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Abstract. Modeling vector-borne diseases is best conducted when heterogeneity among interacting biotic and
abiotic processes is captured. However, the successful integration of these complex processes is difficult, hindered by a
lack of understanding of how these relationships influence disease transmission across varying scales. West Nile virus
(WNV) is themost importantmosquito-borne disease in theUnitedStates. Vectored byCulexmosquitoes andmaintained
in the environment by avian hosts, the virus can spill over into humans and horses, sometimes causing severe neuro-
invasive illness. Severalmodeling studies have evaluated drivers ofWNVdisease risk, but nearly all have done so at broad
scales and have reported mixed results of the effects of common explanatory variables. As a result, fine-scale relation-
ships with common explanatory variables, particularly climatic, socioeconomic, and human demographic, remain un-
certain across varying spatial extents. Using an interdisciplinary approach and an ongoing 12-year study of the Chicago
region, this study evaluated the factors explaining WNV disease risk at high spatiotemporal resolution, comparing the
humanWNVmodel and covariate performance across three increasing spatial extents: ultrafine, local, and county scales.
Our results demonstrate that as spatial extent increased, model performance increased. In addition, only six of the 23
assessed covariates were included in best-fit models of at least two scales. These results suggest that the mechanisms
drivingWNV ecology are scale-dependent and covariate importance increases as extent decreases. These tools may be
particularly helpful for public health, mosquito, and disease control personnel in predicting and preventing disease within
local and fine-scale jurisdictions, before spillover occurs.

INTRODUCTION

In the United States, zoonotic vector-borne diseases, no-
torious for their ubiquitous, yet apparent low, ability to inflict
disease to humans and animals for multiple years, have the
ability to suddenly erupt into seasonal outbreaks.1 Abiotic
factors, most notably those that are climatic (e.g., tempera-
ture, precipitation, and humidity), directly mediate the life-
cycles of arthropod vectors,many ofwhich are among the first
species in an ecosystem to respond to seasonal changes.2–6

Medically important mosquitoes are affected differently by
temperature and precipitation, and the responses are unique
by species. For example, in the United States, Culex pipiens
tend to thrive in temperate, wet urban environments,7,8 whereas
Culex tarsalis tend to thrive in dry, hot rural environments.9,10

Depending on the vector species, under ideal abiotic conditions,
the forces can provide conditions optimal for rapid population
growth and development, biting opportunities, and pathogen
amplification.6,11

These forces are often coupled with biotic factors that
strongly influence local- and fine-scale dynamics of disease.12

For example, a given countymay be predominantly wetland, a
habitat conducive for mosquito breeding, but the true preva-
lence of mosquito abundance can differ drastically within
particular, smaller regions. Impervious land (land which does
not allow water to pass through) is commonplace throughout
cities and townsandmayaffect theflowanddrainageofwater,
creating artificially induced inundated and/or semi-permanent
flooding events. In addition, expansions of cities, towns, and

the connectivity of humans (e.g., roads) often create patches
of natural habitat. These patches, or fragments, become dis-
rupted pieces of the landscape, facilitating fine-scale dif-
ferences in ecological systems. In the provided example, a
predominant wetland county with human disturbances cre-
ates an increasingly complex, heterogeneous mixture of
abiotic and biotic forces on mosquito vectors, directly af-
fecting disease ecology that is measurable only at high
resolutions.1,13,14

West Nile virus (WNV) is a mosquito-borne Flavivirus that
infects a vast array of vertebrate hosts.15 InNorth America, it is
predominantly transmitted from mosquitoes of the Culex ge-
nus, and the predominant Culex vector species differs by re-
gion.16 The enzootic cycle of WNV occurs when an infected
mosquito takes a bloodmeal froman uninfected avian host, or
when an uninfected mosquito takes a blood meal from an
infected, and actively shedding, infected avian host.17,18 The
susceptibility and infectiousness of an avian host vary by
species, but birds from the family Corvidae and Turdidae are
considered themost important for amplifying thedisease.17–19

In theMidwestern United States, the enzootic cycle of WNV is
predominately maintained by themosquito vectorsCx. pipiens,
Culex restuans, and Culex salinarius20–22 and occasionally can
spill over to dead-end (hosts that are not capable of infecting
subsequent bitingmosquitoes) human and equine hosts.23 The
most susceptible human hosts are those that are elderly and/or
immunosuppressed.24,25 An estimated 75–80% of infected
humansare asymptomatic, andof the remaining20–25%,<1%
(or about 1 in 150 infected humans) will experience severe
neuroinvasive disease.26 Cook and DuPage counties, encom-
passing the greater Chicago, IL metropolitan region, have
been among the hardest hit with human WNV in the country,
accounting for the second and nineteenth most human neuro-
invasive cases since 2002, respectively.27 Since the introduc-
tionofWNVin2002,hotspots forhumanWNV illness inChicago
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have occurred in high–human density locations within Chicago
city and in the northern and northwestern suburbs, infecting
hundreds, despite differences in race, socioeconomic status,
and other key demographics.28

Many studies have modeled WNV risk, often with mixed
results of the effects (i.e., direction), seasonal timings, and
magnitudes (i.e., effect sizes) of several commonly reported
covariates. Previous studies have found that increased dis-
ease risk was positively correlated with human population
density,29–31 whereas others have reported the opposite.32–34

Other studies have found a positive associationwithmosquito
abundance and increased rainfall in winter months,35 whereas
another reported a similar finding, but for late-season rain-
fall.34 Other studies have found no predictive power with in-
creased precipitation in the Eastern United States36 or
Ontario, Canada.37 However, increases in winter tempera-
tures were often found to be positively associated with in-
creases in mosquito abundance and/or human infection but
were less clear in early and mid-seasons.30,31,38,39

Far fewer studies have investigated the effects of important
factors on WNV disease risk at local scales (< 100 km2).13,40

Although there is no correct single scale to measure the en-
tirety of a given disease,41–43 studies conducted at regional or
landscapescalesmayoverlook fine-scale processesaffecting
disease dynamics at local scales because heterogeneity
within a landscapemoderates the broad-scale consistency of
such processes42,44,45 and are often not generalizable even
within the regionswhere the studies take place.12 Focusing on
covariate andmodel selection at afine scale and thenapplying
to broader scales will provide a better perspective and un-
derstanding of the heterogeneity of spatiotemporal processes
that influence WNV disease ecology.13,46

