
advantage of our recommended filters in improving Monovar
results was observed in this dataset as well (Supplementary Fig-
ure 11E). SoVaTSiC recapitulated 4/7 (57.1%) key events reported
in the original study with less noise (39 versus 198 mutations
per cell). A closer inspection revealed the remaining 3 somatic
events in the original study are pruned out by SoVaTSiC because
of evidence in the normal. It also recapitulates FGFR3 nonsynony-
mous mutation missed in the original publications but reported
previously by Monovar. FGFR3 is a key cancer driver for bladder
cancers with the activating S249Cmutation observed in the patient
as the most frequently mutated event [35,36]. In addition, SoVaT-
SiC identified four mutations of disease relevance and/or potential
therapeutic implication missed in the previous studies (Supple-
mentary Table 10-13). Two of these are missense mutations in
LSAMP and HELB which evade Monovar’s arbitrary cutoffs. While
the other two are frameshift INDELs in AXL and FOXM1 genes,
which are ignored by Monovar as it only identifies single base sub-
stitutions. LSAMP is a candidate tumor suppressor implicated in
multiple cancer types [37]. HELB is part of cellular response to
DNA damage. It is recruited to DNA damage sites and acts as an
inhibitor for DNA end resection[38]. AXL is a receptor tyrosine
kinase. Its inhibition has therapeutic consequence as it may
enhance tumor response to cytotoxic agents[39]. While FOXM1 is
a transcription factor which activates several cell cycle genes, it
is a proto-oncogene with overexpression leading to cell prolifera-
tion while its loss leads to chromosomal instability[40]. In particu-
lar for muscle-invasive bladder cancer, its over expression is
predictive of poor prognosis[41].

Beyond the somatic filters, our approach has the following
added advantages: 1) It utilizes GATK’s more sophisticated haplo-
type driven engine which makes it more robust to local misalign-
ment in comparison to Monovar’s pileup based approach. In
addition, GATK parameters are fine tuned to single cell scenario.
For example, it takes advantage of the commonality of underlying
haplotype as all single cell libraries are from the same patient (see
Methods for details). 2) SoVaTSiC’s data driven cell level QC and
reliance on GATK’s data driven variant recalibration, both aim to
account for the variability in noise across single cell experiments.
In comparison, MONOVAR’s data agnostic default parameter set-
tings do not cater to this variability. As an example, it does not
account for sequencing depth of the libraries. Furthermore, it
removes variants at low coverage but fails to demark outliers with
high sequencing coverage (indicative of potential mismapped
reads and hence prone to false variants). 3) SoVaTSiC aims to iden-
tify both SNPs and the more challenging INDELs. MONOVAR
focuses only on the former and hence ignores EGFR delE746_A750,
a key cancer driver event in the lung cancer patient. These factors
in conjunction explain the added advantage of SoVaTSiC over
MONOVAR.
3. Discussion

Single cell genomics is an area of active development. Various
protocols have been introduced for the genomic DNA amplification
to generate sufficient DNA material for downstream NGS library
preparation. Each of these comes with its own strengths and weak-
nesses. In a head to head comparison between twoMDA based pro-
tocols, GE outperforms REPLI in most statistics relevant to SNV
calling. This comparison was conducted in a microfluidics system
focusing on the exonic regions. These settings are of direct rele-
vance to the current trend in single cell genomics of growing scal-
ability demands coupled with affordability constraints. Recently, a
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few droplet-based high throughput single cell genome sequencing
devices and protocols have been developed. Among commercial
solutions, the Chromium Controller (10x Genomics) was designed
and used for shallow whole genome sequencing and copy number
analysis of mammalian cells while the Tapestri Platform (Mission
Bio) performs targeted amplicon-based genome sequencing but
not exome sequencing. Using a micro-capillary array (MiCA)-
based centrifugal droplet generation technique with whole-
genome amplification and target enrichment, Fu and colleagues
report ADO of 20% [42]comparable to the average ADO of 22% we
observe in our setting (Supplementary Table 1A). An increased
focus on clonality in patient tumours dictates increase in scalabil-
ity (in terms of number of cells per patient). The aim being to
increase the likelihood of representing all therapeutically relevant
clones in the single cell profile. Often enough during cancer pro-
gression, in particular in response to targeted therapy, the tumour
composition shifts across the existing clones. Therefore, it is vital
for any patient tailored therapy to not only be aware of, but also
actively target, major as well as minor clones. However, costs have
to be considered and rates of viable cells of clinical specimen that
lead to high quality data have to be improved.

