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This research paper aims at studying the impact of lockdown on the dynamics of novel
Corona Virus Disease (COVID-19) emerged in Wuhan city of China in December 2019.
Perceiving the pandemic situation throughout the world, Government of India restricted
international passenger traffic through land check post (Liang, 2020) and imposed com-
plete lockdown in the country on 24 March 2020. To study the impact of lockdown on
disease dynamics we consider a three-dimensional mathematical model using nonlinear
ordinary differential equations. The proposed model has been studied using stability
theory of nonlinear ordinary differential equations. Basic reproduction ratio is computed
and significant parameters responsible to keep basic reproduction ratio less than one are
identified. The study reveals that disease vanishes from the system only if complete
lockdown is imposed otherwise disease will always persist in the population. However,
disease can be kept under control by implementing contact tracing and quarantine mea-
sures as well along with lockdown if lockdown is imposed partially.

© 2021 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The novel Corona Virus Disease (COVID-19) was first manifested in Wuhan, China in late 2019 that has travelled across
different countries and spread at quite a fast pace by human to human infection (Bhola et al., 2020; Binti et al., 2020; Li et al.,
2020). Within a very short span of time the disease has spread in major part of the world leading to large number of deaths.
Migration of individuals from China to other parts of world played a critical role in the spread of infectious disease COVID-19.
China could control the disease by introducing lockdown in Wuhan since, it was only option available due to the absence of
targeted drug and vaccine against the virus. This pandemic led the Government of India to impose complete lockdown in the
country on March 24, 2020 and is still in lockdown stage as of May 17, 2020. Literatures report that lockdown measure is
significant because it has been able to reduce the transmission of COVID-19 by as much as 84 percent as in France (Barnett &
Walker, 2008). Principle feature of lockdown is reduction of immigration of population to nearly zero. It is quite evident from
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the past that immigration of population plays a significant role in the spread of infectious diseases like flu. It has been re-
ported that immigration has not only played roles in introducing infections into native populations but also in changing the
incidence of infections, and in increasing the prospects of local transmission (Spiteri et al., 2020). Immigration of infective
population from COVID-19 region has posed risk to the local population and increased the geographic range of the disease at
such a fast pace that it spread in 28 countries by 21 February 2020 (Eunha, 2006). This article focuses on the impact of
lockdown as preventive measure through mathematical modeling approach. Modeling the effect of lockdown to prevent the
spread of disease is a complex task however we have modelled it by introducing the immigration term in the model and
comparing it with the model without immigration term. Contact tracing, immigration of individual has been taken as one of
the most important features in studying the disease dynamics by some of the mathematical modellers given in (Day et al.,
2006; Kwok et al., 2019; Ndairou et al., 2020; Wang, 2004; Wang & Zhao, 2006; Yang et al., 2009). We have introduced
immigration of susceptible individuals along with a fraction of infective individuals directly in the infective compartment and
compared it with the model without immigration. In addition, we have also considered contact tracing and quarantine as
other preventive measures in our mathematical model. Quarantine is one of the live options during disease outbreaks. Fraser
et al. in (Fraser et al., 2004), shows that the quarantine is an effective measure if asymptomatic infection are responsible for a
large number of infections as seen in COVID-19 cases. The author further concluded in his study on SARS that its outbreak
could be controlled effectively by sufficient isolation of symptomatic individuals. On the other hand, Chen et al. (Chen et al.,
2006) reported that even with less efficient contact tracing an outbreak of SARS with effective isolation of symptomatic
patients is sufficient to control SARS outbreak. Thus, objective of this paper is to study the combined effect of lockdown,
contact tracing and quarantine on the COVID-19 dynamics. These measures are important since there is no specific antiviral
treatment up to date hence prevention is the only way to keep the disease under control. Mathematical modeling can help by
evaluating the effectiveness of these preventive measures in the early phase of epidemics of new emerging outbreak in the
future (Jia et al., 2020).

