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Background
Different drugs sharing similar gene expression signatures (perturbagens induced gene 
expression changes) may possess similar mechanism of actions (MOAs) [1]. Evaluating 
the drug-drug similarities at gene expression level can be used for drug repurposing [2]. 
Many methods or tools have been developed to compute drug-expression-signature sim-
ilarities, but most of them evaluate the similarities by comparing differentially expressed 
genes (DEGs). For example, Gene set enrichment analysis (GSEA) [3] tools compare the 
most up/down regulated DEGs of one perturbation against the other perturbation sig-
nature [4–7]. The other widely used metrics to evaluate the perturbation correlations 
include cosine similarity, Jaccard score and p value of Fisher exact test between DEGs [8, 
9]. However, drugs with shared MOAs may not present high similarity scores, because, 
firstly, drug-induced differential expression of the molecular target may be masked by 
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the much larger differential expression of off-target genes [10], or even not related to 
nominal target gene perturbations [11], so limited up/down regulated DEGs may not 
cover focused MOAs; and secondly, the pairwise similarity evaluation may also be inef-
fective due to strong interferences such as batch effects [12] or common responses [13]. 
Compared to other methods available, deep learning, as a non-linear method excel-
ling in fitting high-dimensional data, is independent of “feature” (MOA related genes) 
extracting, because the high layer structure of deep learning could suppress irrelevant 
variations [14]. Modeling MOAs using deep learning approach can not only reduce the 
influence of batch effects and noise with a large number of samples [15], but also facili-
tate to find the features closely related to drug MOAs.

As a matter of fact, a wide variety of machine learning methods have been developed 
to help to understand the mechanisms underlying gene expression [1, 16], and thus far 
some of previous published work has demonstrated that deep learning is an effective 
approach to connect signatures to prior knowledge such as side effects, indication, tar-
gets or drug sensitivity [1, 16–19], and has Noted that the high hidden layer feature of 
deep learning could effectively reduce the batch effect [15]. Considering the usage of 
the existing tools limited by the high cost in computational resource and the difficulty 
in model training and accuracy evaluation, here we report a new efficient method for 
querying gene expression data by taking advantage of deep neural networks to learn an 
embedding and do more precision classification. Moreover, in order to make the train-
ing, evaluation and prediction process easier for biologists and pharmacologists, we 
introduce the online tool called genetic profile-activity relationship (GPAR) implement-
ing deep learning to easily model and predict MOAs. Users could train MOA models 
with self-defined training sets by simply providing the list of positive drugs or upload 
their own data. The GPAR here can also provide the accuracy evaluation via cross valida-
tion process to facilitate users evaluating the model performance and using the predic-
tion results properly. Furthermore, by evaluating 103 MOAs, GPAR is demonstrated in 
real case scenarios to outperform the traditional approach.

Methods
Preparation of training set

We collect transcriptome data (GSE92742) from the LINCS dataset project achieved 
with L1000 platform [20], which is a high-throughput gene expression assay that directly 
measures the mRNA transcript abundance of 978 "Landmark genes" from human cells 
and infers the expression of 11,350 additional genes. It represents cellular responses 
to perturbation, such as drugs and RNAi, and was used to find relationships between 
diseases, genes, and therapeutics. The differential expression of directly measured 978 
Landmark genes were computed by z-scoring procedure across all samples on the 384-
Well Plate, where expression profiles were measured capturing most of the variance of 
whole-genome profiles at a much lower cost, and those expression data expressed by 
z-scores were used as input features, we also has tested how the size of features impacted 
the performance. we set the number of features N ranged from [10, 800]. In [10, 100], 
take 10 as the interval, and in [100,800], take 100 as the interval, and randomly extract 
N genes for 10 times to train and evaluate models, as shown in Additional file 1: Fig. S1, 
the area under the receiver operating characteristic curves (AUROC) increased with the 
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size of features, and with the increasing size of training features, as shown in Additional 
file 1: Fig. S2.A–B, the similarity between shared MOAs has increased, as well as the dis-
tance between predefined positive and negative samples.