Translating fine-scale ecological processes into digestible
epidemiological analyses has been immensely difficult, re-
quiring both the resources to gather data at high spatiotem-
poral resolution and computational hardware and technology
to process such large data sets.13,47 These limitations often
force researchers to choose between increasing extent and
decreasing grain (or vice versa).42,48 However, in recent years,
high-performance computer technology has become readily
available and affordable.12 Combining elements of ecology,
epidemiology, entomology, and spatial statistics, we use an
existing and ongoing 12-year WNV data set of the Chicago
region to evaluate the drivers of WNV eco-epidemiology at a
high spatial and temporal resolution (30 m–1 km spatial × 1
week temporal resolution) across relatively large spatial ex-
tents. Specifically, we compared human WNV model and
covariate performance across three increasing extents: 1) ul-
trafine-scale (UFS) subset of 55 study sites, 2) local scale of
1,019 sites, and 3) county scale of 5,345 sites. Pertaining to the
ecology of disease, we hypothesize that as spatial scale in-
creases (and thus, complexity in heterogeneity), the number of
covariates increases, and the magnitude in effect of each
covariate will decrease. We also hypothesize that as the extent
of scale decreases, variances inWNV disease transmissionwill
be better captured, as reflected by higher performing models.

METHODS

This projectwas approvedby the Institutional ReviewBoard
of the University of Illinois at Urbana-Champaign, the Illinois
Department of Public Health (IDPH), and the University of

Illinois Biosafety Committee. Human case data were provided
by the IDPH without any personal identifying information.
Definition, use, and terminology of scale.Scale is defined

as the spatial or temporal dimension of an object or process
andconsists of twocomponents: grain andextent.Grain is the
finest level of spatial/temporal resolution within a given data
set, and extent is the domain of the study area. For purposes
specific to this study,wedefine large scale as astudyareawith
small extent containing more detail and small scale as a study
area with large extent containing less detail. Fine scale and
broad scale are synonymous with large and small scale, re-
spectively, and can be used interchangeably.
Study sites. The observational unit by which all models

were evaluated consisted of 1 km–wide (0.65 km2) hexagon-
shaped polygons. Hexagons were used for two notable rea-
sons: 1) they are the most complex regular polygon that can
continuously fill a 2-dimensional planewithout gapsor overlap
in configuration (less loss in orientation) and2) the shape index
(perimeter2/area) is more compact than most other shapes
(e.g., square or rectangle), providing more accurate sam-
pling.49 Allmodels had the samespatial resolution (1 kmwidth)
and temporal grain (1week), denoted byCDCepidemiological
weeks (beginning on Sunday and ending on Saturday). These
resolutions were the finest scale by which our research team
could reliably collect data throughout our study sites because
of limitations in data availability and revisit times.
This study compared and evaluated the performance of

each model and individual covariate across three study sites,
varying in spatial extent: 1) 55 hexagons, 92.5 km2 (UFS); 2)
1,019 hexagons, 605.2 km2 (local scale); and 3) 5,345 hexa-
gons, 3,471.7 km2 (county scale) (Figure 1).
The UFS model, consisting of several individual field sites

within each location, is the finest known spatial extent to
evaluate WNV at weekly temporal resolutions.39 The 55
hexagons within the model have been selected across a
spectrum of performance (ranging from extremely poor to
extremely well-fit), based on strength of prediction, as in-
dicated by the residual output from a previous Cook–DuPage
WNV model.28 The decision to choose 55 hexagons is the
maximum number of sites that our researchers could visit for
15 minutes each, weekly, over two field seasons (June–
September 2018, 2019) while providing adequate spatial
coverage as a subset of the Northwest Mosquito Abatement
District (NWMAD).
The local scale is an area consisting of 1,019hexagons. This

region is an enclave of Cook county, encompassing the ju-
risdiction of one of the Chicago area’s four mosquito abate-
ment agencies, the NWMAD. This local scale was chosen as
study site because close collaboration from the NWMAD
provided several advantages, including 1) access to high-
quality and well-maintained longitudinal data sets; 2) per-
mission to study and use equipment, if needed; 3) provision of
important local information (e.g., areas that are flood- or
mosquito-prone); 4) work toward a common goal to better
understand and improve on the safety of public health as it
pertains to local WNV dynamics.
The Cook–DuPage region, denoted as the county scale,

comprises 5,345 hexagons and is the largest extent at which
we evaluated human WNV illness. Despite its large two-
county extent, the spatiotemporal resolution is still favorable
for evaluating local–regional effects on WNV dynamics (1 km
spatial grain × 1 week temporal resolution).
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Model parameters. Dependent variable: human illness.
Human WNV cases in Illinois were classified as either con-
firmed or probable, as reported to the IDPH by public health or
licensed medical professionals by date of symptom onset
(mandatory reporting of WNV cases is required in the state).
The case definition for a confirmed case of arboviral enceph-
alitis in Illinois is a clinically compatible illness that is laboratory
confirmed at a public health laboratory. The laboratory criteria
are a 4-fold or greater rise in serum antibody titer; or isolation
of virus from, or demonstration of viral antigen in, tissue,
blood, cerebrospinal fluid, or other body fluid; or specific IgM

antibody in CSF. A probable case of arboviral encephalitis is a
clinically compatible illness occurring during the seasonwhen
arbovirus transmission is likely to occur andwith the following
supportive serology: a stable (2-fold or smaller change) elevated
antibody titer to an arbovirus, for example, > 320 by hemagglu-
tination inhibition, > 128 by complement fixation, > 256 by im-
munofluorescence, > 160 by neutralization, or a positive
serologic result by enzyme immunoassay or IgM antibody cap-
ture enzyme-linked immunosorbent assay (MAC-ELISA).
We recognize that exposure to mosquito-borne disease

occurs often and in many locations, and that confirming the

FIGURE 1. West Nile virusmodel comparison study area, displaying the Chicago city limit and the 1-km hexagonal grid observational units within
Cook and DuPage counties. The models for the county, local, and ultrafine-scales (UFS) comprise all hexagons contained within both Cook and
DuPage counties (n = 5,345), the hexagons bounded by theNorthwestMosquito Abatement District (indicated by the orange and yellow hexagons,
n = 1,019), and the hexagons indicated in yellow (n = 55), respectively. This figure appears in color at www.ajtmh.org.
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TABLE 1
List of covariates available for analysis by scale study area.