To the best of our knowledge combined effect of all these measures, lockdown, contact tracing and quarantine has not
been considered in any of the previous mathematical model on COVID-19. Our research paper is organised as follows: In
section 2 mathematical model is discussed, section 3 represents boundedness of the system. In section 4 model dynamics
without lockdown effect is studied followed by section 5 manifesting the lockdown effect in the system. In section 6, nu-
merical analysis is performed and paper is concluded in result and discussion section 7.
2. Mathematical model

We consider a three-dimensional model with susceptible population S(t), infective population I(t) and quarantined
population Q(t). It is assumed that the population is homogeneously mixed and disease spreads via the direct contact be-
tween susceptible and infective individuals as well by immigration of individuals in susceptible class and in infective class.
Thus, we have an SIQmodel with immigration. LetN(t) be the total population at any time t in the region under consideration,
which is the sum of three subpopulation. Susceptible population is entering in the system at the constant rate A and by
immigration (1 �q)m. Whereas fraction qm is entering directly to the infective class with the assumption that a fraction of
immigrants are infective are carrier of virus. We have studied the impact of lockdown in the model by taking immigration
term as zero because immigration is restricted to a large extent during lockdownperiod. Moreover, by contact tracing, some of
the infective individuals are quarantined and only fraction of the infective’s are entering into the class of infective and
spreading infection among the susceptible. We model here the average effect of contact-tracing based strategy (Aparicio &
Hernandez, 2006). Let k be the rate of contact tracing of individuals so that a fraction (1 � k) are responsible for spreading
infection and rest are quarantined. We have assumed Holling type-II functional response to model the interaction between
susceptible and infective populations, where a and h are the infection catching and handling time of the virus from the
infective individual to the susceptible individuals. m is the natural mortality rate of population in each compartment, d1 and d2
are the recovery rate of the infective and quarantined populationwhereas a1 and a2 are the disease related death rates of the
infective and quarantined compartments respectively. Infected individuals are assumed to be quarantined at the rate s. Thus,
with these assumptions we have formulated a three dimensional epidemiological model taking susceptible S(t), infective I(t)
and quarantined Q(t) population as system variables. A schematic flow diagram is represented in Fig. 1 to understand the
dynamics of COVID-19.

The model equations with immigration are given by

dS
dt

¼ A� bSI
aþ hI

� mSþ ð1� qÞm; (1)

dI
dt

¼ ð1� kÞbSI
aþ hI

� mI � d1I � sI � a1I þ qm; (2)
245



Fig. 1. Schematic flow diagram of the SIQ COVID-19 model.
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dQ
dt

¼ kbSI
aþ hI

þ sI � mQ � d2Q � a2Q ; (3)

with initial conditions S(0) > 0, I(0) � 0 Q(0) � 0.
Description of parameters is defined in Table 1.
3. Boundedness of the system

In the following lemma, we state the bounds of system variables which is further used to prove the analytic results.
Boundedness of the systemmay be interpreted as a natural restriction to indefinite growth of infective population because of
various constraints either due to natural conditions or due to preventive habits acquired by the population to keep themselves
safe from the disease. We will show that the solutions of system are bounded to ensure the biological validity of the model.

Lemma 1. The set U ¼ fðS; I;QÞ : 0 � N ¼ Sþ I þ Q � Nmg is the region of attraction for all solutions initiating in the interior
of the positive octant, where Nm ¼ Aþm

m .

Proof Let (S, I, Q) be the solution with positive initial values (S0, I0, Q0). From system of equations , we get

dN
dt

¼ A� mN þm� ðd1 þa1ÞI � ðd2 þa2ÞQ ;
Table 1
Description of parameters.

Parameter Description

A recruitment rate
a half saturation constant
h positive constant
b transmission rate of infection
m natural death rate
m number of migrants
q rate of infected migrants
k rate of contact tracing
d1 rate of recovery of infective population
d2 rate of recovery of quarantined population
s transition rate from infective to quarantined population
a1 disease related death rate of infective population
a2 disease related death rate of quarantined population
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dN
dt

� A� mN þm:
According to comparison principle, it follows that Nm ¼ Aþm
m . This completes the Proof.
4. Model dynamics without lockdown effect

When ms0 then the model (1)e(3) has no disease-free equilibrium point, only pandemic equilibrium exists. Thus, when
immigration of population is allowed in the system and a fraction of them are infective; disease cannot be vanished to zero,
although attempts may be made to control the disease.