Then we reduced the sample size by selecting only one signature in each cell type for 
each molecule, Pearson correlation coefficient between each pair of signatures (within 
the same cell lines) was computed, and the one with the highest average correlation to 
the rest perturbation was regarded as the most representative signature. The binary clas-
sifier training set included 2 class samples: “positive set” and “negative set”. The “posi-
tive set” label was referenced by drug MOA annotation from both MCE library (https​
://www.medch​emexp​ress.com/) and Drug Repurposing Hub [21], and then we removed 
some “positive” molecules whose signatures varied too much to the other “positive” set 
by repeating cross-validation process. We also selected 6220 compounds (with low tran-
script activity score [20] and without MOA annotation) as the invariant “negative set”, 
assuming they have no drug properties that can be reflected at transcriptome level.

Training prediction models

Deep Neural network (DNN), one of the widely used deep learning architectures, was 
used to train MOA prediction models. The DNN was realized with the open source plat-
form Tensorflow [22]. In order to choose appropriate hyperparameters, the hidden lay-
ers were tested from 2 to 5 and hidden nodes were tested from 10 to 2048 to find out the 
suitable ranges in which most prediction models have high AUROC and average pre-
cision score of precision-recall curve (AP score), and were robust to hyper parameters 
change (e.g. Additional file 1: Fig. S4). Finally, we chose 3 hidden layers containing 978, 
512 and 256 nodes respectively, 2000 iterations, and used L1 regularization, RELU acti-
vator and dropout = 0.1. Here we note that deep learning has also been applied to the 
LINCS dataset to improve the accuracy of whole-genome expression from L1000 pro-
files and compute signatures [23], predict pharmacological properties of drugs [24], and 
map L1000 profiles to binary barcodes that improve prediction of compound structure 
and target information [15].

Model evaluation and default model selection

K-fold cross-validation was used to evaluate the performance of prediction model. The 
value of K depends on the number of “positive” drugs (not signatures), that is, a “posi-
tive” drug should not be used as both training set and test set at the same time. Because 
when evaluating the performance of prediction model, we also want to know the con-
sistence among drugs with the same MOA label via cross validation to get rid of drugs 
with low quality signatures or to further identify whether such MOA can reflect at tran-
scriptome level or not.

The value of fold K equals to the “positive” drug number N if N ∈ [2, 4], K = 5 if N ∈ [5, 
9], K = 10 if N ≥ 10, if N = 1, K equals to the number of signatures. During the cross 
validation, using the stratified sampling method to randomly divide the positive and 
negative drug set into K parts. (K -1)/ K samples were used as training sets to train a 
prediction model, evaluating its sensitivity and specificity by testing on the remaining 
1/ K samples. This process would be executed K times, and K times mean AUROC were 

https://www.medchemexpress.com/
https://www.medchemexpress.com/
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taken as the evaluating indicator, models with mean AUROC ≥ 0.6 were regarded as well 
trained models.

Score all L1000 signatures via prediction model

The prediction classifier is not aiming for “classification” but for ranking the probability 
of each signature. Usually only the highest ranked (such as top10 or top50) prediction 
molecules may be worth further bioassay validation.

In order to predict new molecules that may share the same MOA, the prediction 
model would be used to score all the L1000 signatures (except the training set). The 
returned result was the probability that each signature was judged to be “positive”. As 
most molecules have more than one signature, the following enrichment statistic trans-
lated the probability rank orders of signatures into the enrichment score (ES) of each 
corresponding molecule. Supposing that the total number of all predicted signatures was 
n and the rank of compound X corresponded signature were ranked R(i), where i = 1, 2, 
3, …, k. Then, compute the following values:

The enrichment score of compound X was set to a if a > b or to − b if b > a. The high 
enrichment scores indicated all signatures of predicted compound X were enriched in 
top ranks. To evaluate the significance of enrichment score, we randomly drew instances 
for 1,000 repetitions to compute the corresponding enrichment score (ESi), where i = 1, 
2, 3, …, N. The permutation p value was set to the frequency of ESi < ES. Finally, we filter 
the results by following criteria: (1) the permutation p value of the molecule was less 
than 0.05; (2) the replicate samples of the molecule were more than 4. Then we rank 
results according to ES.