Covariate Information Model Name

Designation Description Notation Ultra-fine-scale Local County

Abiotic Weather Temperature Average temperature
current week

tempc X X

Average temperature of
one week before

templag1 X X X

Average temperature of
two weeks before

templag2 X X X

Average temperature of
three weeks before

templag3 X X X

Average temperature of
four weeks before

templag4 X X X

Mean January temperature Jantemp X X X
Precipitation Average precipitation

current week
preci X X

Average precipitation of
one week before

precilag1 X X X

Average precipitation of
two weeks before

precilag2 X X X

Average precipitation of
three weeks before

precilag3 X X X

Average precipitation of
four weeks before

precilag4 X X X

Biotic Environmental Land Cover Proportion of developed
open space

dospct X X X

Proportion of developed
low intensity

dlipct X X X

Proportion of developed
medium intensity

dmipct X X X

Proportion of developed
high intensity

dhipct X X X

Proportion of deciduous forests dfpct X X X
Proportion of evergreen forests efpct X X X
Proportion of mixed forests mfpct X X X
Proportion of barren land blpct X X X
Proportion of shrubs shrubspct X X X
Proportion of grassland glandpct X X X
Proportion of pasture pasturepct X X X
Proportion of cultivated land clpct X X X
Proportion of woody wetlands wwpct X X X
Proportion of herbaceous wetlands hwpct X X X
Proportion of total forest ftotpct X X
Proportion of total wetlands wtotpct X X
Proportion of open water owpct X X X
Normalized Difference
Vegetation Index

NDVI X X

Biological Minimum Infection
Rate (MIR)

MIR one week before mirlag1 X X X
MIR two weeks before mirlag2 X X X
MIR three weeks before mirlag3 X X X
MIR four weeks before mirlag4 X X X
Average MIR current week MIRmean X X
Difference in weekly average MIR from
12-year average

MIRdiff X X

Vector Index current week Vector Index X X
Vector Index one week before VIlag1 X X

Vector Index two weeks before VIlag2 X XMosquito
Abundance Vector Index three weeks before VIlag3 X X

Vector Index four weeks before VIlag4 X X
Light and gravid trap collection mean
current week

Trap_Mean X X

Light and gravid trap collection mean
one week before

Trap_Meanlag1 X X

Light and gravid trap collection mean
two weeks before

Trap_Meanlag2 X X

Light and gravid trap collection mean
three weeks before

Trap_Meanlag3 X X

Light and gravid trap collection mean
four weeks before

Trap_Meanlag4 X X

Mosquito Biting
Rates (HLC)

Mosquitoes per visit mosquitoes per visit X
Culex spp. per visit Cx per visit X

(continued)
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moment an infected mosquito inoculates a human is nearly
impossible. We assumed for this model that human cases
were the result of exposure at their home addresses, and the
latitude and longitude point locations of each human case
were provided to the third decimal degree and aggregated to
the hexagon level for analytical and display purposes. Any
human case that occurred within a hexagon for a given week
was converted into binary form (presence/absence of illness),
controlling for human population, by week for each hexagon.
Use of human case data was approved by the University of
Illinois Institutional Review Board and the IDPH.
Independent variables. The total number of independent

variables available for eachmodel varied by scale. The county,
local, and UFSs had 40, 59, and 82 variables available,

respectively (Table 1). Specific details pertaining to each in-
dependent variable’s processing and data source have been
previously published.39

Abiotic predictors. Abiotic independent variables consisted
of environmental (Multi-Resolution Land Characteristics
(MRLC)50 National Land Cover Database) and weather (daily
mean temperature and precipitation were acquired from the
Parameter-elevation Regressions on Independent Slopes
Model (PRISM)51 Climate Group [Oregon State University])
data. These were considered with 1-, 2-, 3-, and 4-week lags.
Additional independent variables included catch basin (e.g.,
sewer) density and light pollution52,53 per hexagon. Therewere
29 variables available to both the UFS and local scale and 23
variables available to the county scale.

TABLE 1
Continued

Covariate Information Model Name

Designation Description Notation Ultra-fine-scale Local County

Biotic Anthropogenic Socio-demographic Percentage of White population whitepct X X X
Percentage of African American
population

blackpct X X X

Percentage of Asian population asianpct X X X
Percentage of Hispanic population hispanicpct X X X
Median household income Income X X X
Percentage of housing constructed
before WWII

hpctpreww X X X

Percentage of housing constructed
post WWII (1945-1969)

hpctpostww X X X

Percentage of housing constructed
from 1970-1989

hpct7089 X X X

Percentage of housing constructed
in 1990 or later

hpctpost90 X X X

Land change &
manipulation

Catch basin density CB X X
Total area of building structures bldg_footprint_area_total X
Average area of
building structures

bldg_footprint_area_avg X

Total perimeter of building structures Building_Footprint_peri_
total

X

Average perimeter of building
structures

Building_Footprint_peri_avg X

Total area of residential lot Residential_lot_area_total X
Average area of residential lot Residential_lot_area_avg X
Total perimeter of residential lot Residential_lot_peri_total X
Average perimeter of residential lot Residential_lot_peri_avg X
Ratio of total building area by
total lot area

total_bldg_area/total_lot_
area

X

Ratio of average building area
by average lot area

avg_bldg_area/avg_lot_area X

Ratio of total building perimeter
by total lot area

total_bldg_peri/total_lot_
area

X

Ratio of average building perimeter
by average lot area

avg_bldg_peri/avg_lot_area X

Number of buildings buildings X
Building density per mi.2 bldg_density X
Number of residents per building persons_per_bldg XHuman population
Total human population totpop X X X
Mean light pollution lightpol X X

Activity
Observations

Senior Citizen Observations per visit Senior_obs per visit X
Adults Observations per visist Adults_obs per visit X
Children Observations per visit Child_obs per visit X
Male Observations per visit Male_obs per visit X
Female Observations per visit Female_obs per visit X
Total Observations per visit Total_obs per visit X