4.1. Equilibrium analysis

In a dynamical system an equilibrium point is a state of the system that does not change with time. Thus, if the system
starts at an equilibrium point, the state will remain at the equilibrium forever. We are interested in finding the equilibrium
state of systemwhen it is free from disease that is, disease free equilibrium point and the equilibrium state of persistence of
disease, the endemic/pandemic equilibrium point. For the system of equations (1)e(3), only pandemic equilibrium Em(Sm, Im,
Qm) exists. The values of Sm, Im and Qm for the pandemic equilibrium are

Sm ¼ Aþð1�qÞmðaþhImÞ
maþðbþmhÞIm ; Qm ¼ kbðAþð1�qÞmÞIm

ðmþd2þa2ÞðmaþðbþmhÞImÞ þ sIm
ðmþd2þa2Þ and Im is the root of the quadratic equation (4) with R0 ¼

ð1�kÞbA
amðmþd1þsþa1Þ

ðImÞ2 �
�

qm
mþ d1 þ sþ a1

þ ðR0 � 1Þma
ðbþ mhÞ

�
Im � maqm

mþ d1 þ sþ a1
¼ 0; (4)

which guarantees that unique positive equilibrium point Em exist iff R0 > 1.

4.2. Local stability analysis of pandemic equilibrium point

Local stability analysis of equilibrium points gives an insight into the impact of small perturbations in the equilibrium state
of the system. To study the stability of pandemic equilibrium point, we linearize the system about the arbitrary equilibrium
points Em(Sm, Im, Qm) and obtain the corresponding Jacobian matrix as given by

JEm ¼
2
4 b11 b12 0
b21 b22 0
b31 b32 b33

3
5;
where b11 ¼ � bIm
ðaþhImÞ � m; b12 ¼ � abSm

ðaþhImÞ2; b21 ¼ ð1�kÞbIm
aþhIm ; b22 ¼ að1�kÞbSm

ðaþhImÞ2 � m� d1 � s� a1; b31 ¼ kbIm
aþhIm; b32 ¼ akbSm

ðaþhImÞ2 þ s;

b33 ¼ � m� d2 � a2.

Proposition. Equilibrium point Em(Sm, Im, Qm) of the system (1)-(3) is locally asymptotically stable if (b11 þ b22 < 0).
Proof: From the Jacobean matrix JEm we observe that the eigenvalues of Em(Sm, Im, Qm) are given by l1 ¼�(mþ d2 þ a2) < 0

and other two eigenvalues l2 and l2 are the roots of the quadratic equation

l2 � ðb11 þ b22Þlþ ðb11b22 � b12b21Þ ¼ 0:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

q

l2;3 ¼ ðb11 þ b22Þ± ðb11 � b22Þ þ 4ðb12b21Þ

2
:

Thus, the equilibrium Emwill be locally asymptotically stable if (b11 þ b22) < 0, which is obvious from the expression of b11
and b22. Since both of them are negative if and only if pandemic equilibrium state of infective population is positive and
equation (4) states that infective population is positive if and only if R0 > 1. Thus, we may conclude that the pandemic
equilibrium point is locally asymptotically stable if R0 > 1. Biologically it may be interpreted by the statement that the system
will return back to the pandemic equilibrium point and stays close to it when number of secondary infections produced by a
single infective during his complete infectious period is more than one.
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4.3. Persistence of the model

Here in this section we found persistence of the disease. The word ‘Persistence’ stands for the survival of each population
in future time. We study persistence of the system to determine the conditions under which a disease persists in the system.
Persistence of the model (1)e(3) is proved using the following Lemma.

