
PHOSPHOLIPASE C

Colin A. Bill, PhD, Charlotte M. Vines, PhD
The University of Texas at El Paso, Border Biomedical Research Center, Department of Biological 
Sciences, 500 West University Avenue, El Paso, TX 79968

Abstract

Phospholipase C (PLC) family members constitute a family of diverse enzymes. Thirteen different 

family members have been cloned. These family members have unique structures that mediate 

various functions. Although PLC family members all appear to signal through the bi-products of 

cleaving phospholipids, it is clear that each family member, and at times each isoform, contributes 

to unique cellular functions. This chapter provides a review of the current literature on PLC. In 

addition, references have been provided for more in-depth information regarding areas that are not 

discussed including tyrosine kinase activation of PLC. Understanding the roles of the individual 

PLC enzymes, and their distinct cellular functions, will lead to a better understanding of the 

physiological roles of these enzymes in the development of diseases and the maintenance of 

homeostasis.
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Discovery

In 1953, it was reported that the addition of acetylcholine or carbamylcholine to pancreatic 

cells led to the production of phospholipids [1]. In these studies, 32P was used to detect a 

seven-fold increase in the levels of phospholipids in the samples treated with the drugs, 

when compared with control slices, which had remained un-stimulated. Although 

unrecognized at that time, this was the first evidence of the presence of phospholipase C 

(PLC) function in cells. More than 20 years later, in 1975, it was shown that impure 

preparations of PLC could be used to cleave phosphatidylinositol [2]. In 1981, the first 

purified preparation of PLC was isolated [3]. A couple of years later it was found that the 

inositol 1,4,5 trisphosphate (IP3) generated from the cleavage of phosphatidyl inositol 4,5 

bisphosphate (also known as PI (4,5)P2 or PIP2) could induce the release of Ca2+ from 

intracellular stores [4] (Figures 1 and 2). This important observation provided new insight 

into the function of PLC in living organisms. Eventually, the PLCβ, PLCγ, PLCδ, PLCε, 

PLCη and PLCζ cDNAs were cloned [5–10]. Although PIP2 is a minor phospholipid in the 
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plasma membrane, it plays a central role in regulating a host of cellular processes. PLC is 

activated following stimulation of cells by either tyrosine kinase receptors, T-cell receptors, 

B-cell receptors, Fc receptors, integrin adhesion proteins or G protein-coupled receptors via 

cognate ligands including neurotransmitters, histamine, hormones and growth factors [11–

15]. Signaling through PLC family members regulates diverse functions, which will be 

outlined within this chapter. In addition, we will discuss PLC mediated signaling, common 

structural domains found in this family of enzymes, current knowledge about the isoforms 

and areas that have yet to be explored.

Cleavage of PIP2 and signaling

PLC is a cytoplasmic protein that controls the levels of PIP2 in cells by localizing within or 

outside of lipid rafts in the plasma membrane and catalyzing the hydrolysis of 

phosphorylated forms of phosphatidyl inositol in response to cellular stimuli (Figures 1 and 

2). These enzymes have been reported to increase the rate of lysis of phosphatidyl inositol 

>1000s−1 at 30°C at low concentrations of substrate, but is likely to reach rates of >5000s−1 

(as reviewed by [16]). Therefore, targeting of PLC to the plasma membrane plays a critical 

role in the functioning of this enzyme. The preferred substrate of PLC is PIP2, a relatively 

uncommon phospholipid in the plasma membrane, followed by phosphatidyl inositol 

phosphate (PIP), and then phosphatidyl inositol (PI). Cleavage of PIP2 leads to the 

generation of two products. One product, diacylglycerol (DAG), activates the calcium 

dependent protein kinase C (PKC), which then phosphorylates downstream effectors such as 

AKT to activate an array of cellular functions including regulating cell proliferation, cell 

polarity, learning, memory and spatial distribution of signals [17, 18]. DAG, which remains 

membrane bound, can then be cleaved to produce another signaling molecule, arachidonic 

acid. The second product of PLC action on PIP2, IP3 is a small water-soluble molecule, 

which diffuses away from the membrane, and through the cytosol to bind to IP3 receptors on 

the endoplasmic reticulum inducing the release of Ca2+ from intracellular stores found 

within the organelle [4]. In turn, the cytoplasmic calcium levels are quickly elevated and 

cause the characteristic calcium spike that signals cell activation. Once the endoplasmic 

reticulum stores have been used up, they are replenished through the store-operated calcium 

channels. Ca2+ activates downstream transcription factors resulting in a plethora of gene 

activation pathways. In this way, signaling through PLC regulates proliferation, 

differentiation, fertilization, cell division, growth, sensory transduction, modification of gene 

expression, degranulation, secretion and motility [15, 19–26].