N/A Other Year yr X X X
Hexagon Designation hexid X X X

Total Covariates Evaluated 82 59 40
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Biotic predictors. All mosquito infection data were made
available for all three scales and were provided by the IDPH,
the state agency responsible for collecting and maintaining
standardized mosquito collection and testing data. The vast
majority of the tests used to identify the presence of WNV in
mosquitoes were conducted via the rapid analyte measure-
ment platform detection method, although some mosquito
pools were also tested by real-time reverse transcriptase–
PCR or VecTest. Mosquito infection data recorded between
the epidemiological weeks 18–42 for each year between 2005
and 2016 were analyzed. Mosquito abundance data from a
total of 59 traps (22 light and 37 gravid) were provided by the
NWMAD and included in the models for the local and UFSs,
but not the county scale because these data were not avail-
able for the entire county. As such, the vector index (VI), a
factor of both mosquito infection and abundance, was cal-
culated and made available for the local- and UFSs models.
The following weekly mosquito infection indices were calcu-
lated by the following equations:

P
^

i ¼ positivemosquito pools
total specimens tested

� 1000;

where P
^

i =minimum infection rate (MIR), and a mosquito pool
consisted of up to 50 female Culex mosquitoes that were
collected by the same trap;

VI¼+i=Culex spp: ðpooledÞ
�NiP

^

i;

where �Ni =average abundanceðnumber ofmosquitoes per
trapweekÞ and P

^

i = estimated MIR.54

The mosquito infection indices were paired with each
trap location that they were derived from, and interpolated
across NWMAD via inverse distance weighting in a geo-
graphic information system, Environmental Systems Re-
search Institute’s ESRI 2011, ArcGIS Desktop: Release
10.5.1., Redlands, CA. The average mosquito infection val-
ues were extracted for each hexagon using the zonal sta-
tistics tool in ArcGIS. Thesewere also consideredwith 1-, 2-,
3-, and 4-week lags.
Total population and racial composition (white, African

American, Hispanic, and Asian) at the census block level were
extracted from the 2010 U.S. Census and converted to a
percentage for eachhexagon. The2015AmericanCommunity
Survey provided block level age of housing and income data
that were aggregated by hexagon. The normalized difference
vegetation index was processed from Landsat 7 and 8 bands
for early, mid, and late summer periods from EarthExplorer55

and averaged by hexagon.
Statistical methods. Model performance and comparisons.

The linear relationship between candidate covariates and the
outcome (human WNV infection) for each model was initially
screened by univariate linear regression analysis (cutoffP-value
£ 0.20). Covariates that passed the initial univariate screening
were then selected for the final model, a generalized linear re-
gression personality, with a binomial distribution and logit link
function, via forward selection, based on the lowest Bayesian
information criterion (BIC) value achieved. Although assessed
across the same temporal period (epidemiologicalweeks18–42
from2005 to2016) andsamespatial resolution (1-kmhexagonal
observation units), each of the three models corresponding to
the three scales varied in spatial extent, resulting in increasing
availability of data (Equation 1).

YUFS ¼β0 þβ1X1 ¼βnþ 1Xnþ 1 þβ82X82 þ εi (1a)

YLocal ¼β0 þβ1X1 ¼βnþ 1Xnþ 1 þβ59X59 þ εi (1b)

YCounty ¼ β0 þβ1X1 ¼βnþ 1Xnþ 1 þβ40X40 þ εi (1c)

where Y = weekly human WNV case probability for each
hexagonbetween2005 and2016,β0 = intercept, andXi=each
of the WNV ecologically and/or epidemiologically relevant
covariatesmade available for each scale (UFS =82, local = 59,
andcounty =40available covariates). Traditional performance
metrics (e.g., Akaike Information Criterion [AIC] and BIC) are
valid only for evaluating likelihood estimates across models
that use the same data set. Therefore, this study evaluated the
overall performance of each model by root mean square error
(RMSE), an evaluation of the SD in residual values across each
observation to the line of best fit. Receiver operating charac-
teristic (ROC) curves were used to visualize each model’s
overall performance, and area under the curve (AUC) values
were calculated as secondary model performance indicators.
All predictors were evaluated for multicollinearity and ana-
lyzedusing the regression and fitmodel features, respectively,
in JMP 14.2.0 (SAS Institute Inc., Cary, NC).
Human WNV illness risk maps (from 2005 to 2016), gen-

erated from the best-fit models at each scale, were created
and compared for differences inmagnitude in the probability
of cumulative human cases. This process was conducted by
first creating a raster layer for each included covariate per
respective model. A raster layer visualizes data as a surface
represented by a regular grid of pixels (each pixel represents
30 m). Using the raster calculator tool in ArcGIS, each in-
cluded covariate’s estimate was input with its respective
raster in a logistic regression (Equation 2), then transformed
to create a probability map of human WNV cases (Equa-
tion 3).

Model 0C; L; orU0¼ � 1pðβ0 þβ1X1 þβ2X2 þ . . . Þ (2)

WNVRiskModel¼ 1
1þ eModelC;L;or U (3)

Using the raster calculator again, the difference in probability
“by pixel of the larger scale raster (either local or UFS) from the
smaller scale raster (either county or local scale) was calcu-
lated (Equation 4).

1
1�ðWNV Risk Model C or L�WNV Risk Model L or UÞ

(4)

where model C = best-fit model for county scale, model L =
best-fit model for local scale, andmodelU = best-fit model for
the UFS model.
Values greater than 1 indicate areas where the larger scale

raster overestimatedWNV risk, and values less than 1 indicate
where the WNV risk was underestimated by the larger scale
raster. To evaluate performance due to scale dependency,
best-fit models from the smaller scales were also applied to
larger scales, comparing BIC and ROC values with their
original best-fit values.
Covariate performance and comparisons. Individual cova-

riate performance was evaluated within each respective
scale’s best-fit model using the leave-one-covariate-out
(LOCO) procedure.56 This method was chosen for the
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following reasons: 1) it is robust and not limited to linear
models, 2) it emphasizes the importance of a variable in a
model as it pertains to prediction, and 3) any algorithm can be
used to measure the importance of the covariate and is
computationally flexible.56 After each of the three scales’ re-
spective best-fit models were chosen, the performance of
each covariate was analyzed by removing it from the model
and finding thedifference inRMSE.Covariates removedwith a
percent difference in RMSE value extending further from zero
in the positive direction indicated their increasing importance
to the model, whereas a percent difference in RMSE value
extending further from zero in the negative direction indicated
decreasing importance to the model.