There is dearth of single cell somatic variant calling tools. The
two current options available for this analysis[14,15] are both tai-
lored to germline calls without significant focus on differentiating
the somatic mutations from germline variants. To address this
challenge, we introduce a workflow for quality control and subse-
quent somatic variant inference. There is significant variability
both within and amongst the single cell libraries. We guide the
user to gain maximal benefit from the experiment at hand and
make recommendations to fine tune the analysis to the experimen-
tal noise observed. In a direct comparison, our single cell somatic
variant caller outperforms MONOVAR in both in-house and pub-
lished data. Further, the somatic inference step when applied to
MONOVAR show dramatic improvement. Thus, highlighting the
generalisability of the method.

In the application case of a lung cancer patient, our analysis
indicates that single cell whole exome sequencing is able to iden-
tify the clonal nature of this tumour based on either CNV or SNV
profile. There is a good concordance in inferred phylogeny between
the two approaches. In this specific case, the clonality generally
coincides with sector specificity of the tumour cells. This allows
us to directly compare the two clones based on sector specific
information. The differences observed in single cell genomic profile
concur with the histology of the two sectors. T1 constitutes a
mixed histology whereas T2 comprises of primarily solid poorly
differentiated carcinoma. Our hypothesis based on the phyloge-
netic inference is that EGFR exon 19 deletion (delE746_A750) is
truncal and hence likely the cancer initiating event. This indel
would have been missed by the current state-of-the-art informat-
ics pipelines due to their base substitution only focus. The tumour
cells during treatment naive evolution acquired the nonsense
mutation in ASPM. This loss of function (along with other events)
likely impaired the mitotic function of these cells leading to the
mutator phenotype observed within this clone.

Cumulatively, this study provides guidelines on the trade-offs of
various practical decisions faced in usage of single cell genomics in
cancer patients with a meaningful application to understand the
cancer evolution in a lung cancer patient. We provide SoVaTSiC a
unified framework for single cell genomic analysis for cancer data-
sets. The workflow is provided open access at https://github.com/
JoannaTan/SoVaTSiC. The current pipeline and the results pre-
sented are based on GATK3. With improvements in genomic vari-
ant calling methodologies, we expect further improvements in
SoVaTSiC performance based on upgrade of the underlying GATK
version.

https://github.com/JoannaTan/SoVaTSiC
https://github.com/JoannaTan/SoVaTSiC
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4. Methods

4.1. GM12878 cell line preparation prior to WGA

GM12878 cells were cultured in complete media (RPMI (Gibco)
supplemented with 20% FBS (Standard, Gibco), 1% 10,000U/ml
Penicillin-Streptomycin antibiotics (Gibco) and 1% 200 nM L-
glutamine (Gibco). The cells were spun down at 110 g for 5 min
and washed once with phosphate buffered saline without calcium
and magnesium before harvesting. Washed cells were passed
through the pre-wet 40 mm cell strainers (BD Falcon, San Jose,
CA, USA) for single cells, and counted using the MoxiTM Z Mini Auto-
mated Cell Counter (ORFLO Technologies).

For the whole exome sequencing experiment, a total of 10 sin-
gle cells were isolated and a pool of GM12878 cells was used as the
unamplified bulk control.

4.2. Clinical sample, pathological characteristics and cell preparation

The tissue samples were taken from a resected stage IIA lung
adenocarcinoma of a 68 years old female non-smoking lung cancer
patient of the National Cancer Centre Singapore. The adenocarci-
noma consisted of predominantly acinar histology (55%) with
minor papillary (20%), micropapillary (10%) and solid (15%) com-
ponents. The tumour was tested negative for translocations of
ALK, ROS1, and RET and amplification of MET and positive for an
activating EGFR exon 19 deletion. Of the resected specimen, two
tumour sectors and a morphologically normal lung sector more
than 5 cm away from the tumour margin were obtained. The
patient received no treatment before surgery and had given writ-
ten informed consent to participate in this study. The biological
samples were collected following the protocols approved by the
Institutional Review Board (IRB).