Lemma 2. Assume that ðm þ d1 þ s þ a1Þ> ð1�kÞbSmin
ðaþhNmÞ , here Nm is upper bound of the populations S, I, Q respectively are always

positive; the system of equations (1)e(3) persists.
Proof From first equation (1), we have

dS
dt

� Aþ ð1� qÞm� ðbNm þmÞS;

using boundedness and comparison principle, we have

Smin ¼ Aþ ð1� qÞm
bNm þ m

;

Smin is always positive. From equation (2), we have

dI
dt

� ð1� kÞbSminI
aþ hNm

� ðmþ d1 þ sþa1ÞI þ qm;

dI
dt

� qm�
��

mþ d1 þsþa1Þ �
ð1� kÞbSmin

aþ hNm

�
I;

Again, using system boundedness and comparison principle

Imin ¼ qm

ðmþ d1 þ sþ a1Þ � ð1�kÞbSmin
aþhNm

;

with condition ðm þ d1 þ s þ a1Þ> ð1�kÞbSmin
aþhNm

. Imin always remains positive. From the last equation (3) of the system, we get

dQ
dt

� kbSminImin

aþ hNm
þ sImin � ðmþ d2 þa2ÞQ ;

Again using the comparison principle,

Qmin ¼
kbSminImin
aþhNm

þ sImin

ðmþ d2 þ a2Þ
;

Qmin remains always positive. This completes the proof of the Lemma.
5. Model dynamics with lockdown effect

To study the impact of lockdown effect, we study the model (1)e(3) form¼ 0, that is when immigration of the population
in the system is strictly prohibited.

In this case, the model reduces to the following system of equations (5)e(7)

dS
dt

¼ A� bSI
aþ hI

� mS; (5)

dI
dt

¼ ð1� kÞbSI
aþ hI

� mI � d1I � sI � a1I; (6)

dQ
dt

¼ kbSI
aþ hI

þ sI � mQ � d2Q � a2Q ; (7)

with initial conditions S(0) > 0, I(0) � 0 and Q(0) � 0.
248



A.S. Bhadauria, R. Pathak and M. Chaudhary Infectious Disease Modelling 6 (2021) 244e257
5.1. Basic reproduction number

Basic Reproduction Number (Brauer & Castillo, 2001; Chavez et al., 2002; Driessche & Watmough, 2002; Nyabadza &
Hove-Musekwa, 2010) is a threshold number that determines number of secondary infections produced by an infective in-
dividual during his or her whole infectious period in a population in which every individual is susceptible. We determine
basic reproduction number using next generationmatrix approach (Driessche&Watmough, 2002). The decomposition of the
model into components R1 and R2 leads to system (5)-(7)of the form

X ¼ R1 � R2;

where
R1 ¼

2
666664

ð1� kÞbSI
aþ hI

kbSI
aþ hI

0

3
777775;

2
mI þ d1I þ sI þ a1I

3

R2 ¼ 4mQ þ d2Q þ a2Q � sI

mS� A
5

and
X ¼
�
dI
dt
;
dQ
dt

;
dS
dt

�

Since, the infected compartments are I and Q, at the disease free equilibrium point, we define

~R1 ¼
"
vðR1Þi
vxj

#
;

and
~R2 ¼
"
vðR2Þi
vxj

#

for 1 � i, j � 2.
~R1 ¼

2
664
ð1� kÞbA

am
0

kbA
am

0

3
775;

~
�
mþ d1 þ sþ a10� s

�

R2 ¼

mþ d2 þ a2
Note that, ~R1 is non negative and ~R2 is a non singular matrix with ~R2
�1

as non-negative and ~R1 ~R2
�1

as non negativematrix;
~R1 ~R2

�1
is the next generation matrix. In this case if

~R1
~R2

�1 ¼

2
664
ð1� kÞbA

am
0

kbA
am

0

3
775 1
ðmþ d2 þ a2Þ

1
ðmþ d1 þ sþ a1Þ

�
mþ d2 þ a20� s

mþ d1 þ sþ a1

�
;

¼ 1
ðmþ d2 þ a2Þðmþ d1 þ sþ a1Þ

2
64
mþ d2 þ a2ð1� kÞbA 0

kbAðmþ d2 þ a2Þ
am

0

3
75

then the spectral eigenvalue of matrix is l ¼ ð1�kÞbA . Hence, Basic reproduction number is given by

amðmþd1þsþa1Þ
249
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R0 ¼ ð1� kÞbA
amðmþ d1 þ sþ a1Þ

:

From the mathematical expression of basic reproduction ratio we observe that it is directly proportional to the susceptible
population at disease free state A

m , infectious period
1

ðmþd1þsþa1Þ and transmission rate of infection b. Alongwith these terms it is

inversely proportional to rate of contact tracing k and half saturation constant a. Thus, spread of disease can be controlled by
keeping a check on these parameter values.