RESULTS

Descriptive statistics of each scale area. Between 2005
and 2016, there were a total of 906 reported human cases in
the Cook–DuPage study area. Within this region and time
frame, the local scale study area consisted of 156 human
cases (17.2%) with the UFS study contributing 46 human
cases (5.1%).
Comparisons.Models. Best-fit models of county and local

scales resulted in similarly small RMSE values (0.024872 and
0.023817, respectively), butmore than doubled to 0.053571 in
the final UFS model (Table 2). The final number of included
covariates did not correlate with scale size, but the smallest
scale (county level) did have the most covariates in the final
model (n = 15). Applying best-fit models from one scale to
another resulted in a general pattern of higher model perfor-
mance as scale decreased (Figure 2). At all scales, the BIC
score difference between the best-fitmodel and the next best-
fit model was more than two.
Covariates.Overall, covariates included in the final model at

any given scale tended to maintain their relationship (positive
or negative), estimate values, and significance in regard to the
independent variable (Table 2). In the UFS final model, the
following covariates changed in their relationship, estimate,
and/or significancewhen applied to the other two scales: VI 1-
week lag, percentage of Asian population, and proportion of
developed high intensity land cover. In the local-scale final
model, only the covariate proportion of developed low-in-
tensity land cover changed in relationship (changing from
positive to negative) and significance (changing from strongly
significant to nonsignificant) when applied to only the UFS
area. When applied to the local scale, only two covariates
included in the best-fit county model changed (proportion of
land cover open water changed from nonsignificant to sig-
nificant; proportion of land cover grassland changed from
negative to positive and from significant to notsignificant).
However, when applied to the UFS, there were numerous
changes in relationships, estimates, and significances across
most covariates.
Within each scale’s best-fit model, the overall importance

(dependency) of included covariates increased with in-
creasing scale (decreasing extent, Table 3). The indicator of
covariate importance, the percent change in RMSE, ranged
from 0.000643 to −0.000161 in the county scale, from
0.0001344 to −0.004954 in the local scale, and from 0.003043
to −0.000467 in the UFS, a range of 0.000804, 0.00050884,
and 0.00351, respectively. Temperature 4-week lag was the

most important covariate in the county and local scales and
was the second most important covariate in the UFS. The
most important covariate in the UFS was VI 1-week lag. Only
the covariate, proportion of developed low-intensity land
cover, in the local scale was notably non-important; all other
negative covariate values were marginal.
Model predictions. Risk maps displaying results (by pixel)

of final models from 2005 to 2016 were created to display
intensity of predicted human WNV illness by shades of red
(Figure 3). The county-scale riskmap displays several clusters
of human risk, with the largest in western DuPage county (n =
3) and several along theCook county LakeMichigan coast (n=
5). The local county risk map displays most human risk oc-
curring in the eastern half of the study area, with two distinct,
large clusters (one near the center and the other in the
southeast corner). TheUFSmodel predicted only one distinct,
but high-intensity, cluster near the southeast corner of the
study area.

DISCUSSION

Synthesis. Even at the largest extent, the county level
was assessed at a higher spatial and temporal resolution than
mostWNVstudies. This study’s comparisonprovided insights
into the processes of WNV disease dynamics, highlighting
the changes across different scales.13 These change aremost
notable among the key similarities and differences between
best-fit final models and the scale dependency of the cova-
riates included within each. We found that as spatial scale
increased, best-fit models decreased in explaining total vari-
ance, asdefinedbyRMSEvalues. In addition,whenevaluating
covariates using the LOCO method, percent differences in
RMSE increased as scale increased, suggesting that as spa-
tial scale decreases, covariate importance increases. These
findings align with other studies evaluating scale dependency
of ecological processes and the traditionally hypothesized
ecological mechanism that “factors should be most impor-
tant at scales at which they vary the most because it will be
difficult to find a statistically significant correlation when in-
dependent variables have low variance.”12,41 Final model se-
lection should always be conducted using the most robust
methods, but careful assessments must be made with very
large-scale models because errors in predictionmay bemuch
greater than similar errors at smaller scales.
Despite having nine fewer covariates included its final

model, as compared with the county model, the local scale’s
overall RMSEwas the lowest among all finalmodels. Our initial
hypothesis, claiming that as scale increased the number of
covariates would also increase, was not supported by the
local scale’s final model. Although no two scales can be
explained by the exact same set of parameters, the local scale
may be less heterogeneous across space than the larger
countymodel. That being said, theUFS locations are located
within the local scale and result in more included covariates
(n = 10). Across all scales, only six (proportion of land cover
developed low intensity, mean January temperature, MIR 4-
week lag, temperature 3-week lag, temperature 4-week lag,
and total human population) of the 23 total covariates
(26.1%) assessed were included in two or more final models.
Of these, only two (temperature 3-week lag and temperature
4-week lag, 8.7%) were included in all three scales’ final
models. Percent difference in RMSE may be the most valid
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estimation for each covariate’s importance to a singlemodel,
but total frequency across models may provide the best in-
dicator of its importance and robustness to WNV ecological
processes.
The best-fit model from all three scales performed very well,

as indicated by the ROC AUC values. As scale decreased,
clusters of disease risk increased in frequency, but decreased
in area, resulting in a patchy distribution, a finding that aligns
with bird distribution and increasing scale in another study.14

When overlaid, the best-fit model prediction of human WNV

risk for each scale displayed similar clustering locations. De-
spite sharing the same location and containing mostly the
same covariates, the predicted relationships have subtle, but
critical, difference across scales. To visualize these differ-
ences, we calculated the percent difference in human WNV
illness by pixel and categorized the values across a prediction
performance scale (extreme underprediction to extreme
overprediction, Figure 4). Although the extreme under-
prediction values never dropped below 0%, some extreme
overprediction values exceed 150%. Despite being the most

TABLE 2
Matrix of overall model performance and details of each model’s parameters. Values in bold indicate details of best-fit models for each respective
scale. Remaining values are details of each scales’ best-fit model applied to the other two scales

Scale applied to

UFS Local County
Best model applied UFS P-value < 0.0001 < 0.0001 < 0.0001

No of covariates 10 10 10
(55) BIC 546.8 2067.5 13,547.8

ROC 0.87 0.89 0.85
RMSE 0.053571 0.024347 0.024865

Local P-value < 0.0001 < 0.0001 < 0.0001
No of covariates 6 6 6

(No of Hexagons) (1,019) BIC 558.704 1987.63 13,222.1
ROC 0.82 0.91 0.87
RMSE 0.053883 0.023817 0.024867