The tumour tissues were transferred from the hospital to labo-
ratory in cold washing buffer (DMEM/F12 (Gibco), 5% FBS (Stan-
dard, Gibco) supplemented with 1% 10,000U/ml penicillin–
streptomycin (Gibco)). The tumour was washed thrice with cold
washing buffer and chopped into smaller pieces with a sterile scal-
pel blade (Aesculap) followed by an incubation at 37 �C in 10 ml
collagenase + dispase concoction (1 mg/ml) with shaking for 2 to
3 h. The suspensions were repeatedly washed with washing buffer
for 5 times, and passed through the pre-wet 40 mm cell strainers
(BD Falcon, San Jose, CA, USA) for single cells. The cells were
counted using the MoxiTM Z Mini Automated Cell Counter (ORFLO
Technologies).

4.3. WGA of single cell genomic DNA for whole exome sequencing

The GE Healthcare illustra GenomiPhi V2 DNA Amplification Kit
and the Qiagen REPLI-g single cell kit were used on both tube and
microfluidics platform. For the Qiagen REPLI-g single cell kit, the
protocol recommended 8 h of incubation time.

4.4. Single cell WGA run on Fluidigm C1 Auto-prep platform

The medium-sized (10 to 17 mm) C1 chip (Fluidigm) was primed
with C1 Harvest Reagent, Preloading Reagent, Blocking Reagent
and C1 DNA Seq Cell Wash Buffer (Fluidigm) for 10 min before it
was loaded with the dissociated single cells. The DTT Mix was pre-
pared by the addition of DTT, Sample and Reaction Buffers (GE
Healthcare). The Lysis Mix contained C1 DNA Seq Lysis Buffer
and DTT (Fluidigm), while the Reaction-Enzyme Mix consisted of
C1 DNA Seq Reaction Mix (Fluidigm), DTT Mix and Enzyme Mix
(GE Healthcare). The Lysis Mix, Reaction-Enzyme Mix and C1
DNA Seq Stop Buffer were loaded on the C1 chip followed by the
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on-chip whole genome amplification experiment. The amplified
DNA was harvested from the C1 chip and transferred into 96-
well PCR plate. The DNA was quantified using PicoGreen dsDNA
quantification assay (Thermo Fisher) on the Infinite 200Pro plate
reader (Tecan).

4.5. Whole exome sequencing using Illumina Nextera Rapid Capture kit

The hybridization and library preparation for whole exome
sequencing was carried out following the instructions provided
by the Nextera Rapid Capture Enrichment kit (Illumina) with some
modifications. A total of 10 ng input DNA were aliquoted into PCR
plate followed by a 10-minute tagmentation at 58 �C. The dual
indices were added into the tagmented DNA under the PCR ampli-
fication with the following thermal cycler’s setting: 72 �C for 3 min,
98 �C for 30 sec, 10 cycles of 98 �C for 10 sec, 60 �C for 30 sec, 72 �C
for 30 sec, 72 �C for 5 min. The barcoded libraries were purified
using magnetic Sample Purification Beads (SPB) and pooled
together. Two rounds of hybridization with the Coding Exome Oli-
gos (CEX) were carried out at 58 �C for 2 h. The enriched library
was purified with Sample Purification Beads (SPB) and amplified
with the supplied PCR Primer Cocktail (PPC) and Nextera Enrich-
ment Amplification Mix (NEM) under the following thermal
cycler’s setting: 98 �C for 30 sec, 10 cycles of 98 �C for 10 sec,
60 �C for 30 sec, 72 �C for 30 sec, 72 �C for 5 min. This final ampli-
fied library was purified by SPB and quantified using the KAPA
Library Quantification Kit (KAPA Biosystems) on the LightCycler�

480 platform (Roche). The libraries were sequenced on Illumina
Hiseq 2500 with paired-end read of 101 bp.