5.2. Sensitivity analysis of basic reproduction number R0

Based on each of the parameters of R0, sensitivity analysis is performed to check the sensitivity of the basic reproduction
number (Arriola & Hyman, 2003; Koonprasert & Chananngam, 2017). In order to reduce the effect of corona virus, it is
necessary to control the parameter values tomake R0 < 1.We are therefore interested in finding the rate of change of R0 as the
parameter values are changed. The rate of change of R0 for a change in value of parameter h can be estimated from SI½h� ¼ h

R0
�

vR0
vh . The normalized sensitivity indices of the reproduction number with respect to parameter k, a, m, d1, s, a1 are given by

SI½k� ¼ � k
ð1� kÞ<1;

SI½a� ¼ �1<1;

SI½d1� ¼ � d1
ðmþ d1 þ sþ a1Þ

<1;

SI½s� ¼ � s

ðmþ d1 þ sþ a1Þ
<1;

SI½a1� ¼ � a1
ðmþ d1 þ sþ a1Þ

<1;

SI½b� ¼ 1;

SI½m� ¼ �1� m

ðmþ d1 þ sþ a1Þ
<1;

from the above calculations it is obvious that R0 is mainly sensitive to alters in b. The value of R0 will be enhanced if we raise
the value of b and rest of indices are negative i.e., the value of R0 decreases as k, a, d1, s, a1 and m increase. Thus, basic
reproduction number increases proportionally with the increase in rate of transmission of infection and decreases with the
rate of contact tracing, half saturation constant, recovery rate of infective population, rate of transition from infective to
quarantined population, disease related death rate of infective population and natural death rate of each population.

5.3. Equilibrium analysis of the steady states and stability of equilibriums

System (5)e(7) has two equilibrium points, one is the Disease free equilibrium point and another is pandemic equilibrium
point.

Theorem. The SIQ model (5)-(7) has a unique Disease free equilibrium E0

�
A
m;0;0

�
for all parameter values. As well as the

system under consideration has also a unique pandemic equilibrium ÊðŜ; Î; Q̂Þ under the condition R0 > 1.

Proof: Pandemic equilibrium point is given by ÊðŜ; Î; Q̂Þ, using equations (5) and (7) we have Ŝ ¼ AðaþĥIÞ
maþðbþmhÞ̂I, and

Q̂ ¼ bÂI
ðmþd2þa2Þ½maþðbþmhÞ̂I� þ

ŝI
mþd2þa2

respectively. Next putting the value of Ŝ in equation (6), we get Î
2 � ðR0�1ÞmâI

bþmh
¼ 0. From above

equation, we get Î ¼ 0 or Î ¼ ðR0�1Þma
bþmh

. The equilibrium Ê exists if R0 > 1.
5.4. Local stability analysis

To study the stability of the different equilibrium point the corresponding Jacobian matrix is given as:
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JE ¼
2
4 a11 a12 0
a21 a22 0
a31 a32 a33

3
5;

where a11 ¼ � bI
ðaþhIÞ � m; a12 ¼ � abS

ðaþhIÞ2; a21 ¼ ð1�kÞbI
aþhI ; a22 ¼ að1�kÞbS

ðaþhIÞ2 � m� d1 � s� a1; a31 ¼ kbI
aþhI; a32 ¼ akbS

ðaþhIÞ2 þ s; a33 ¼

m� d2 � a2.