County P-value < 0.0001 < 0.0001 < 0.0001
No of covariates 15 15 15

(5,345) BIC 632.3 2079 13,161.8
ROC 0.85 0.92 0.89
RMSE 0.053845 0.023812 0.024872

Scale

Covariate

UFS Local County

Bn + 1 relationship, estimate, and P-value

Best model UFS β0 − 13.3857 < 0.0001 − 16.2983 < 0.0001 − 17.0640 < 0.0001
templag3 + 0.1623 0.0235 + 0.1680 < 0.0001 + 0.1985 < 0.0001
templag4 + 0.2107 0.0026 + 0.2849 < 0.0001 + 0.2589 < 0.0001
precilag1 − 0.0203 0.0428 − 0.0082 0.0442 − 0.0042 0.0028
precilag2 − 0.0142 0.0885 − 0.0092 0.0194 − 0.0074 < 0.0001
precilag4 − 0.0189 0.0443 − 0.0152 0.0007 − 0.0076 < 0.0001
VIlag1* − 0.0037 0.5384 + 0.0026 0.0020 + 0.0044 < 0.0001
Asianpct + 0.0474 0.0239 − 0.0186 0.0497 + 0.0019 0.5906
Dhipct + 0.0165 0.2297 − 0.0113 0.1198 − 0.0074 0.0004
Mfpct − 4.6678 0.3461 − 0.6939 0.0214 − 0.2021 < 0.0001
Wwpct − 13.8269 0.9951 − 0.1784 0.0170 − 0.0463 < 0.0001

Local β0 − 13.0397 < 0.0001 − 18.2196 < 0.0001 − 17.5333 < 0.0001
templag3 + 0.1447 0.0381 + 0.1662 < 0.0001 + 0.1828 < 0.0001
templag4 + 0.1767 0.0058 + 0.2445 < 0.0001 + 0.2294 < 0.0001
MIRlag4 + 0.0103 0.0115 + 0.0090 < 0.0001 + 0.0045 < 0.0001
Totpop + 0.0003 0.0663 + 0.0007 < 0.0001 + 0.0003 < 0.0001
Jantemp + 0.0257 0.6356 + 0.1262 < 0.0001 + 0.1288 < 0.0001
Dlipct − 0.0043 0.5512 + 0.0257 < 0.0001 + 0.0208 < 0.0001

County β0 + 31.0486 0.7583 − 27.0403 0.6323 − 33.4730 0.1189
Yr − 0.0213 0.6716 + 0.0046 0.8694 + 0.0082 0.4431
templag2 − 0.0505 0.4964 + 0.0664 0.1115 + 0.0887 < 0.0001
templag3 + 0.1660 0.0299 + 0.1333 0.0020 + 0.1290 < 0.0001
templag4 + 0.1680 0.0144 + 0.2070 < 0.0001 + 0.1840 < 0.0001
Jantemp − 0.0041 0.9451 + 0.1040 0.0031 + 0.1090 < 0.0001
mirlag1 + 0.0035 0.4715 + 0.0040 0.0710 + 0.0035 < 0.0001
mirlag2 + 0.0043 0.3715 + 0.0041 0.1368 + 0.0042 < 0.0001
mirlag3 + 0.0071 0.0517 + 0.0051 0.0601 + 0.0044 < 0.0001
mirlag4 + 0.0096 0.0309 + 0.0084 < 0.0001 + 0.0045 < 0.0001
Totpop + 0.0001 0.5648 + 0.0005 < 0.0001 + 0.0002 < 0.0001
Owpct − 0.0763 0.4064 − 0.0289 0.5398 − 0.0613 0.0005
Dlipct − 0.0110 0.1962 + 0.0195 < 0.0001 + 0.0168 < 0.0001
Dfpct − 0.0937 0.3387 − 0.1590 0.0452 − 0.0276 0.0096
Glandpct − 0.0969 0.6389 + 0.0096 0.9184 − 0.0530 0.0392
hpctpost90 + 0.0094 0.3838 − 0.0002 0.9689 − 0.0067 0.0035

UFS = ultrafine-scale.
* Vector index and its associated lags were not available for the county-scale models. The next closest variable, MIR, was used as a proxy.
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important human arboviral disease in North America, annual
human cases are generally low. In addition, it is estimated that
at least four of every five cases are not reported becausemost
humans experience little to no symptoms.5 If reporting of ac-
tual disease incidence improved, extreme over- and under-
prediction events would likely reduce.
As observed in previousWNVmodels, covariates that were

weather-specific were included in each of the final three
models. In addition, of the 23 covariates included in any final
model, only temperature 3-week lag and temperature 4-week
lag were included in all three final models (the other 21 cova-
riates were included in one or two models). In the upper
midwest region of the United States, the 3- and 4-week tem-
perature lags may be the most correlated to human WNV
cases because of the length of time a mosquito requires to
develop, acquire an infectious blood meal, bite a human, and
have the human experience symptoms and be seen by a cli-
nician for diagnosis.57–59 One- and 2-week temperature lags
are likely too short of a time frame for all these events to occur.
Although only assessed in the local and UFS study regions,

theVIwasexpected tobe included inbothfinalmodels.Only the
1-week lag was included in the UFS model, although as the
singlemost importantpredictive factor. Instead,MIR4-week lag
was included in the local scale’s finalmodel butwas found to be
among theweakest of the included covariates. HighVI values, a
combination of infection rates and mosquito abundance, likely

require less lag time to be correlated to human WNV illness
because of the likely advanced stage of the mosquitoes in the
zoonotic infection cycle (mosquito–bird–mosquito–human).
However, infection rates in mosquitoes, without abundance
known, are more variable and can be associated with human
WNV at any lag stage, as is observed in the county scale’s final
model. Similar to 4-week temperature lags,MIRswith a 4-week
lagmaybe the optimal period for the virus to have completed its
enzootic transmission: mosquito–bird–mosquito, with ample
time and opportunities to bite humans. Interestingly, mean
January temperaturewas found tobepositively associatedwith
human WNV illness at the local and county scales. This re-
lationshipmaybe indicativeofwarmerwinters that areproviding
mosquitoes with earlier emergence from diapause.60–62 These
early emerging female mosquitoes may, in turn, increase the
likelihood of earlier-than-expected enzootic cycles and, even-
tually, earlier season zoonotic cycles.
Understanding the ecological and epidemiological signifi-

canceof human socioeconomic anddemographic variables in
regard to WNV is less intuitive. Of 33 anthropogeny-related
covariates evaluated in this study, only the following three
were included in at least one final model: percentage of Asian
population, housing proportion built after 1990, and total hu-
man population (included in two models). For the UFS model,
the percentage of the Asian population was found to be a
positively significant predictor of humanWNV infection. Given