Structure of PLC

There are thirteen different PLC family members that can be subdivided into six classes, β, 

γ, δ, ε, η and ζ (Figure 3). Different isoforms have been discovered in a wide range of 

species including mouse, rat and cattle. PLC-like isozymes have been found in Drosophila 
melanogaster, Glycine max (soybean), Arabidopsis thaliana, Saccharomyces cerevisiae and 

Schizosaccharomyces pombe [27, 28]. Overall, there is a low level of amino acid 

conservation between the family members; however, the similarity of the pleckstrin 

homology domains, the EF hand motifs, the X and Y domains and the C2 domains is greater 

than 40-50% [15]. Since these domains are common to all organisms they might represent a 
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minimum requirement for a functioning PLC [29]. With the exception of the PH domain, 

which is not expressed on PLCζ, each family member shares all of the core domains. A 

description of each domain follows:

Pleckstrin Homology (PH) Domains—As mentioned, with the exception of PLCζ, all 

PLC family members have N-terminal pleckstrin homology (PH) domains which consists of 

approximately 120 amino acids, and is the eleventh most common domain in the human 

genome. PH domains are found in a large number of distinct protein families involved in 

signal transduction [30]. PH domains can mediate recruitment of the PLC family members 

to the plasma membrane via phosphoinositides. Computer simulations and crystal structures 

of the PH domain found in kindlins, proteins which co-activate integrin adhesion proteins, 

have revealed that PH domains consist of 7 beta sheets and an alpha helix, and that the beta 

sheets form the PIP2 binding site [31]. Surface plasmon resonance studies have revealed a 

1mM affinity for PIP2 within lipid bilayers.

Notably, membrane binding of PLCδ to PIP2 is blocked by high levels of intracellular Ca2+ 

in hepatocytes due to generation of phosphoinositides [32]. This may also be due to the 

ability of Ca2+ to regulate the conformation of the headgroup of PIP2 [33]. Unlike the PH 

domain of PLCδ1, which uses the PH domain to bind to the PIP2 in the membrane, the PH 

domain of PLCβ2, cannot bind to phosphoinositides [34].

PLCγ contains 2 PH domains, one in the N-terminus and a C-terminal split PH domain. 

This PH domain of PLCγ is unique, since it is split between two tandem Src homology 

domains [35]. Early on, it was found that the carboxy-terminal region of the PH domains of 

PLCγ, PLCβ2 and PLCβ3 control the binding of heterotrimeric G protein βγ subunits to 

PLC following activation of G protein-coupled receptors [36, 37]. Interestingly, the binding 

of Gβγ to the PH domain, and the binding of Gβγ to Gα are mutually exclusive [36]. 

Therefore, this competition for binding to Gβγ implicates PLC activation in preventing the 

regeneration of the Gα/Gβγ heterotrimeric G proteins. In this way[34], PLC activation may 

regulate the signaling of proteins that are turned on in response to stimulation of G protein-

coupled receptors. Additionally, downstream of SDF1α (CXCL12) binding to the G protein-

coupled receptor CXC chemokine receptor 4 (CXCR4), the PH domains of PLCε1 promote 

lipase independent activation of Rap1, which leads to β2-integrin-mediated recruitment and 

adhesion of T-cells to sites of inflammation [38]. Overall, from these observations it can be 

inferred that PH domains have multiple roles in regulating the signaling via PLC.

In contrast to PLC signaling through heterotrimeric G-protein, it should be noted that Rap1 

which belongs to the Rap-family of small GTPases and Ras-family small GTPases are also 

involved in PLC signaling. Rap and Ras are small, closely related GTP binding proteins. 