5.4.1. Local stability analysis of disease free equilibrium

Proposition. For the system of equations (5)e(7), the disease free steady state E0 is locally asymptotically stable if R0 < 1.
Proof: Eigenvalues corresponding to E0 are given by

l1 ¼ �mð<0Þ;

l2 ¼ �ðmþ d2 þa2Þð<0Þ
and

l3 ¼ ðR0 �1Þðmþ d1 þ sþa1Þ:
Thus the equilibrium E0 will be locally asymptotically stable if R0 < 1. Thus, we infer that if basic reproduction number is
less than one, disease free equilibrium point is locally asymptotically stable. It implies that when number of secondary in-
fections are less than one, a small perturbation in the disease free equilibrium state of the system always tends to move
towards the disease free state and hence disease vanishes from the system.
5.4.2. Global stability analysis of disease free equilibrium

Proposition. For the system of equations (5)e(7), the disease free steady state E0 is globally asymptotically stable in the

region R2þ of I -Q plane if R0 < 1.
Proof: For the system of equations (5)e(7), the disease free steady state E0 is globally asymptotically stable as

dI
dt

¼ ð1� kÞbSI
aþ hI

� ðmþ d1 þsþa1ÞI ¼ f1; (8)

dQ kbSI

dt

¼
aþ hI

þ sI � ðmþ d2 þa2ÞQ ¼ f2; (9)
Let us consider gðI;QÞ ¼ 1
IQ and LðI;QÞ ¼ v

vI ðgf1Þþ v
vQ ðgf2Þ. Since g(I, Q) > 0, for all I, Q > 0. So we have

LðI;QÞ ¼ v

vI

�
1
Q

ð1� kÞbS
aþ hI

�
� 1
Q
ðmþ d1 þ sþ a1Þ þ

v

vQ

�
1
Q

kbS
aþ hI

� 1
I
ðmþ d2 þ a2Þ þ s

1
Q

�

� 1
Q

ð1� kÞbSh
ðaþ hIÞ2

� 1

Q2
kbS

aþ hI
� a

1

Q2

< 0:
Clearly, L(I,Q) does not change it’s sign and is not zero identically in positive Quadrant of I � Q plane. Thus, by Bendixon-
Dulac criteria, the system has no limit cycle in the positive quadrant of I� Q plane. Hence, a disease free equilibrium is always

locally asymptotically stable when R0 < 1, and is globally stable in (I� Q) plane of the region R2þ if R0 <1. This Theorem can be
biologically interpreted as, when basic reproduction number is less than one system always tends towards the disease free
equilibrium state no matter how much large the perturbation is or fromwhatever initial state we start, systemwill approach
disease free equilibrium state and disease vanishes from the system.
5.4.3. Local stability of pandemic equilibrium

Here, in this section we found the local stability of the pandemic equilibrium point ÊðŜ; Î; Q̂Þ, where
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g1 ¼ A� bSI
aþ hI

� mS;

ð1� kÞbSI

g2 ¼

aþ hI
� mI � d1I � sI � a1I; and

kbSI

g3 ¼

aþ hI
þ sI � mQ � d2Q � a2Q :
We assume b¼ b*, as the bifurcation parameter, predominantly as it has been explained in (Cowling et al., 2015) that when
R0 ¼ 1, we have

b* ¼ amðmþ d1 þ sþ a1Þ
ð1� kÞA :
Now, the Jacobian of the system at disease free equilibrium E0 when b ¼ b* is as follows:

Jðb*Þ ¼

2
66664
�m �a1 þ d1 þ mþ s

ð1� kÞ 0

0 0 0

0 aþ kða1 þ d1 þ mþ sÞ
ð1� kÞ �a2 � d2 � m

3
77775;

the eigenvalues of the matrix are given by ð0;�m;�a2 � d2 � mÞT .
We observe that thematrix has simple zero eigenvalues, and the other eigenvalues are negative.We are nowat the stage to

apply center manifold theory (Pal et al., 2020) to analyze the dynamics of system (5)e(7). Corresponding to zero eigenvalue

the right eigenvectorw ¼ ðw1;w2;w3ÞT of the matrix is given byw1 ¼ � ða2þd2þmÞða1þd1þmþsÞ
mðka1þkd1þkmþsÞ ;w2 ¼ ða2þd2þmÞð1�kÞ

ka1þkd1þkmþs
and w3 ¼ 1.