FIGURE 2. Overall best-fit model performances for each of the three scales. In addition, the best-fit county (Cook/DuPage) and local Northwest
Mosquito Abatement District (NWMAD) scale models were applied to the ultrafine-scale (UFS) model area (designated as larger scale model and
smaller scalemodel,where “-”denotes “applied to”). Thebest-fit county scalewasalsoapplied to the local-scalemodel area.Modelsareorderedby
scale size. This figure appears in color at www.ajtmh.org.
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the small extent of the study area (55.1-km-wide hexagons), it
is possible that a high proportion of the population that is of
Asian descent resides in at least one of the high-risk WNV
locations evaluated. Another possibility is that the Asian
population in these locations may be confounding with dis-
ease incidence, resulting in a spurious correlation. In addition,
the hexagons thatwere found to have the highest humanWNV
infection were found to contain many high-volume residential
buildings (e.g., multi-level apartment buildings and condo-
miniums) and may provide ample breeding and biting oppor-
tunities for Culex mosquitoes. In the county scale, housing
built after 1990 was found to be a significantly negative pre-
dictor of humanWNV illness. Newer houses have fewer areas
that retain water and tend to be congregated in newer neigh-
borhoods with improved drainage systems.63 In the Chicago
area, newer houses are most likely found in the expanding
suburbs, contain larger yards, and have lower human pop-
ulation densities than older houses. Increases in human
population have been found to be a significantly positive
predictor at the local and county scales. Higher human pop-
ulation densities provide increased opportunities for infected
Culexmosquitoes to feed on humans, as opposed to themore
preferred avian hosts.
Land cover was found to be a major predictor of human

WNV, but the type of cover varied for each scale. Specific to
thepredominantCulex vector species in theChicago area,Cx.
pipiens, this species is associated with land cover that is
largely human-derived; has a lot of development, little water
and fewwetlands; and is non-forested. In the county and UFS
study areas, all land cover variables were negatively associ-
ated with human WNV risk, and all pertained to forest,
grassland, or water/wetlands. However, at the local scale,

proportion of land that was developed, low intensity, was
found to be a significantly positive predictor of humanWNV. In
these locations, moderately spaced homes in suburban Chi-
cago are integratedwith numerous green spaces andwooded
nature preserves. These conditions may provide an ideal
balance of both avian hosts and human densities where per-
sistent breeding and adequate feeding opportunities exist.
Limitations. Evaluating the role of ecological processes in

disease risk comes with many challenges. Realizing issues
that may arise as spatial extent increases, most notably the
modifiable area unit problem, this study attempted to reduce
error when predicting human WNV illness by including data
from very high spatial and temporal resolutions. Although
many models are very well-constructed and perform well,
environmental stochasticity and random processes can en-
hance response variability, particularly at large scales.64 Our
results suggest that each scale has specific, but subtle, differ-
ences that explain the variability in WNV ecological processes.
However, as the extent of our study increased (maintaining
grain resolution), our models captured more unexplained vari-
ance. It is possible that at the largest scale (UFS), the sampling
locations did not capture an adequate representation of that of
the larger study area, resulting in higher RMSE values. How-
ever, it is expected that fine-scale ecological processes may
have greater influence, and therefore importance, at small
spatial extents. Another possible factor contributing to model
differences by scale could simply be a factor of sample sizes.
Data that are normally distributed will have greater opportuni-
ties to better capture model variance with increasing sample
sizes. The county-scalemodel, as compared to theUFSmodel,
contained 5,345 hexagons versus 55 hexagons, a factor of
nearly 100. These results provide insights into the relationships

TABLE 3
Results of the leave-one-covariate-out performancemethod per respective scale’s best-fit model. The greater in magnitude of the percent change
in RMSE indicates overall covariate importance (if positive) or unimportance (if negative) per each respective scale’s best-fit model. Covariates
removed are provided in alphabetical order

Covariate
removed

Model

No of Scales
included in

County Local Ultrafine-scale

RMSE % RMSE Δ RMSE RMSE % RMSE Δ RMSE RMSE % RMSE Δ RMSE

None 0.024872 1.000000 0.000000 0.023817 1.000000 0.000000 0.053571 1.000000 0.000000 Not applicable
Asianpct – – – – – – 0.053582 1.000205 0.000205 1
dfpct 0.024873 1.000040 0.000040 – – – – – – 1
dhipct – – – – – – 0.053562 0.999,832 −0.000168 1
dlipct 0.024876 1.000161 0.000161 0.023699 0.995,046 −0.004954 – – – 2
glandpct 0.024873 1.000040 0.000040 – – – – – – 1
hpctpost90 0.024873 1.000040 0.000040 – – – – – – 1
Jantemp 0.024879 1.000281 0.000281 0.023831 1.000588 0.000588 – – – 2
mfpct – – – – – – 0.053594 1.000429 0.000429 1
MIRlag1 0.024873 1.000040 0.000040 – – – – – – 1
MIRlag2 0.024869 0.999,879 −0.000121 – – – – – – 1
MIRlag3 0.024868 0.999,839 −0.000161 – – – – – – 1
MIRlag4 0.024869 0.999,879 −0.000121 0.023802 0.999,370 −0.000630 – – – 2
owpct 0.024873 1.000040 0.000040 – – – – – – 1
precilag1 – – – – – – 0.053546 0.999,533 −0.000467 1
precilag2 – – – – – – 0.053604 1.000616 0.000616 1
precilag4 – – – – – – 0.053605 1.000635 0.000635 1
templag2 0.024871 0.999,960 −0.000040 – – – – – – 1
templag3 0.024877 1.000201 0.000201 0.023822 1.000210 0.000210 0.053605 1.000635 0.000635 3
templag4 0.024888 1.000643 0.000643 0.023849 1.001344 0.001344 0.053608 1.000691 0.000691 3
totpop 0.024869 0.999,879 −0.000121 0.023820 1.000126 0.000126 – – – 2
VIlag1 – – – – – – 0.053734 1.003043 0.003043 1
wwpct – – – – – – 0.053599 1.000523 0.000523 1
Yr 0.024873 1.000040 0.000040 – – – – – – 1
RMSE = root mean square error.
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that each individual covariate, as well as overall model perfor-
mance, has across scales. Previous studies have highlighted
the importance of evaluating ecological processing across
multiple scales for these reasons.13,29,42,65

