Table 4.
Organization | ACC_M | AUC_M | SE_M | SP_M | Balance accuracy | Overall score |
---|---|---|---|---|---|---|
eVida (proposed method M6) | 0.904 | 0.872 | 0.820 | 0.925 | 0.872 | 0.848 |
RECOD Titans | 0.872 | 0.874 | 0.547 | 0.950 | 0.749 | 0.792 |
Popleyi | 0.858 | 0.870 | 0.427 | 0.963 | 0.695 | 0.762 |
Kazuhisa Matsunaga | 0.828 | 0.868 | 0.735 | 0.851 | 0.793 | 0.798 |
Monty python | 0.823 | 0.856 | 0.103 | 0.998 | 0.551 | 0.687 |
T D | 0.845 | 0.836 | 0.350 | 0.965 | 0.658 | 0.726 |
Xulei Yang | 0.830 | 0.830 | 0.436 | 0.925 | 0.681 | 0.708 |
Rafael Sousa | 0.827 | 0.805 | 0.521 | 0.901 | 0.711 | 0.727 |
x j | 0.843 | 0.804 | 0.376 | 0.957 | 0.667 | 0.710 |
Cristina Vasconcelos | 0.830 | 0.791 | 0.171 | 0.990 | 0.581 | 0.660 |
Cristina Vasconcelos | 0.825 | 0.789 | 0.171 | 0.983 | 0.577 | 0.658 |
Euijoon Ahn | 0.805 | 0.786 | 0.009 | 0.998 | 0.504 | 0.614 |
Balázs Harangi | 0.828 | 0.783 | 0.470 | 0.915 | 0.693 | 0.701 |
Matt Berseth | 0.822 | 0.782 | 0.222 | 0.967 | 0.595 | 0.652 |
INESC Tecnalia | 0.480 | 0.765 | 0.906 | 0.377 | 0.642 | 0.601 |
Dylan Shen | 0.832 | 0.759 | 0.308 | 0.959 | 0.634 | 0.663 |
Vic Lee | 0.832 | 0.757 | 0.308 | 0.959 | 0.634 | 0.665 |
Masih Mahbod | 0.732 | 0.715 | 0.402 | 0.812 | 0.607 | 0.610 |
Dennis Murphree | 0.760 | 0.684 | 0.231 | 0.888 | 0.560 | 0.574 |
Hao Chang | 0.770 | 0.636 | 0.103 | 0.932 | 0.518 | 0.541 |
Jaisakthi S.M | 0.748 | 0.623 | 0.419 | 0.828 | 0.624 | 0.614 |
Wenhao Zhang | 0.805 | 0.500 | 0.000 | 1.000 | 0.500 | 0.581 |
Wiselin Jiji | 0.503 | 0.495 | 0.470 | 0.511 | 0.491 | 0.433 |
Yanzhi Song | 0.723 | 0.475 | 0.068 | 0.882 | 0.475 | 0.467 |
Bold values indicate the most relevant and representatives in this rearch work
ACC accuracy, AUC area under the RC curve, SE_M sensitivity, SP_M specificity for melanoma detection