Moreover, J(b*) has a corresponding left eigenvector v ¼ (v1, v2, v3) where v1 ¼ 0, v3 ¼ 0 with v2 free. Therefore, we have

a ¼ P3
k;i;j¼1

vkwiwj
v2gk
vxivxj

ð0;0Þ

¼ v2
X3
i;j¼1

wiwj
v2g2
vxivxj

ð0;0Þ
(10)

P3 v2g

b ¼

k;i¼1
vkwi

k

vxivb
ð0;0Þ

¼ v2
X3
i¼1

wi
v2g2
vxivb

ð0;0Þ
(11)
Substitute the values of all the second-order derivatives calculated at disease free equilibrium as well as b ¼ b*, we

obtaina ¼ 2ð1�kÞb
a w1w2v2 <0 using the value of w1, w2 and v2 ¼ 1. b ¼ v2w2ð1�kÞA

ma >0. As a < 0 and b > 0 at b ¼ b*, hence from

(Carr, 1981; Chavez et al., 2002) a transcritical bifurcation takes place at R0 ¼ 1 as well as the inimitable pandemic equilibrium
is locally asymptotically stable due to R0 > 1. Hence, the Proof. Thus, we may conclude that for a particular value of rate of
transmission of infection, basic reproduction number becomes one and at this point equilibrium state changes its nature,
when basic reproduction number is less than one, pandemic equilibrium is unstable andwhen it is greater than one pandemic
equilibrium is stable subject to a small perturbation from the pandemic equilibrium state. It implies that disease spreads
among the population when basic reproduction number is more than one.

6. Numerical simulation

In this section we have discussed the quantitative behavior of the model during lockdown in India. With and without
immigration of individuals in the country we justify the analytical findings and perform numerical simulation using MATLAB
and Mathematica softwares. Table 2, describes the parameter used to perform numerical simulation. Most of the parameters
have been taken from the previous literatures and some of them are assumed.
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Table 2
Description of parameter.

Parameter Value Reference

A 67447 person per day Mohsen et al. (2020)
a 5 Assumed
h 1 Assumed
b 2.1 � 10�8 per person per day Vega (2020)
m 5.258 � 10�5 Per day Mandal et al. (2020)
m 25000 persons Marimuthu et al. (2020)
q 0.9 per day Assumed
k 0.5 per day Assumed
d1 0.4 per day Liang (2020)
d2 0.4 per day Liang (2020)
s 0.59 per day Assumed
a1 1.78 � 10�5 per day Vega (2020)
a2 1.78 � 10�5 per day Vega (2020)
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We have calculated the equilibrium points of the systemwithout immigration when complete lockdownwas imposed by
the government. In this case system possess two equilibrium points, one is disease free equilibrium point (1.282750 � 109, 0,
0) and the other is the pandemic equilibrium point (1.28237 � 109, 14.03000, 35.59000). Basic reproduction ratio R0 is
computed and is found to be 3.80. All the conditions of local and global asymptotic stability are verified by the above set of
parameters. However, when lockdown is not imposed and immigration of individuals is allowed in the system then ourmodel
possess only one equilibrium point given by (1.32976 � 109, 22745.39525, 33564.48733). Above set of parameters satisfy the
conditions of local stability of the equilibrium point and persistence. In addition, to study the impact of various parameters on
the infective population we plotted time series graphs of infective population. Figure 2 shows the variation of infective
population with time for different number of immigrants. It is observed that infective population rise significantly with the
increase in number of immigrants. Hence it is imperative to impose complete/partial lockdown in the country to decrease the
number of infective population. In the absence of lockdown, the spread of COVID-19 cases will shoot up. From Fig. 3, we
determine the impact of transition rate of infective individuals to quarantine compartment. It is observed that as transition
rate increases number of infective individuals decrease. It implies that the rate s at which infective individuals are quaran-
tined plays a significant role in controlling the number of infective population and hence to control the disease. Fig. 4,
manifests the impact of contact tracing on the population of infective individuals. It is observed from the figure that although
number of infective individuals increase with the number of immigrants in the systemyet their population can be kept under
control by contact tracing. Hence, contact tracing and quarantine play an important role in keeping the disease under control
when government unlocks or in case of partial lockdown conditions. Fig. 5 shows variation of susceptible, infective and
quarantined population with time for different values of transmission rate of infection. From the figure we infer that as
transmission rate of infection increases infective, population rises and hence quarantined population also rises, leading to
decrease in susceptible population. In addition, we observe that it is a bifurcation parameter.

