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Abstract

Single-cell RNA sequencing (scRNASeq) has advanced our
understanding of lung biology, but its utility is limited by the need for
fresh samples, loss of cell types by death or inadequate dissociation,
and transcriptional stress responses induced during tissue digestion.
Single-nucleus RNA sequencing (snRNASeq) has addressed these
deficiencies in other tissues, but no protocol exists for lung tissue.We
present a snRNASeq protocol and compare its results with those of
scRNASeq. Two nuclear suspensions were prepared in lysis buffer on
ice while one cell suspension was generated using enzymatic and
mechanical dissociation. Cells and nuclei were processed using the
103 Genomics platform, and sequencing data were analyzed by
Seurat. A total of 16,110 single-nucleus and 11,934 single-cell
transcriptomes were generated. Gene detection rates were equivalent
in snRNASeq and scRNASeq (z1,700 genes and 3,000 unique

molecular identifiers per cell) when mapping intronic and
exonic reads. In the combined data, 89% of epithelial cells
were identified by snRNASeq versus 22.2% of immune cells.
snRNASeq transcriptomes are enriched for transcription factors
and signaling proteins, with reduction in mitochondrial and
stress-response genes. Both techniques improved mesenchymal
cell detection over previous studies. Homeostatic signaling
relationships among alveolar cell types were defined by receptor–
ligand mapping using snRNASeq data, revealing interplay
among epithelial, mesenchymal, and capillary endothelial
cells. snRNASeq can be applied to archival murine lung
samples, improves dissociation bias, eliminates artifactual gene
expression, and provides similar gene detection compared with
scRNASeq.
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The emergence of single-cell RNA-
sequencing (scRNASeq) technologies in the
last decade has led to a rapid phase of
discovery in lung research, including the
identification of ionocytes in airway
epithelium and the characterization of
profibrotic macrophages and aberrant
basaloid cells in idiopathic pulmonary
fibrosis (1–3). An emerging alternative
to scRNASeq is single-nucleus RNA
sequencing (snRNASeq), which generates
transcriptomic information from isolated
nuclei. This approach has previously been

reported in brain (4–6) and kidney (7), and
unlike scRNASeq, it can be readily applied
to cryopreserved, archival samples.

Notably, there are additional potential
advantages to snRNASeq. Depending on
conditions, dissociation protocols used to
generate single-cell suspensions in adult
tissues can underrepresent fragile cell
types or fail to liberate matrix-embedded
mesenchymal cells. Indeed, scRNASeq data
from prior studies in mouse and human
lung have shown bias toward immune
cell types, with underrepresentation of

airway/alveolar epithelial cells and
fibroblasts (8, 9), populations that are key
drivers of pathologies such as fibrosis (10).
In addition, snRNASeq reduces sequencing
of housekeeping and mitochondrial genes
in favor of cell identity–relevant genes such
as transcription factors and long noncoding
RNA, which may improve cell-type
differentiation versus scRNASeq at a given
read depth (6, 7). Although mRNA in the
nucleus is often incompletely processed and
gene detection rates in snRNASeq are poor
when mapped to exons alone, previous
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studies suggest that its performance
matches that of scRNASeq when intronic
reads are included during alignment (6, 7).

Here, we modified an existing protocol
for the isolation of human lung nuclei,
which was developed for the Human Cell
Atlas (11), for cryopreserved mouse lung,
such that a FACS purification step was
unnecessary. In parallel, we generated
single-cell suspensions from healthy
mouse lung. We compared results
head to head in terms of sensitivity, cell
representation, transcriptional stress
response, and differential gene exp‐
ression and characterized fibroblast
diversity and intercellular receptor–ligand
signaling in our data.

Some of the results of these studies have
been previously reported in the form of a
preprint (bioRxiv, 07 March 2020 https://
doi.org/10.1101/2020.03.06.981407).

Methods

Single-Cell Preparation from Fresh
Mouse Lung
Single-cell suspensions were obtained from
the lungs of one wild-type adult C57Bl/6J
mouse by combined enzymatic and
mechanical dissociation (GentleMacs;
Miltenyibiotec), essentially as described
(12). To clear debris, red blood cells
(RBCs), and dead cells, the cell suspension
was applied to an OptiPrep density gradient
with 12%, 18%, and 30% layers and
centrifuged for 15 min at 6003 g. All cells
above the RBC layer were removed, diluted
in 50 ml PBS, centrifuged again at 1,0003 g
for 20 min, washed in 50 ml PBS 1 0.1%
BSA, counted, and diluted to 10,000
cells/ml. For 103 Chromium, 10,000 cells
were loaded per lane.