While Rap is an important factor in cell junctions and cell adhesion, Ras is linked to cell 

proliferation and survival [39]. Both of these small, monomeric G proteins also play critical 

roles in signaling through PLC as will be discussed below:

EF-hand motifs: The EF-hand motifs are helix-loop-helix motifs present in a number of 

calcium-binding proteins, such as myosin, calmodulin, calreticulin and troponin [40]. EF-

hand motifs were first described for PLC when the crystal structure analysis of PLCδ1 
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revealed the characteristic helix-loop-helix motifs [41]. Within PLC, the EF-hand is part of 

the catalytic core that consists of an EF-hand, the X and Y and the C2 domains ([41] and see 

below). Upon binding to Ca2+, the structure of PLC is stabilized as the EF-hand motifs 

undergo a conformational change to activate calcium-regulated functions, by exposing sites 

that become ligands for other proteins [42]. For example, in PLCβ, the EF-hands contain 

sites that mediate association with subunits of heterotrimeric G proteins, while in PLCγ, the 

EF-hands contain regions that lead to binding of tyrosine kinases [43]. Independent of the 

Ca2+ concentration, deletion of the EF-hands in the enzyme reduces PLC function, [44]; 

however, binding of Ca2+ to the EF-hand motifs can promote binding of PLC to PIP2 via the 

PH domain. Lacking a PH domain, PLCζ may bind to membrane PIP2 via cationic residues 

in the EF-hand [45] as well as the X-Y linker (as reviewed [46]).

X and Y domains: So far, only PLCδ1 and PLCβ2 have been crystallized and their 

structures analyzed [34, 41]. The X and Y domains consist of approximately 300 amino 

acids and lie at the C-terminus of the EF-hand motifs. These domains consist of alternating 

α-helices and β-sheets that form aβaβaβaβ motif with a triosephosphate isomerase (TIM) 

barrel-like structure [41]. The X-region, containing all of the catalytic residues, is somewhat 

conserved across the PLC family members [27, 41]. The X-region forms one half of the 

TIM-barrel like structure. Within the X-region lies histidine residues that support the 

generation of the 1,2 cyclic inositol 4,5-bisphosphate [47]. The catalytic activity of this 

domain increases as the concentration of Ca2+ rises from 0.01μM to 10μM. Mutational 

analysis of rat PLCδ1 revealed that histidine311 and histidine356 , which are crucial for 

catalyzing the hydrolysis of PIP2, have an important role within the X domain [47]. These 

residues are well conserved in PLC family members [47].

Structurally, the Y-domain (residues 489-606) forms the other half of the TIM-barrel-like 

architecture. This eightfold barrel structure is almost always found within an enzyme that 

regulates metabolism [48], although the functions of the enzymes are quite diverse. With the 

exception of an extended loop connection between the β5 and β6 strand, instead of a helix, 

this domain forms the second half of the TIM-barrel-like structure. This Y-domain is 

important for substrate recognition and regulates the preference of PLC for PIP2, PIP and PI 

[49, 50].

PLCγ contains a unique region that splits the X and Y domains. This region contains the 

split PH domains at the ends and the middle consists of two N-terminal src homology (SH2) 

domains followed by an SH3 domain. The SH2 domains provide docking sites for tyrosine 

kinase growth factor receptors such as the platelet derived growth factor receptors 

(PDGFRs) and the epidermal growth factor receptors (EGFRs) to promote activation of this 

PLC family member [51–53]. The binding of tyrosine kinase receptors to PLCγ results in 

phosphorylation and activation of the enzymes [54, 55]. The SH3 domain directs the cellular 

localization of signaling proteins such as dynamin and the actin cytoskeleton. In addition, 

the SH3 domains have been found to mediate nerve growth factor-induced cell proliferation 

through activation of a guanine nucleotide exchange factor for phosphoinositide 3 kinase 

(PI3K) [56, 57].
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C2 domains: C2 domains are formed from about 120 amino acids [58] and can be found in 

more than 40 different proteins [41]. These motifs have several binding targets and have 

been implicated in signal transduction and membrane interactions. The C2 domains found 

within PLC family members are formed by an eight-stranded anti-parallel β-sandwich [41]. 