4.6. Read processing and mapping

4.6.1. Alignment of paired-end GM12878 exome sequencing reads
The sequenced reads were aligned to the Human reference gen-

ome hg19 using BWA MEM version 0.7.10-r789 [43] with default
parameters. The mapped reads were sorted and duplicated reads
were marked using Picard tool version 1.129 [44]. Lastly, Indel
realignment and base recalibration were conducted using GATK
Version 3.1–1[45]with default parameters to obtain the final
BAM files for analysis. Due to differences in the sequencing depth,
Picard tool version 1.129 was used to randomly down-sample the
aligned reads. The resulting down-sampled BAM files were further
used to compare the performance of different WGA kits for single
nucleotide variants (SNVs) detection.

4.6.2. Alignment of paired-end lung cancer exome sequencing reads
BWA MEM version 0.7.5a-r405 [43] with default parameters

was used to align sequencing reads to the Human reference gen-
ome hg19. Picard tool version 1.129 was used to sort and mark
duplicated reads. GATK version 3.5 [45]with default parameters
was used to perform indel realignment and base recalibration.
For the lung cancer single cell data, an additional joint indel recal-
ibration was performed using candidate sites obtain from all lung
single cells.

4.6.3. Variant detection on GM12878 exome sequencing data
Variants from GM12878 single cells amplified by both C1-GE

and C1-REPLI were detected using GATK haplotypeCaller version
3.1.1 using the following parameters: mapping quality
(MQ) � 40, base quality (BQ) � 20). Joint genotyping was con-
ducted for cells amplified by each kit separately so as to produce
a single VCF file per kit. SNV sites were filtered using the following
hard filters recommended by GATK: quality by depth (QD) < 2.0 or
fisher strand (FS) greater than 60.0 or root mean square of the
mapping quality (MQ) < 40.0 or mapping quality rank sum test
(MQRankSum) < -12.5 or read position rank sum test
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(ReadPosRankSum) < -8.0). For INDEL sites, the following hard fil-
ters recommended by GATK were used to remove low quality sites:
QD < 2.0 or FS greater than 200.0 or ReadPosRankSum < -20.0.

In order to compare the performance of C1-GE and C1-REPLI kit,
all the following statistics were calculated using sites which were
covered by at least 5 reads in each cell. ADO was calculated using
the following formula Eq. (1):

ADO ¼ Numberofheterozygoussitesdetectedashomozygousinsinglecell
Numberofheterozygoussitesdetectedinplatinumgenome

ð1Þ
Heterozygous sites detected in the platinum genome was

obtained by downloading the gold standard GM12878 variants
detected from the platinum genome project. The platinum genome
version 8.0.1 dataset was downloaded from the platinum genome
website[17].

Marie et al defined p as the probability of observing an allele as
Eq. (2)

p ¼ 2aþ b=2n ð2Þ
Where a is the number of times both alleles are detected, and b

is the number of times only one of the two alleles was detected in
the sample [13]. This was calculated for each sample using the
heterozygous sites detected in the platinum genome.

FP rate was calculated using the following formula Eq. (3):

FP ¼ Numberofvariantsitesdetectedinsinglecellsattruenegativesites
Numberoftruenegativesites

ð3Þ
True negative sites were defined as sites within the exonic tar-

get regions whereby no variant was detected in the platinum gen-
ome project.

Evenness score E Eq. (4) was defined as the fraction of coverage
that is correctly distributed[46].

E ¼ 1
Cave:NTP

XCave

i¼1

Pi

( )
:100% ð4Þ

Where Cave is the average coverage, NTP is the targeted position,
and Pi is the number of targeted positions with at least coverage i.

Gini coefficients were calculated as Eq. (5)

G ¼ 1� 2A ð5Þ
Where A is the area under the Lorenz curve.

4.7. Variant detection in bulk lung cancer exome sequencing data

Germline variants (SNVs and INDELs) in the bulk tumour sec-
tors and adjacent far normal tissue were detected using GATK hap-
lotypeCaller v3.5 followed by hard filtering recommended by GATK
best practices for both SNVs and INDELs. Germline SNVs were fur-
ther filtered by removing variants which have DP < 8 or GQ < 30.
For germline INDELs, we removed variants which have DP < 5 or
GQ < 20.