Single-Nucleus Preparation from
Frozen Mouse Lung
Lung tissue from two wild-type adult
C57Bl/6J mice was isolated at death, snap-
frozen in liquid nitrogen, and stored at
2808C. Nuclei were prepared from frozen
tissue under RNAse-free conditions by a
method adapted from an existing protocol
(11). Briefly, samples were cut to z7 mm
pieces, injected (26G needle) with 1 ml
ice-cold Nuclei EZ Lysis buffer (NUC-
101; Sigma-Aldrich) supplemented
with protease (589279100; Roche) and
ribonuclease (RNase) (N2615; Promega and
AM2696; Life Technologies) inhibitors

(250 U/ml RNasein Plus and 125 U/ml
SUPERaseIN), minced to 1–2 mm pieces
with scissors in a weigh boat with 1 ml
additional supplemented lysis buffer, then
transferred to a GentleMacs C tube. The
GentleMacs lung1 and lung2 programs were
run in sequence, and the latter stopped after
20 seconds. Foam was spun down for
1 minute at 7503 g. The suspension was
passed through a 40-mm cell strainer and
washed with 4 ml cold PBS with 0.1% BSA,
125 U/ml RNasein Plus, and 62.5 U/ml
SUPERaseIN and then passed through
a 5-mm filter (pluriSelect). Nuclei were
pelleted at 5003 g; resuspended in 13PBS
with 0.1% BSA, 250 U/ml RNasein Plus,
and 125 U/ml SUPERaseIN; counted by
hemocytometer; and diluted to 10,000
nuclei/ml. For 103 Chromium, 10,000
nuclei were loaded per lane.

Library Preparation and Sequencing
The 103 Chromium libraries were
prepared according to manufacturer
protocol (103 Genomics) using 39V3 kits
and were submitted for sequencing through
the Washington University Genome
Technology Access Center on a NovaSeq S4
flow cell to a depth of 50,000 reads/cell.
Raw sequencing data were processed using
the zUMIs pipeline (13), with removal of
low-quality barcodes followed by mapping
of the remaining barcodes to the mouse
genome (mm10) using STAR 2.5.3a.
Expression matrices containing intronic,
exonic, and intronic1exonic reads were
generated for both scRNASeq and
snRNASeq data. Further informatics
analyses are detailed in the data
supplement.

Data Availability
The accession number for the RNA-
sequencing data reported in this paper
is National Center for Biotechnology
Information Gene Expression Omnibus
GSE145998.

Results

snRNASeq and scRNASeq Have
Similar Gene Detection Rates and
Dissociation Bias Is Reduced in
snRNASeq
Initial attempts at snRNASeq in lung
were made using a previously described
protocol for mouse and human kidney
(7), but no cDNA libraries were obtained.

Hypothesizing that this preparation was
excessively harsh, we adapted an existing
protocol for human lung nuclear isolation
that eliminated Dounce homogenization
and reduced incubation time in detergent-
containing lysis buffer (11). Furthermore,
we eliminated staining and flow sorting of
nuclei, which reduced the total isolation
time to less than 30 minutes (Figure E1 in
the data supplement). Given the incomplete
processing of nuclear mRNA, we compared
gene detection when mapping to exons,
introns, or both in snRNASeq and
scRNASeq. Gene detection per nucleus was
similar to gene detection per cell provided
that both intronic and exonic reads
were included during genome mapping
(Figure 1A). Surprisingly, and contrary to
previous reports (6, 7), the inclusion of
intronic reads also improved gene detection
in scRNASeq, though to a lesser extent
(Figure 1A).