Gene set enrichment analysis (GSEA)

Gene set enrichment analysis (GSEA) algorithm, a non-parametric, Kolmogorov–
Smirnov statistic based similarity measure approach [3], was implemented via the R 
package GeneExpressionSignature [7] based on Iorio’s et al. method [25], which firstly 
merged multiple signatures of one molecule into one “optimal signature” by Borda 
Merging Function, and then 20 most up/down genes inside 978 directly measured “land-
mark genes” were selected to compute the enrichment score between each pair of signa-
tures (positive and negative samples). After computing the GSEA similarity matrix, we 
rank the matches between pairwise signatures by enrichment scores, and the matches 
between the positive signatures and the positive signatures were set to true positive, 
while the matches between positive signatures and negative signatures were set to false 
positive, thereby drawing the receiver operating characteristic curve (ROC) and preci-
sion-recall curve (PRC).
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Results
GPAR supports MOA discovery in two ways

The well-trained prediction models can be utilized in two ways: First, a certain predic-
tion model can be used to search molecules that may share certain MOA by scoring all 
L1000 signatures, output is the rank of molecules (“Drug prediction” function). Second, 
multiple well-trained binary classifiers can be used to predict potential MOAs of input 
signatures, output is the rank of MOAs (“MOA prediction” function).

Drug prediction: The purpose of this function is to find molecules which may share 
the same MOA with user-defined “positive” molecules. As shown in Fig. 1a, one or mul-
tiple “positive” molecules (or user owned expression data) and the corresponding cell 
types are input to train prediction models. After the training, predicting and enrichment 
statistic processes, the output is the rank list of predicted molecules (training set were 
excluded), which could be downloaded in CSV format. Top predicted molecules will be 
listed, and the related information will be linked to the corresponding iLINCS (http://
www.ilinc​s.org/ilinc​s/) and Pubchem entry (https​://pubch​em.ncbi.nlm.nih.gov/). We 
also provide AUROC of user trained prediction model, together with the data visualiza-
tion of training set and top 30 predicted molecules in two visualization ways: L1000FWD 

Fig. 1  a Drugs prediction: user/pre-defined one or multiple drugs would be taken as positive samples in 
model training. And the predicted compound rank lists, AUROC of prediction model and visualizations of 
both training and predicted data would be returned. b MOA prediction: 83 MOA prediction models with 
AUROC ≥ 0.6 were used to predict the potential MOA of user uploaded or selected expression profiles. And 
the top 10 predicted MOAs would be presented. c The AUROC of GSEA and GPAR by calculating 103 MOAs. 
AUROC of GPAR is significantly higher than that of GSEA (Wilcoxon matched-pairs signed rank test, p < 0.0001). 
d Comparison of trained model performance of estrogen receptor agonists in PC3 and A549 (orange) cell 
lines and in MCF7 and HT29 (blue) cell lines

http://www.ilincs.org/ilincs/
http://www.ilincs.org/ilincs/
https://pubchem.ncbi.nlm.nih.gov/
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and t-distributed Stochastic Neighbor Embedding (t-SNE) [26] implemented in scikit-
learn library with default parameters [27].

MOA prediction: As shown in Fig. 1b, 83 MOA prediction models with high AUROC 
were used for quick MOA prediction. Users can select a molecule from L1000 platform 
or upload the CSV or TXT format file with expression data computed into z-scores, and 
the top10 predicted MOAs will be returned by computing the signatures’ average prob-
abilities for each MOAs.

GPAR serves as a better similarity measure

For calculating drug-drug similarities, though GSEA is a widely used method, we dem-
onstrate the GPAR outperform GSEA by calculating AUROC of recovering 103 MOAs, 
as shown in Fig. 1c, Additional file 1: Table S1 and Fig. S3. The average AUROC of GPAR 
(average AUROC = 0.73) was significantly (Wilcoxon matched-pairs signed rank test, 
p < 0.0001) higher than that of GSEA method (average AUROC = 0.61), showing the reli-
ability of GPAR tool. Additionally, we also compared our work to Aliper’s work [28], not-
ing that GPAR also has a better performance (Additional file 1: Fig. S5).

In order to benchmark DNN models with machine learning approach, we then com-
pared DNN to three machine learning approaches including K-Nearest Neighbor 
(KNN), Random Forest (RF) and Naïve Bayes (NB) implemented in scikit-learn library 
with default parameters [27], as shown in Fig. Additional file 1: S6.A–B, the DNN also 
has achieved the highest performance.