There are between three and four C2 domains found within PLCδ family members. In 

combination with Ca2+, the C2 domain mediates the binding of PLCδ1 to anionic 

phospholipids to mediate signal transduction and membrane trafficking [43]. C2 domains 

have common structural motifs, which are found in PKCβ, rabphilin 3A [59, 60], and 

synaptotagmin I [61]. High cooperativity of calcium-dependent phospholipid binding sites 

implies that there are multiple sites that bind Ca2+, which function synergistically [43].

C2 domains belong to the non-continuous Ca2+-binding sites in which the Ca2+-binding 

pockets are found far from each other in the amino acid sequence. In contrast EF-hands have 

binding pockets for Ca2+produced by a stretch of continuous amino acids in the primary 

sequence [62, 63]. Functionally, the EF-hand motif, the most common Ca2+ binding motif in 

proteins, may compete for binding to Ca2+ with the C2 domains. The affinity of the EF-hand 

for Ca2+ is within the nanomolar to millimolar range, which overlaps the micromolar to 

millimolar binding constants of C2 domains [64, 65]. This broad affinity of C2 domains for 

[Ca2+] reflects the diversity of the functions of proteins containing the C2 domains over a 

wide range of calcium concentrations [66–68].

PDZ domains: PDZ (Post synaptic density (PSD)-95, Drosophila disc large tumor 

suppressor (DlgA), and Zonula occludens-1 protein (zo-1)) regions are separate from C2 

domains, and are found in the C-terminal tails of PLCβ and PLCη lipases (Figure 1) [58]. 

The PDZ domains are formed by 5 of 6 β-strands and 2 or 3 α-helices [69]. This common 

structural motif is found in many signaling proteins, where it functions as a scaffold for large 

molecular complexes [70]. In this way, the motif links many proteins to signaling from the 

cytoskeletal membranes. It has been postulated that each PLCβ form may be used by 

different G protein-coupled receptors in regulating signaling events [71]. The sequences 

within the last five amino acids of the C-terminus are thought to regulate the specificity of 

the interaction of PLC with the Gα or Gβγ subunits [72].

Roles of each PLC

As mentioned, there are six PLC family members (β, γ, δ, ε, η and ζ ) consisting of thirteen 

different PLCs identified based on structure (Figure 3) and activation mechanism. There is 

no alpha form of PLC, since the protein that was originally described as the α form turned 

out to be a protein disulfide isomerase without phospholipase activity [73]. Under most 

conditions, PLC is a cytoplasmic protein that moves to the plasma membrane. Its role within 

the membrane lipid rafts is somewhat controversial. For instance, PLC has been shown to 

accumulate within lipid rafts that consist of cholesterol, sphingomyelin and ceramide, 

Xenopus egg activation, catalyzing the hydrolysis of PIP2 within these frog eggs [16, 74]. In 

contrast, PLC associates with the tyrosine kinase HER2 within non-raft domains in ovarian 

cancer cells [72]. In eggs and in ovarian cancer cells, PLC catalyzes hydrolysis of PIP2 to 

promote classic functions (Figure 3). With the exception of PLCγ2, there have been splice 

variants reported for each PLC isoform (as reviewed by [44] and [28]). For PLC a different 
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gene encodes each isoform. The diversity of the PLC isoforms is created with splice 

variants. PLC isoforms are quite distinct in regard to tissue distribution, cell localization, 

expression and regulation. PLCβ and PLCγ are typically activated by extracellular stimuli 

and are termed first line PLC’s, whereas PLCδ, ε, η and ζ are activated by intracellular 

stimuli and known as secondary PLC’s [75]. For the purposes of this chapter, we will focus 

on the general properties described for each isoform.

PLCβ1,2,3,4

There are four isoforms of PLCβ that range in size from 130kDa for PLCβ4, 140kDa for 

PLCβ2, 150kDa for PLCβ1 and 152kDa for PLCβ3. In addition, splice variants have been 

reported for each of these isoforms [76–78]. The PLCβ subfamily consists of a well-

conserved core structure with an N-terminal PH domain, four EF-hands, a split X +Y 

catalytic domain, C2 domain and an extended C-terminal domain (Figure 3). The catalytic 

domain being the most conserved domain of all PLC’s isozymes with a substrate preference 

for PIP2 over PIP and PI [79]. PLCβ family members show distinct tissue expression and G 

protein regulation. PLCβ1 and PLCβ3 are ubiquitously expressed, whereas PLCβ2 and 