A total of 16,110 single-nucleus
libraries were generated from snap-frozen
lungs of two wild-type mice in parallel
with 11,934 single-cell libraries from one
additional mouse. Unsupervised clustering
of single-nucleus data resulted in 25 clusters
after dimensional reduction using Seurat
version 3 (Figure E2). Epithelial cell types
in snRNASeq included basal cells and
neuroendocrine cells (in one dataset, Figure
E3), which were not seen in scRNASeq
(Figure E2). To compare cell-type ratios in
snRNASeq and scRNASeq, we merged all
datasets and reclustered, with minimal batch
effect after correction with the R package
Harmony (Figures 1B and 1C). After
downsampling to an equal total number of
cells, we analyzed the relative contributions
of each technique to cell types and clusters.
Overall, scRNASeq showed bias toward
immune populations, contributing 77.8% of
these cells in the merged data, whereas
snRNASeq had more robust detection of
epithelial cells (88.7%) (Figure 1D). To
further validate these differences, we
merged our single-nucleus data with
two previous mouse 103 single-cell
transcriptomes from Reyfman and
colleagues (8), and observed similar bias
toward immune cells in scRNASeq
(Figure 1D). Although in this case alveolar
type 2 cell detection was equivalent,
all other epithelial cell types were
predominantly seen in snRNASeq (Figure
E4), and subclustering of snRNASeq data
resolved basal and goblet cells (Figure E5).
Subclustering of immune cells from the
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Figure 1. Single-nucleus RNA sequencing (snRNASeq) offers similar gene detection and improves dissociation bias compared with single-cell RNA
sequencing (scRNASeq). (A) Genes detected per cell when exonic reads alone or exonic and intronic reads are used in mapping. (B) Uniform manifold
approximation and projection plot of 27,978 nuclei and cells from merged snRNAseq and scRNASeq data (combined from three mice) with annotation
of cell types. (C) Labeling cells from snRNASeq and scRNASeq shows minimal batch effect after Harmony. (D) Percentage contributions of snRNASeq
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snRNASeq dataset resolved additional cell
types, including classical and nonclassical
monocytes, interstitial macrophages,
natural killer cells, and rare Il12b/Ccl221
dendritic cells (Figure E6). Finally,
arterial, venous, capillary, and lymphatic
endothelial cells were differentiated by
snRNASeq (Figure E7). The combined
dataset can be queried and visualized online
(http://humphreyslab.com/SingleCell/)
(Figure E8).

To determine whether observed cell-
type ratios in snRNASeq were more
representative of actual ratios in the lung,
we performed a deconvolution analysis
of an available bulk RNASeq dataset (14)
using a previously described approach (15).
Compared with a previously published
deconvolution of bulk lung RNASeq data
(16), we observed similar alveolar type 2
(AT2), alveolar type 1 (AT1), and alveolar
macrophage fractions in snRNASeq (Figure
E9). Moreover, the proportions of alveolar
epithelial cells observed in snRNASeq
approximate those reported by Weibel,
with z2:1 AT2:AT1 cells (17). Finally, a
recent publication found equal proportions
of alveolar and interstitial macrophages in
human explants, a ratio that was more
closely approximated by snRNASeq (Figure
E9) (18).

Combined snRNASeq and scRNASeq
Data: Coclustering of Mesenchymal
Cell Types and Differences in Gene
Expression Profiles
Because our scRNASeq and snRNASeq
studies detected mesenchymal populations
in similar proportion (Figure 1D), we
selected these cells for further comparison.
In the merged dataset, mesenchymal
cells formed six subclusters, including
three populations of matrix fibroblasts,
myofibroblasts, pericytes, and smooth
muscle cells (Figure 2A). All populations
contained data from nuclei and cells
(Figure 2B), further supporting the use of
these cell types for gene expression
comparisons between snRNASeq and
scRNASeq. We next asked how gene

detection differed between cells and
nuclei. We found that a large majority of
genes (96.5%) had less than 20% difference
in expression between cells and nuclei.
A total of 329 genes (1.6%) were detected
in 25% more cells than nuclei, and 122
genes (0.6%) were detected in 25% more
nuclei than cells. Screening all detected
genes (21,033) by log fold change (.0.5;
adjusted P value ,0.05) revealed that
3.0% (632) were enriched in cells and
1.4% (302) were enriched in nuclei
(Figure 2D). We next performed gene
ontology enrichment analysis on the cell
versus nucleus-enriched genes.
Unsurprisingly, genes associated with
scRNASeq were related to ribosomal
assembly, translation, stress responses,
and apoptotic signaling, with the latter
potentially reflecting cell stress during
dissociation (Table 1). snRNASeq-
predominant genes were highly enriched
for calcium transport, membrane
depolarization, Slit/Robo signaling, and
cAMP metabolism (Table 2).