GPAR can be used to evaluate cell influence in model performance

One of the important factors that influence training process is the cell sources of expres-
sion data because of the specific distribution of drug targets [29]. Using different cell 
sourced expression data may got totally different model performances in discovering 
drug MOAs. For example, when training estrogen receptor (ER) agonist models, the 
prediction model trained with signatures from MCF7 and HT29 cells (ER expressing) 
achieved a higher AUROC compared to that trained with signatures from PC3 and A549 
cells (no ER expressing) (Fig.  1d). Users can define the option to select different cells 
according to their needs with GPAR.

Case study

Signatures of different MOAs have several differences: (1) some MOAs, especially 
most of the anti-cancer or cytotoxic property, have reproducible signatures and 
strong signature strength that can induce a large number of differentially expressed 
genes, and often companied with obvious phenotypic change such as apoptosis, 
whereas some MOAs have relatively mild properties and low transcript signals, such 
as serotonin transporter inhibitors. (2) Not all drugs with shared MOA may be highly 
consistent at transcriptome level, because some MOAs cannot be reflected at human 
cell transcriptome level [20] (e.g. anti-virus/bacteria), Gonçalves et al have systemi-
cally presented many diffculties in MOA researches, noting that not all drug are sig-
nificantly correlated to nominal target gene perturbations [11], and it is therefore 
necessary to identify whether and the concerned MOAs are directly related to gene 
expression signatures or not. (3) For most of MOAs, their signatures change with cell 
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types, time points and dosages, but there are still small parts of MOAs (e.g. Na+/
K+_ATPase inhibitors) or toxic signatures [19] that were robust to those attributes. 
Therefore, difficulties in training different MOA prediction models are not equal. 
Generally, the MOAs with strong transcription signal, exhibit highly consistent signa-
tures and the robustness to experimental attributes could be easily predicted by either 
GSEA (or any other widely used methods) or GPAR method. But our results showed 
that, for one, GPAR can be equal to or even outperform GSEA when predicting those 
easily trained MOAs. Besides, GPAR can still have good performance when predict-
ing some MOAs whose signatures are inconsistent among differeent cell types, time 
points and pertubagen dosages.

“Na+/K+_ATPase inhibitors” is one of the easiest prediction models because 
cardiac glycosides are cytotoxic molecules which can induced significant pheno-
typic variations, and therefore usually have very similar and reproducible transcrip-
tional profiles. Both GSEA and GPAR can achieve high performance. For example, 
when using digoxin as the only “positive” drug, the AUROC of GSEA was 1, simi-
larly, as shown in Fig. 2, GPAR reached AUROC = 0.99, and the top10 predicted drugs 
included 5 known Na+/K+_ATPase inhibitors.

For most MOAs with mild drug properties, GPAR also outperform GSEA. For 
example, serotonin transporter inhibitors are a class of antidepressants that mainly 
are targeted on central neural systems. When acting on cancer cell lines, seroto-
nin transporter inhibitors usually have weak transcript signals and cell type vari-
ated signatures. We collect 11 known drugs: escitalopram, paroxetine, fluoxetine, 
clomipramine, sertraline, imipramine, milnacipran, doxepin, duloxetine, fluvox-
amine and venlafaxine for training and predicting. Within the results, other known 

Fig. 2  L1000FWD visualization data shows a trained Na+/K+-ATPase inhibitor Digoxin (red points), its mean 
AUROC = 0.99, and correspondingly predicted top10 most similar drugs (yellow points). 5 of the top10 
predicted drugs (red) are known Na+/K+-ATPase inhibitor
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antidepressant drugs such as tetrindole, nortriptyline, lofepramine, indatraline that 
were not contained in training set were ranked in the top30. As shown in Fig. 3, the 
potential serotonin antagonist activities of Top10 predicted compounds, such as flu-
phenazine [30], perphenazine [31], were also reported. The AUROC of “serotonin 
transporter inhibitors” GPAR model was 0.85, whereas AUROC of GSEA was 0.75.

Some MOAs, such as “NF-kB inhibitors”, were relatively difficult to be trained and 
predicted. As shown in Fig. 4, the signature points of NF-kB inhibitors were scattered 
in the visualization map, which means the signatures of NF-kB inhibitors generated 
from different cell types/dosages/time points are highly variant so that GSEA method 
only achieved AUROC = 0.66, while GPAR still achieved AUROC = 0.84. For the out-
put results, there were 3 reported potential NF-kB inhibitors, e.g., Piperlongumine [32], 
radicicol [33], and MG-132 [34] in the top ranks.