To determine the impact of various parameters on the threshold parameter Basic Reproduction number, we plot figures
depicting variation of R0 with different parameters. In Fig. 6a, b, c and d we plot the variation of R0 with rate of contact tracing
k, transmission rate of infection b, recruitment rate A, half saturation constant a respectively.
Fig. 2. Variation in infective population with no. of migrants ‘m’.
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Fig. 3. Effect of transition rate 0s0 on infective population.

Fig. 4. Effect of contact tracing ‘k0 on infective population.
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We observe that with the increase in rate of contact tracing k to 0.9, basic reproduction number reduces below one. Hence
by the practice of contact tracing disease can be controlled. Further with the increase in b, basic reproduction number
continues to rise linearly. This implies that if transmission rate of infectionwill rise continuously, wewill not be able to control
the disease and it will spread in the population. Further R0 rises with the increase in recruitment rate A. Reproduction ratio R0
decreases with the increase in half saturation constant, a. In e, f, g and h display the variation of reproduction number with
natural mortality rate m, recovery rate of infective’s d1, transition rate of infective’s to quarantined class s and disease related
death rate of infective individuals a1. It is observed that R0 decreases with the increase in these parameter values. Thus, from
this study we confer that basic reproduction ratio can be reduced and maintained below one by controlling the parameters k,
a, m, b, s, d1 and a1.

7. Result and discussion

This paper represents a nonlinear mathematical model to study the impact of lockdown on the spread of COVID-19 with
significant preventive measures adopted by the Indian government to control the spread of disease. Study of the proposed
model is divided into two phases; complete lockdown state and partial lockdown or unlocked state. Qualitative analysis of the
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Fig. 5. Effect of transmission rate b on susceptible, infective and quarantined population.
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model in both the cases is performed and basic reproduction ratio is determined through next generation matrix approach.
Nature of equilibrium points is found to be dependent significantly on the basic reproduction number. It is observed that
disease free equilibrium is both locally and globally stable if basic reproduction number is less than one and pandemic
equilibrium exists only if basic reproduction number is greater than one. However, in the case of unlocked or partial lockdown
state, diseases free equilibrium does not exist and disease will persist in the system. Thus, lockdown is most important
measure to be imposed strictly until infection dies out from the country to reduce the infection to zero. Local stability of the
pandemic equilibrium and conditions of persistence are determined in case of unlock or partial lockdown state. Further, to
justify the analytical findings, numerical simulation is performed and graphs are plotted. It is observed that infective pop-
ulation rise significantly with the increase in number of immigrants in case of partial lockdown state. However, this situation
can be kept under control by contact tracing and quarantine, since numerical simulation confirms the decrease in infective
populationwith the increase in their rate. Hence, contact tracing and quarantine play an important role is keeping the disease
under control in case of unlock or partial lockdown state. But in order to completely eradicate the disease, lockdown is most
important measure to be followed by the government. In addition, we have identified the significant parameters by which
basic reproduction number can be reduced and maintained below one. Contact tracing and half saturation constant play an
important role in keeping the basic reproduction number below one alongwith the transmission rate of infection, susceptible
population in disease free state and infectious period of an infective individual. Sensitivity analysis of the basic reproduction
number is carried out and sensitivity index of each parameter is determined. It is observed from the analysis that transmission
rate of infection is most sensitive factor in basic reproduction number and acts as transcritical bifurcation parameter. Our
study reveals that complete lockdown is mandatory for reducing the infection to zero and control in immigration of popu-
lation in the system is an outstanding step to control the spread of the disease. Still, the complete lockdown is not the ultimate
solution since it may cause financial crisis in the near future and hence it is not possible to implement complete lockdown in
highly dense country like India for a long tenure. Therefore, keeping an eye on the immigration of infective population in the
country, government must emphasize on other preventive measures too like increase in rate of contact tracing and quar-
antining the confirmed cases of COVID-19 on a regular basis until infection dies out.
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Fig. 6. Effect of different parameters on Reproduction number ‘R00 .
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