The scRNA-seq dataset was enriched
for genes encoding mitochondrial,
ribosomal, and heat shock proteins
(Figure 2E). An advantage of snRNASeq
over scRNASeq in other tissues has been
reduced artifactual expression of stress-
response genes, which are known to
be induced during proteolysis at 378C
(19). We detected strong expression of the
immediate early gene Fos in all cell types
from scRNASeq but not snRNASeq
(Figure 2F). A panel of stress-induced
genes, including AP1 (activator protein-1)
transcription factor component Jun,
immediate early genes Ier2 and Ier3, and
stress sensor Atf3, showed expression
primarily in the single-cell dataset
(Figure 2G). Genes more readily detected
in nuclei included multiple transcription
factors, ion channels, and signaling proteins
(Figure 2H).

Contamination from highly expressed
genes in abundant cells (e.g., airway and
alveolar epithelium) is a well-described
phenomenon in single-cell and single-

nucleus transcriptomics. Although both
mesenchymal populations from snRNASeq
and scRNASeq showed contamination with
epithelial genes, likely reflecting ambient
mRNA, this was more significant in
snRNASeq (Figure E10), contrary to
previous results in the kidney (7). To
address the presence of contaminant genes,
we employed the R package SoupX, which
estimates the content of background
contamination and removes counts
according to an estimated contamination
fraction (20). Although many genes showed
improved cell type restriction after SoupX
using 10% or 20% assigned contamination,
there was minimal effect on epithelial
background genes such as Sftpc, and gene
counts per cell were reduced in proportion
to assigned contamination fraction (Figure
E11).

Defining Mesenchymal Cell
Subpopulations
Previous lung scRNASeq analyses in mice
and humans have underrepresented matrix-
embedded mesenchymal populations such
as fibroblasts (8, 9), which are less easily
liberated during enzymatic digestion. We
identified six mesenchymal subpopulations
in our merged dataset (Figure 2A),
including three distinct populations of
Pdgfra1 fibroblasts (Figures 3A and 3B).
Although prior analyses have distingui‐
shed Col14a1- and Col13a1-expressing
fibroblasts, the Col13a11 population in our
data contained two cell subtypes, with the
first characterized by the expression of
Bmper, Fat3, and Fgfr4 and the second by
Brinp1 and Nalcn (Figures 3B and 3C).
Col14a11 fibroblasts additionally express
Dcn and transcription factor–encoding Ebf2
(Figure 3C). Pericytes were defined by the
expression of Pdgfrb and expressed Notch3
and Pde5a (Figure 3C). Smooth muscle
cells and myofibroblasts were also
detected by snRNASeq and scRNASeq.
Myofibroblasts were Aspn, Grem2,
and Hhip1, and they also expressed
Mapk4, which encodes atypical mitogen
activated protein (MAP) kinase Erk4 and

Figure 1. (Continued ). and scRNASeq to cell categories after random downsampling to equalize numbers of cells and nuclei. Results from the present
study (left) and after merge with a previously published scRNASeq dataset (right). aEC=arterial endothelial cells; AM=alveolar macrophages;
AT1= alveolar type 1 epithelial cells; AT2= alveolar type 2 epithelial cells; BC=B cells; CapEC=capillary endothelial cells; Col13a1= collagen type XIII a 1
chain; Col14a1=collagen type XIV a1 chain; DC=dendritic cells; Div =dividing cells, EC=endothelial cells; Epi = epithelial; FB=fibroblasts; GB=germinal
B cells, IM= interstitial macrophages; Imm= Immune; LEC= lymphatic endothelial cells; Mes=mesothelial cells; Meso=mesothelial cells; Mono=monocytes;
MyoFB=myofibroblasts; NK=natural killer cells; pDC=plasmacytoid dendritic cells; Peri = pericytes; PMN=neutrophils; SMC=smooth muscle cells;
TC=T cells; uMAP=uniform manifold approximation and projection; vEC= venous endothelial cells.
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has not previously been described as a
myofibroblast marker (Figure 3C). Smooth
muscle cells were marked by Acta2, Myh11,
and Myocd (Figure 3C).