In addition to drug set of general MOA types, high-throughput screening results (or 
user interested multiple drugs) are available. In recent days, an ongoing epidemic of 
coronavirus disease 2019 (COVID-19), caused by the new coronavirus, has caused a big 
problem worldwide. Although the World Health Organization has stated that prelimi-
nary identification of a novel virus in a short period of time is a notable achievement 
and demonstrates China’s increased capacity to manage new outbreaks, unfortunately 
the COVID-19 patients are suffering from the shortage of effective therapeutic drugs. 
Researchers are already trying antivirals widely used to treat HIV or other coronavirus, 
in hopes that they might be able to fight the COVID-19 as well. Many research insti-
tutes have devoted every effort to repurposing the potential old drugs for anti-virus 
through computation, while most of them are based on the docking approach, searching 

Fig. 3  The output of serotonin transporter inhibitors includes the list of high score predicted compounds 
that may share the same MOA, visualization of trained 11 known serotonin transporter inhibitors (red) and 
top predicted potential drugs (yellow) and the AUROC of cross validation, its mean AUROC = 0.85. two of the 
top10 predicted drugs (red) are reported serotonin transporter inhibitors
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molecules that can minimize the binding energy with the new coronavirus targets such 
as spike protein or main protease. We showed that the GPAR here is also an efficient 
approach for searching similar drugs. Take Chloroquine as an example, it is a widely 
used lysosomotropic anti-malarial and autoimmune disease drug, which is one of the 
reported drugs that may inhibit COVID-19 in vitro [35], despite it has been shown to 
result in no clinical benefit in hospitalised patients by the large scale recovery trial as 
well as being no better than placebo at preventing symptomatic infection in another 
recent large-scale study [36]. Chloroquine was used as training set to train the predic-
tion model and make further prediction. Two Nonsteroidal Antiinflammatory Drugs 
(NSAIDs), Oxaprozin and Niflumic acid, appeared among the Top10, sharing the same 
indication with Chloroquine for autoimmune diseases. More reliable calculated exam-
ples and comparisons could be found on the GPAR website and supporting Additional 
file 1: Tables S1–S2 in the supporting file.

Fig. 4  L1000FWD visualization data shows multiple trained NF-kB inhibitors (red points), and 
correspondingly predicted top30 potential positive compounds (yellow points), its mean AUROC = 0.87. 
Three molecules in table (red) are reported NF-kB inhibitors
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Discussions
In summary, we developed the GPAR method and online tool to connect MOAs with 
gene expression signatures, providing a simple and effective deep learning-based mod-
eling and prediction method for drug researchers. From our results of AUROC and case 
study, GPAR showed high accuracy in most activity prediction. This online tool makes 
it easy for biologists and pharmarcologists to apply deep learning in modeling drug 
MOAs with expression profiles. The application scope is not limited to the pre-defined 
103 kinds of drug MOAs, and users can even train their own model re-defined for activ-
ity screening. However, it is also found that the performance of GPAR in some activity 
prediction is not so good for some MOA predictions, and it may be due to the relativly 
small samples, the limitations of cell types (lack of relevant drug targets) or the drug 
property cannot be reflected at the transcriptome level [1, 20, 29]. The understanding 
of these problems is not intuitive due to the black box feature of deep learning, which 
should need more in-depth study.