PLCβ4 are found only in hematopoietic and neuronal tissues, respectively [80]. These well-

characterized isoforms of PLC are classically activated by G protein-coupled receptors and 

their catalytic activity is entirely dependent upon Ca2+. All four PLCβ isoforms are activated 

by Gαq subunit. PLCβ2 and PLCβ3 can also be activated by βγ subunits of the Gαi/o family 

of G proteins and by small GTPases such as Rac and Cdc42 (Figures 1 and 3). In addition, 

PLCβ’s are GTPase-activating proteins (GAPs) for the Gαq proteins that activate them [80, 

81]. While Gαq, Gα11, and Gα16 can activate PLCβ1, PCLβ2 and PLCβ3 family members 

[82]. In this case, the G protein-coupled receptor is stimulated by binding to its ligand, 

undergoing a conformational change to release Gαq or Gαi/o and Gβ/γ [81, 83, 84]. PLCβ is 

recruited to the membranes through interactions with Gβγ, but not Gαq [85]. In addition, 

PLCβ is recruited only through specific Gα subunits and the Gβγ subunits. These studies 

demonstrate that the PLC family members respond not only to Gα, but to Gβγ as well [37, 

86]. Phosphoinositide-specific-phospholipase C β (PLCβ) is the main effector of Gαq 

stimulation that is coupled to receptors binding acetylcholine, dopamine, bradykinin, 

angiotensin II, other hormones and neurotransmitters [87].

The PLCβ family members have an additional 450 amino acid residues in the C-terminus 

(Figure 3). While all PLCβ family members have been found in the nucleus, PLCβ1 is the 

major nuclear PLC [88–90]. Within this C-terminal 450 amino acid region, lies the greatest 

dissimilarity between PLC family members. In this region of the PLCβ1a and 1b splice 

variants is a nuclear localization signal, which directs localization of PLCβ1 isoforms, 

mostly to the nucleus while a nuclear export signal allows PLCβ1a to remain in the cytosol 

[77]. The likely consequence of DAG generation inside the nucleus is activation of nuclear 

PKC [91, 92]. Nuclear PLCβ1 regulates the cell cycle by modulating cyclin levels with cells 

overexpressing PLCβ1 producing increased levels of Cyclin D3 and a higher percentage of 

cells in S phase, in an erythroleukemia cell line [92, 93]. The binding site for Gαq is found 

within a region that mediates activation of Gαq by regulator of G protein signaling 4 

(RGS4) and G alpha interacting protein (GAIP), which are GTPase-activating proteins 
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(GAPs)[94]. This binding site blocks activation of PLCβ [95]. PLCβ1 is expressed at high 

levels in the cerebral cortex, retina, hippocampus and cardiomyocytes [96–98].

As mentioned, the expression of PLCβ2, which shares 48% identity with PLCβ1, appears to 

be restricted to cells of the hematopoietic lineages [99]. PLCβ2 can be activated by Rac, a 

member of the Rho-family of kinases [100]. The PH domain of PLCβ2 mediates binding of 

active forms of Rac (Rac1, Rac2 and Rac3), which leads to activation [101]. In contrast to 

PLCβ1 and PLCβ2, PLCβ3 lacks 10-20 amino acids within its C-terminus [102], although 

the significance of this difference is unknown. This PLC isoform is expressed by liver, brain 

and parotid gland [102].

PLCβ1 and PLCβ4 are expressed within the brain including the cerebral cortex, amygdala, 

hippocampus, and olfactory bulb and are thought to be involved in brain development and 

synaptic plasticity [91, 103–105]. Mis-regulation of PLCβ1 and/or PLCβ4 have been linked 

to several brain conditions such as schizophrenia, epilepsy, depression, Alzheimer’s disease, 

bipolar disease and Huntington’s disease [105–107]. In addition, studies of PLCβ1−/− mice 

revealed roles for PLCβ1 in regulating vision and central nervous system homeostasis and 

loss of PLCβ1 can lead to seizures and sudden death [108].