Putative somatic SNVs were called by comparing bulk tumour
samples with the adjacent normal tissue using Mutect with default
parameters[47]. Somatic INDELS were detected by comparing bulk
tumour samples with the adjacent tissue using Strelka[48]. Both
somatic SNVs and indels with variant allele frequency<0.05 were
removed to prevent spurious detection. The remaining variants
were annotated via ANNOVAR [49].

Copy number variations (CNVs) were detected using EXCAVA-
TOR2[50]after removing duplicated reads, secondary alignments
and unmapped reads. The CNVs detected were annotated using
PennCNV[51].
351
4.8. Quality control of lung single cells after sequencing

Exome sequencing was carried out on 66 single cells from
tumour sector 1 (T1), 95 single cells from tumour sector 2 (T2)
and 39 single cells from the far normal following the C1-GE proto-
col. Percentage of target regions covered (�5 reads) was used as
the first quality control criteria. The cells exhibited a bimodal dis-
tribution of coverage (Fig. 3B). Gaussian Mixture Model (GMM)
was used twice to separate the cells into three groups: cells with
coverage < 10%, 10% to < 42%, and � 42% respectively. Cells belong-
ing to the two lower coverage clusters were not considered in fur-
ther analysis. The remaining cells were further filtered for allelic
drop out (ADO) and false negative (FN) rates. For this the consensus
heterozygous germline variant calls in the three bulk samples were
used as the true variant set (see Supplementary Methods for
details). In total 18 single cells from T1, 21 single cells from T2
and 27 single cells from the far normal passed the cell level filter-
ing. These cells had at least 42% of the target regions covered (�5
reads), ADO rate � 0.35 and FN rate � 0.45.

4.9. Variant detection in lung cancer single cell exome sequencing data

Variants in qualified tumour and normal single cells were
detected via GATK haplotypeCaller v3.5 using the parameter (map-
ping quality (MQ) � 40, base quality (BQ) � 20). This was followed
by joint genotyping and variant recalibration. All the tumour and
normal cells were processed together to produce a single VCF file
containing all potential variant sites. GATK variant recalibrator
was used to filter the output at 99.9% sensitivity level. Recalibra-
tion training databases used include dbSNP build 138, Omni
2.5 M, 1000 genome phase 1 SNPs, Hapmap version 3.3, and Mills
and 1000 genome gold standard INDELs. For SNVs, annotations
used for recalibration training include variant quality score by read
depth (QD), strand bias (FS), mapping quality rank sum score
(MQRankSum), read position rank sum score (ReadPosRankSum),
and mapping quality (MQ). For INDELS, the annotations used for
recalibration training include variant quality score by read depth
(QD), strand bias (FS), mapping quality rank sum score (MQRank-
Sum), and read position rank sum score (ReadPosRankSum).

After variant recalibration, variants within 10 bp of each other,
tri-allelic sites, and singletons were removed to reduce the variant
false positives rate (Supplementary Fig. 3). For SNVs, genotypes
with read depth (DP) < 5, genotype quality (GQ) < 30, and variant
allele frequency (VAF) < 0.15 were removed. Variant genotypes
which failed the GQ filter were re-examined by comparing the dif-
ference in phred likelihood score (PL) between the homozygous
reference genotype and the maximum of heterozygous genotype
and homozygous alt genotype. If the difference is greater than
30, the genotype will be retained. For INDELS, genotypes with
DP < 5, GQ < 40, and VAF < 0.2 were removed. Variant sites which
have variants detected in at least 3 single cells were retained. The
thresholds used for filtering of genotypes were determined by
using variant calls in the three bulk samples (see Supplementary
Methods for details).