A large effort was placed on acquiring new ecology- and
epidemiology-related factors associated with human WNV
risk in our studyareas.However, becauseof limited resources,
in particular, the limited number of human researchers and
availability for field collections, many covariates are point-
specific and interpolated across the study areas. Keeping this
limitation of sampling effort in mind, we attempted to maxi-
mize the number of field collections to as many as possible
across a distribution that was representative of the entire
study area, to reduce biases and inaccurate prediction values
across space and time.43 Additional work stemming from this
project can improve on these interpolation methods by fo-
cusing on field collections in regions where differences in
model predictions are extremely over- or underpredicted
(Figure 4).
Overall, our results provided insights into the behaviors of

several key covariates with respect to human WNV risk
across varying extents. That being said, we expected to see

an increasing number of covariates in final models as extent
increased. The local-scale model was expected to have
between 11 and 14 covariates in its final model but ended up
with 6, the fewest of anymodel. In addition, we expected that
model error would be the smallest as extent became smaller.
On the contrary, we found that the local model, with the
fewest covariates included in the final model, had the lowest
RMSE value, and the model with the smallest extent, UFS,
had the greatest error. These values suggest that there are
more regions that have less accurate predictions in the UFS
model than the other models but do not infer this model is
necessarily weaker or more poorly performing than the other
two. It is possible that the covariates included in the local-
scale model were optimized for local-scale analysis partly
because most covariates were initially collected across the
larger Cook and DuPage county regions or the UFS region.
The local scale falls in between these two spectrums of extent
andmay incidentally become thebest “size” to assess our data.
However, it is more likely that imprecisions in the data (e.g.,
interpolations, averages, and choosingweekly instead of daily),
appliedwithin and across scales, all contribute to accumulating
variance.66

FIGURE 3. High-resolution human West Nile virus (WNV) risk maps for county (A), local (B), and ultrafine (B) scales. Values correspond to total
infectionsper 10,000people from2005 to 2016. Eachpixel is populatedby the best-fitmodels for each respective scale. This figure appears in color
at www.ajtmh.org.
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Another potential issue that arises often in eco-epidemiology
is the dilution effect.19,67 The dilution effect states that disease
risk is limited or reduced because of an increase in biodiversity.
Essentially, the more potential hosts or intermediate reservoirs
in a given location, the less likely an individual will acquire a
given zoonotic disease. The opposite phenomenon—the am-
plification effect—occurs when there is a lack of biodiversity,
thus increasingdisease risk.68,69ThegreaterChicagoarea is the
third most populated area in the United States, and the land-
scape has been severely altered by humans (swamp and
grassland are now mostly pavement and built-up space). The
northwest suburbs, which comprise nearly all of the local- and
UFS study areas, have significantly more green spaces and
natural areas. It is possible that species biodiversity is greater in
these locations, as opposed to many other WNV “hot spots”
throughout Chicago, and plays a role in reducing the number of
human WNV cases.
Future directions. Future studies should continue to

evaluate processes of disease ecology across multiple
scales and variable landscapes (rural versus urban, northern
versus southern latitudes, built-up versus green space, etc.).
As humans continue to burn fossil fuels, maintain our ex-
ponential population growth, and encroach into new habi-
tats, understanding and predicting the future spread of

infectious diseases are of paramount importance. There are
numerous studies that attempt to evaluate vector-borne
disease processes, but almost all occur across very small
(e.g., multiple county or greater) scales. Although helpful
with understanding overall disease ecology and trends
across space, finer scale processes are rarely generalizable
and can lead to potential bias and invalid statistical
inferences.
Alongwith the increasedemphasis for evaluating ecological

processes across scales, more robust statistical methods
need to be developed to quantitatively compare processes
from models fit across varying data sets. A large limitation is
placed on research aiming to address effects of ecological
processes across scale, which often occurs over long periods
of time. Model performances are easily quantified using AIC
and BIC methods, and a similarly devised metric for compar-
ing model performance across scales would be ideal.
Despite the small differences in human WNV risk across

scales, we hope riskmaps like these, with the statistical rigor
andmethods applied, will be of great use to public health and
disease control personnel. Most importantly, our ultimate
goal was to allow these riskmaps to be dynamic and intuitive
with easy-to-interact variables that are analysis ready.
Future research would greatly benefit by collaborating with

FIGURE 4. Model comparisons, calculated as the difference between the best-fit larger scale model and the best-fit larger scale model, for
county–local (A), county–ultrafine scale (UFS) (B), and local–UFS (C). This figure appears in color at www.ajtmh.org.
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environmental engineers and programmers to facilitate in de-
veloping software that can allow for this goal to be achieved.
Key Takeaways.

1. Evaluating ecological processes all too often occurs at
scales larger than the process of the underlying mecha-
nisms. This study focused on addressing this problem and
compared overall performance of best-fit models and
covariates from three scales in the Chicago, IL region.

2. Overall, as extent increased, model performance increased
(RMSE decreased and AUC increased). In addition, RMSE
was significantly higher only when assessing UFS model
performances. Our findings suggest that as extent de-
creases, covariate importance increases.

3. As scales increase and the sampling of locations decrease,
the risk of not capturing heterogeneity that is representative
of the entire study area is high. This phenomenonmay have
occurred at the UFS, as indicated by higher performing
models fit to smaller scales.

4. Of the 23 covariates assessed in this study, only 6 (dlipct,
Jantemp, MIRlag4, templag3, templag4, and totpop) were
included across multiple scales. Despite this variation, fit-
ting one scale’s best-fit model to another resulted in mar-
ginally weaker but still high-performing models. Although
these variances are mostly captured, the small, but subtle,
differences in results elude to differences in underlying
ecological mechanisms of WNV that behave uniquely at
different scales.

5. These small changes are highlighted by translating each of
the scales’ best-fit models into human WNV risk maps.
Overall, these maps display similar distributions of disease
risk (in overlapping regions) but vary in frequency and size,
increasing in patchiness at finer-scales.

6. Despite these subtle differences, these models and risk
maps provide useful visual and statistical inferences into
the ecological processes of WNV across scales. These
toolsmaybeparticularly helpful for public health,mosquito,
and disease control personnel in predicting and preventing
disease before zoonotic spillover occurs.
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