Receptor–Ligand Interactome for the
Alveolar Compartment Based on
snRNASeq Data
Cell type–specific transcriptomic data allow
mapping of potential receptor–ligand
interactions among cell types in anatomic
proximity. Because alveolar cell types were
well represented in snRNASeq, we sought
to define these signaling interactions in
the alveolar compartment under control
conditions by cross-referencing our
differentially expressed gene lists against
an available receptor–ligand interaction
database (21). AT1 cells encode multiple
signaling proteins, including Vegfa and
Pdgf, whose corresponding receptors are
found in endothelial cells and fibroblasts
(Figure E12), whereas additional Pdgf
isoforms were produced by alveolar
macrophages and capillary endothelial cells.
Fibroblast signaling to epithelial cells occurs
via Wnt5a and Igf1.

Discussion

Although scRNASeq has led to important
discoveries in the lung, the application of this
technology has practical limitations, perhaps
the most important of which is the need for
fresh tissue. Nuclear dissociation can be
performed on cryopreserved samples, and we
adapted the current protocol from an existing
method available for human lung nuclear
isolation for snRNASeq (11). Nuclear RNA
quality is difficult to assess, and which
aspects of the kidney protocol led to poor
RNA quality are uncertain. RNase activity
is reportedly orders of magnitude higher in
the lung than in the kidney (22), and
although we used similar RNase inhibitor
concentrations in both protocols, there
may be benefits to higher inhibitor
concentrations in the lung. We also reduced
the total preparation time (eliminating
nuclear staining and flow sorting), which
should reduce RNA degradation. Finally,
removing incubation steps that prolong
exposure to detergent and dissociating tissue
with GentleMacs rather than Dounce
homogenization may protect nuclear
membrane integrity. It is a significant
limitation of the present study that the above
variables (RNase inhibitor concentrations,

Table 1. GO Analysis of Enriched Genes from scRNASeq by Fold Enrichment

GO Biological Process Fold Enrichment P Value

Cellular response to corticotropin-releasing hormone
stimulus (GO: 0071376)

27.23 6.1931024

Response to corticotropin-releasing hormone (GO:
0043435)

27.23 6.1931024

Ribosomal small subunit assembly (GO: 0000028) 24.21 6.87310212

Response to selenium ion (GO: 0010269) 21.79 9.7031024

Positive regulation of intrinsic apoptotic signaling
pathway by p53 class mediator (GO: 1902255)

18.16 2.1331024

Cytoplasmic translation (GO: 0002181) 16.8 5.21310225

Amyloid fibril formation (GO: 1990000) 16.51 4.6531025

Positive regulation of cell–cell adhesion mediated by
integrin (GO: 0033634)

15.56 2.0031023

Blood vessel maturation (GO: 0001955) 15.56 2.0031023

Regulation of keratinocyte apoptotic process (GO:
1902172)

15.56 2.0031023

Positive regulation of B-cell receptor signaling
pathway (GO: 0050861)

15.56 2.0031023

Regulation of endodeoxyRNase activity (GO:
0032071)

15.56 2.0031023

Negative regulation of ubiquitin protein ligase activity
(GO: 1904667)

14.53 4.1331024

Positive regulation of endothelial cell differentiation
(GO: 0045603)

14.12 3.0331026

Cellular response to UV-B (GO: 0071493) 13.62 2.6931023

Positive regulation of necrotic cell death (GO:
0010940)

13.62 2.6931023

Definition of abbreviations: GO=gene ontology; scRNASeq= single-cell RNA sequencing;
UV-B=ultraviolet B light.

Table 2. GO Analysis of Enriched Genes from snRNASeq by Fold Enrichment

GO Biological Process Fold enrichment P Value

Regulation of negative chemotaxis (GO: 0050923) 56.49 7.4931025

Positive regulation of calcium ion transmembrane
transport via high voltage-gated calcium channel
(GO: 1904879)

56.49 7.4931025

Negative regulation of chemokine-mediated
signaling pathway (GO: 0070100)

37.66 1.7631024

Roundabout signaling pathway (GO: 0035385) 37.66 1.7631024

Regulation of calcium ion transmembrane transport
via high voltage-gated calcium channel (GO:
1902514)

34.24 1.4531024

Regulation of systemic arterial blood pressure by
baroreceptor feedback (GO: 0003025)

32.28 2.5031024

Regulation of chemokine-mediated signaling
pathway (GO: 0070099)

32.28 2.5031024

Peptidyl-serine autophosphorylation (GO: 0036289) 28.25 3.4031024

Membrane depolarization during cardiac muscle cell
action potential (GO: 0086012)

25.11 4.6431025

Olfactory bulb interneuron development (GO:
0021891)

