Table 22.
Word Embedding Model | Classification Model | FPR | FNR |
---|---|---|---|
TF-IDF (using unigrams and bigrams) | Neural Network | 0.04684 | 0.0742 |
BOW (Bag of words) | Neural Network | 0.1040 | 0.0862 |
Word2Vec | Neural Network | 0.1320 | 0.3416 |
GloVe | MNB | 0.1151 | 0.0752 |
GloVe | DT | 0.3956 | 0.1303 |
GloVe | RF | 0.3458 | 0.2259 |
GloVe | KNN | 0.7299 | 0.1931 |
BERT | MNB | 0.0985 | 0.0789 |
BERT | DT | 0.1660 | 0.2429 |
BERT | RF | 0.1245 | 0.3318 |
BERT | KNN | 0.4037 | 0.4110 |
GloVe | CNN | 0.0989 | 0.0776 |
GloVe | LSTM | 0.0080 | 0.0482 |
BERT | CNN | 0.0590 | 0.0872 |
BERT | LSTM | 0.0077 | 0.0451 |
BERT | FakeBERT | 0.0160 | 0.0059 |