Putative somatic variants were filtered (excluded) based on the
following criteria within the sequencing data of the respective lung
cancer patient: (I) variants were seen in<3 cells, (II) variants were
detected in germline bulk normal tissue, (III) alternate allele was
observed in more than one percent of total reads in germline bulk
normal tissue pileup data, (IV) variants were detected in normal
single cells (this criterion requires sites to be homozygous refer-
ence at the position of the putative somatic variant for all normal
cells and have at least 3 normal cells covered), (V) variants were
seen in normal single cells which failed QC. The flowchart showing
the filters can be found in Fig. 2E. The final somatic variants were
annotated via ANNOVAR.
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To aid the understanding of tumour evolution, OncoNEM [34]
was used to infer the relationship between the single cells.

4.10. Detection of copy number profiles from lung cancer single cell
exome sequencing data

Sequencing reads within exonic target regions were counted
and GC normalization was performed using Excavator2
EXCAVATORDataPrepare.pl script. To identify regions of copy num-
ber changes, the method by Patel et al. to detect copy number vari-
ations from single cell RNA-seq[33]was adopted. The exonic target
regions were sorted based on their chromosomal location and a
moving average of 2001 exonic target regions was used to estimate
the copy number in each cell. 2001 was chosen based on the trade-
off between higher resolution at lower numbers versus the better
denoising at higher numbers. The following formula Eq. (6) was
used to estimate the copy number for each region per chromosome
in each cell:

Copynumberatregioniofcellk ¼
Piþ1000

j¼i�1000normalizedreadcountofj
2001

ð6Þ
Where i is the estimated average copy number change at target

region i and j is the exonic region adjacent to i.
For each cell, a z-score is obtained per region using the follow-

ing formula Eq. (7):

Zscoreatregioni ¼
copynumberatregioniofcellk

�mediancopynumberacrossallregions
sdacrossallregions

ð7Þ

Euclidean distance between each cell using the z-score, fol-
lowed by hierarchical clustering using R.

4.11. Validation of variants detected in lung single cells and bulk
sequencing

28 sites were randomly selected for validation. 1 mg of genomic
DNA was obtained by extracting DNA from a pool of dissociated
cells from each sector. PCR reaction were conducted using the 28
primer sets and an agarose gel was used to validate the product
size. The PCR products were then purified using MiniElute PCR
Purification Kit (Qiagen) and PCR products were pooled for library
preparation based on concentration measured by Agilent DNA
1000 kit (Agilent). Sequencing libraries were prepared using NEB-
next DNA library Prep Master Mix Set for Illumina (NEB). Lastly, a
final QC was done using KAPA (KAPA Biosystems) prior to sequenc-
ing. The libraries were sequenced using Illumina Miseq with
paired-end reads of 151 bp.

The sequencing reads were aligned to the hg19 reference gen-
ome using BWA-MEM v0.7.10 with default parameters. The
sequencing reads were sorted and duplicates were marked using
Picard. INDEL realignment and base recalibration were done using
GATK v3.5. SNVs were detected using Mutect and GATK Haplo-
typeCaller, whereas INDELs were detected using GATK
HaplotypeCaller.

5. Comparison with Monovar

Monovar was run with default parameters using sequencing
reads with mapping quality (MQ) � 40[14] and base quality
(BQ) � 20. Filters recommended in the publication were then
applied[14]. Thereby, variants within 10 bp of each other, tri-
allelic sites, and singletons were removed to reduce the variant
false positives rate. Putative somatic variants were filtered based
on the following criteria: (I) variants were seen in<3 cells, (II) vari-
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ants were detected in germline bulk normal tissue, (III) alternate
allele was observed in more than one percent of total reads in
germline bulk normal tissue pileup data, (IV) variants were
detected in normal single cells (require sites to be homozygous ref-
erence for all normal cells and have at least 3 normal cells covered),
(V) variants were seen in normal single cells which failed QC.
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The GM12878 dataset generated and analysed during the cur-
rent study are available in the European Nucleotide Archive
(ENA) under the accession number of PRJEB22052. The lung adeno-
carcinoma dataset generated and analysed during the current
study are available in the European Genome-phenome Archive
(EGA) under the accession number of EGAS00001002972. The
bladder cancer dataset analysed during the current study was
downloaded from the NCBI short reads archive (SRA) under the
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file containing variants detected from both, bulk and single cells
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