25.11 4.4931024

cAMP metabolic process (GO: 0046058) 21.52 7.6431025

Micturition (GO: 0060073) 20.54 7.2831024

cAMP biosynthetic process (GO: 0006171) 20.54 7.2831024

Aortic valve morphogenesis (GO: 0003180) 15.86 2.1031024

Cell–cell signaling involved in cardiac conduction
(GO: 0086019)

13.7 3.4431024

Positive regulation of chondrocyte differentiation
(GO: 0032332)

13.1 4.0031024
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incubation times, dissociation methods, etc.)
were not systematically optimized, leaving
room for additional improvements to our
protocol. An additional limitation is that we
did not attempt our protocol on human

samples, though our experience in kidney
suggests that generation of high-quality
snRNASeq data from cryopreserved
human tissue is possible without flow
sorting (23).

The inclusion of intronic and exonic
reads when mapping snRNASeq reads is
known to improve gene detection, as
confirmed in our data. Less expected was the
effect of intron inclusion on scRNASeq data,
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Figure 3. Characterization of mesenchymal cell types from combined single-cell RNA-sequencing and single-nucleus RNA-sequencing data. (A) Among
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which was substantial, though smaller in
magnitude than for snRNASeq, and has not
been observed in previous snRNASeq/
scRNASeq comparisons (6, 7). This
phenomenon may relate to tissue- or cell
type–specific differences in RNA processing
or to proprietary chemistry changes
in newer 103 Genomics 39v3 kits
(e.g., harsher in-droplet lysis conditions
leading to nuclear membrane disruption
and the release of nuclear mRNAs).

We observed bias toward the
detection of immune cell types with
scRNASeq. Although our cell isolation
protocol differs from previously published
approaches in its use of mechanical
dissociation with GentleMacs and use of an
OptiPrep gradient to exclude RBCs and
remove dead cells and degraded nucleotides
(in lieu of RBC lysis and annexin V–based
dead cell removal steps), we observed
similar disparities when comparing
snRNASeq data with published scRNASeq
data. Rare epithelial populations including
neuroendocrine cells and basal cells were
seen exclusively in snRNASeq, and club
cells, ciliated cells, and AT1 cells were
also predominantly found in snRNASeq
data.

Contamination with ambient RNA
was more significant in single-nucleus

data, particularly with highly expressed
epithelial genes such as Scgb1a1. Further
nuclear isolation protocol modifications
(e.g., additional pellet washes) might
address this limitation. Many genes in
snRNASeq (and scRNASeq) showed
reduced “off-target” expression with
SoupX decontamination, although the
epithelial genes that appear to be major
sources of contamination were minimally
affected. We did not incorporate this
approach into our workflow given the
reduction in gene detection rate at high
contamination fractions and concern for
information loss. As previously reported,
scRNASeq was also associated with off-
target gene detection in the form of stress-
response/apoptotic genes and
mitochondrial/ribosomal genes, which may
not be of interest in defining cell types or
states (6, 7).

Previous studies have specifically
explored the diversity of lung mesenchymal
cells through lineage tracing and microarray
(24) or scRNASeq (25), generally selecting
cells by flow cytometry before expression
profiling. Through an unbiased whole
organ approach using snRNASeq, we
identified several mesenchymal cell
types, including previously undescribed
heterogeneity among Pdgfra1/Col13a11

fibroblasts. In addition, resting
myofibroblasts with relatively low Acta2
and high Hhip/Lgr5 expression were
identified, similar to previous reports
(25, 26).

We also interrogated the data for
ligand–receptor interactions in the alveolar
compartment. AT1 cells are a robust source
of signaling ligands in the alveolus at
homeostasis, such as Bdnf, Pdgfa, Vegfa,
and Wnt3a, consistent with prior reports in
mice and a large human single-cell dataset
(3, 27, 28). Wnt5a, which maintains
stemness in AT2 cells via Ror1, and Slit2,
whose loss of expression in fibrosis may
drive fibrocyte differentiation, were among
the ligands produced by mesenchymal cells
(29, 30).

Conclusions
snRNASeq is feasible from cryopreserved
lung, and our simplified protocol eliminates
the need for FACS purification. In
comparison with scRNASeq, our protocol
offers equivalent gene detection, eliminates
artifactual transcriptional stress responses,
and delivers a much higher proportion of
epithelial cells. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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