Generally, full transcriptome data may be more conducive for machine learning. But 
L1000 expression data only directly measured 978 representative “Landmark genes”, 
which were selected from centroids of commonly co-regulated transcripts clusters in 
large scale microarrays analysis [20]; the rest ~ 10,000 genes expressions were obtained 
by computational inference [23], and hence inputting more genes may not be more 
informative. Besides, considering the cost in computational resource and “Curse of 
dimensionality” problems [37], it would be more easily for modeling the data with the 
smaller feature space. Therefore, the expression profiles of “Landmark genes” are more 
suitable for machine learning. Interestingly, we also noted that the models can achieve 
relatively high performance when leveraging only 100 Landmark genes (Additional 
file  1: Fig. S1), we then applied the feature selection algorithm of scikit-learn package 
[27] along with logistic regression to select 100 most important genes for each of 103 
models from Landmark genes, and we noted that the selected genes of some MOAs 
were directly (HSP, PARP and HMGCR inhibitors) or functionally (MEK, MTOR inhibi-
tors) related to their drugs targets (Additional file 1: Table S2), but there were still many 
MOAs that cannot related to the drug target. Nevertheless, although only leveraging 
978 genes, we think the GPAR is still compatible with microarray-based gene expression 
dataset, For example, we have predicted the MOA of Traditional Chineses Medicine 
based on an independent dataset [38], containing more than 10,000+ gene expressions 
of 102 TCMs. In this research, Lv et al. validated that Nitidine chloride has the property 
of Topoisomerase Inhibition. When we queried Nitidine profiles (z-scores) in GPAR, 
the predictions is shown in Additional file  1: Table  S3, which is consistent with their 
findings.

Here we note that the number of signatures among different cell lines are imbal-
anced [20], that is to say, there may be only few replicate experiments on some cell lines 
whereas dozens more on another. Besides, most signatures are generated from 9 out 
of 72 cell lines, and those imbalanced data might lead to bias on cell types. The aim of 
L1000 bioassay replicate is to measure the signature quality by consistency evaluation [9, 
20], which provides a basis for us to select the high quality signatures and treat all 72 cell 
types more equally. So we reduced the sample size by selecting only one representative 
signature in each cell type for each molecule, and the reduced samples could ensure the 
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quality of input data and meanwhile reduce the bias of sample numbers of different cell 
types.

More accurate taxonomy is benifical for identifying drugs with potential new targets 
or MOAs [39], here we use MOAs instead of a drug itself as training set label to avoid 
that the prediction model may not predict molecules with expected property, consider-
ing most drugs have more than one properties (many of them have not been identified), 
and prior knowledge based label can include multiple drugs [21], which is more condu-
cive to extract the common characteristics of their signatures. The quality of training set 
labels is also important for supervised learning. Theoretically, any class label determined 
by prior knowledge about perturbagen, such as drug indications and side effects [16, 17], 
are available. But we think MOAs, especially the drug property at either targets or sign-
aling pathways level, are more suitable as “positive set” labels. Because these drug prop-
erties such as therapeutics are too rough for drug classification, the mechanisms and 
expression profiles of drugs sharing same therapeutics may be quite different. For exam-
ple, NHC proposed drugs for COVID-19 treatment have different mechanisms (anti-
virus, anti-cytokine storm), and the AUROC for this model was only 0.63 ± 0.04. On the 
contrary, MOAs are more directly related to transcriptome data, and the drugs sharing 
the same MOAs might also show more similarities at transcriptome level. In order to 
further improve the quality of training set, we filter the “positive” drug set by repeat-
ing cross validation process to exclude the drugs whose signatures significantly decrease 
the mean AUROC. For example, six molecules were originally annotated “Heat Shock 
Proteins (HSP) inhibitor” including VER-155008, alvespimycin, geldanamycin, PU-H71, 
tanespimycin, BIIB021; but cross validation result showed that VER-155008 significantly 
decreased the AUROC from average 0.9 to 0.7. It is further found that VER-155008 is the 
only molecule among the training set that is targeted on HSP70 (a subtype of HSP recep-
tor) whereas the others targeted on HSP90, showing that cross validation can get rid of 
some training sets that may be mislabeled.

Conclusions
On the basis of GPAR method, more future additional signatures incorporating a 
broader taxonomic representation of drug perturbagens and cell-type diversity, together 
with in vivo data, can be incorporated into the GPAR models to improve MOA charac-
terization and feature identification. A larger scale of transcriptome resource combing 
with heterogeneous dataset [39] will enable MOAs to be modeled with higher accuracy, 
sensitivity and reliability, and cover more subtypes of drug targets and cell types. GPAR 
could lead to unexpected connections and generate biological hypotheses for in-depth 
experimental validations, which could eventually facilitate the understanding of MOAs 
of new molecules or side effect of approved drugs. In conclusion, large scale perturbagen 
data serves good resources for machine learning, and GPAR provides a more powerful 
connection of expression signatures and MOAs, which could get the high accuracy in 
modeling MOAs and querying signatures, and facilitate drug repurposing opportunities.
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