Skip to main content
. 2021 Jan 6;22:19. doi: 10.1186/s12864-020-07319-x

Table 4.

Prediction performance in soybean for five traits of eight methods in terms of Pearson’s correlation (taken from Liu et al., 2019); A). Methods dualCNN, deepGS and singleCNN are different versions of CNN. Prediction performance in terms of Average Spearman Correlation (ASC) and mean square error (MSE) with genotype × environment interaction (I) and without genotype × environment interaction (WI) in a wheat dataset for trait Fusarium head blight (FHB) severity data (Montesinos-López et al., 2020; B)

A Method Yield Protein Oil Moisture Height
dualCNN 0.452 0.619 0.668 0.463 0.615
DeepGS 0.391 0.506 0.531 0.31 0.452
Dense 0.449 0.603 0.657 0.427 0.612
singleCNN 0.463 0.573 0.627 0.449 0.565
rrBLUP 0.412 0.392 0.39 0.413 0.458
BRR 0.422 0.392 0.39 0.413 0.458
Bayes A 0.419 0.393 0.388 0.415 0.458
BL 0.419 0.394 0.388 0.416 0.458
B Interaction Type ASC SE MSE SE
I BRR 0.584 0.012 3.015 0.169
I NDNN 0.626 0.013 1.891 0.088
I GP 0.596 0.01 2.457 0.121
I PDNN 0.627 0.012 1.912 0.073
WI BRR 0.436 0.018 4.481 0.25
WI NDNN 0.635 0.013 1.872 0.084
WI GP 0.431 0.018 3.418 0.186
WI PDNN 0.584 0.014 2.853 0.412