PLCβ1 plays important roles in cell differentiation, particularly in osteogenesis, 

hematopoiesis and myogenesis [79, 80, 109]. At least for myogenic differentiation, PLCβ1 

signaling involves inositol polyphosphate multikinase and β -catenin as downstream 

effectors. By means of c-jun binding to cyclin D3 promoter, the activation of PLC β 1 

pathway determines cyclin D3 accumulation and muscle cell differentiation [110]. Also, 

PLCβ participates in the differentiation and activation of immune cells involved in both the 

innate and adaptive immune systems including, macrophages, neutrophils, mast cells, T cells 

and B cells [79]. Consistent with a role of PLCβ3 in neutrophil development, it was reported 

that PLCβ3−/− mice develop myeloproliferative neoplasm with increased mature neutrophils 

[80].

A role for PLCβ in several cancers has been proposed. Recently, it has been reported that 

PLCβ2 acts as a negative regulator of triple negative breast cancer since up-regulation in 

invasive triple negative breast cancer cells was sufficient to lower the expression of surface 

antigens required for malignancy and to reduce the number of cells with a stem-like 

phenotype suggesting that enhancing PLCβ2 expression is a potential therapy for triple 

negative breast cancer [111]. Similarly, a high expression of PLCβ1 was associated with an 

enhanced long-term survival of patients with a proneural subtype high grade gliomas [112] 

and patients affected by myelodysplastic syndromes showed a reduced propensity to develop 

acute myeloid leukemia when the expression of nuclear PLCβ1 was reduced [91].

PLCγ1,2

There are two isoforms of PLCγ, PLCγ1 and PLCγ2. PLCγ1 is ubiquitously expressed, 

and operates downstream of tyrosine kinase growth factor receptors such as vascular 

endothelial growth factor (VEGF), fibroblast growth factor (FGF), PDGF and EGF, whereas 

PLCγ2 is primarily expressed in hematopoietic cell lineages, often functioning downstream 

of immune cell receptors (Figure 1 and [113, 114]). PLCγ subtypes are primarily activated 
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by receptor tyrosine kinases (RTKs). Both PLCγ1 [115] and PLCγ2 can be activated by 

adhesion receptors, such as integrins [116]. PLCγ1 signaling acts via direct interactions with 

other signaling molecules via SH domains, as well as its lipase activity [117]. Some PLCγ 
signaling via nonreceptor tyrosine kinases has been reported [118, 119], including the B-cell 

receptor and via the Spleen tyrosine kinase (Syk)-activated PLCγ2 signaling in T cells[120] 

or osteogenic differentiation of bone marrow stromal cells [121]. PLCγ has important roles 

in differentiation, proliferation, transformation, calcium flux and tumorigenesis [22, 25, 122, 

123]. In addition, it has been shown that PLC γ1 is activated by Src tyrosine kinase in 

Xenopus [124].

PLCγ can regulate proliferation by functions that are independent of its lipase activity. One 

example is that DNA synthesis does not require phospholipase function, but instead is 

regulated through the SH3 recruitment of a Ras exchange factor, SOS1 [125]. In addition to 

the PH domain found in the N-terminus, these PLCγ family members have a second PH 

domain, which is split into an N-terminal domain of the PH domain that flanks two SH2 

domains, followed by an SH3 domain and a C-terminal PH domain (Figure 3). This C-

terminal is thought to bind directly to the TRPC3 calcium channel, which then leads to 

agonist-induced calcium entry into the cell [35]. In addition, Vav1, c-Cbl and Slp76, via 

interactions with either the SH3 domain or the C-terminal SH2 domain are also required to 

help stabilize the recruitment of PLCγ1to the plasma membrane [126]. PLCγ2 and PKC are 

important upstream signals of macrophage-colony stimulating factor (M-CSF) and 

granulocyte-colony stimulating factor (G-CSF) that regulate myelopoiesis through cytokine 

production. These pathways activate ERK1/2, NFAT and JAK1/STAT-3 pathways [127]. 

PLCγ isoforms have been reported to be expressed in several innate immune cell types, 

including natural killer cells, macrophages, neutrophils and mast cells [128–131]. PLCγ 
activates the innate immune system by regulating respiratory bursts, phagocytosis, cell 

adhesion, and cell migration. PLCγ also modulates the inflammatory response by 

controlling Toll-like receptor-mediated signaling [132]. T cells express more PLCγ1 than 

PLCγ2 and PLCγ1 is activated by ligation of the T cell antigen receptor [126] and 

recruitment of PLCγ1 by Linker of Activated T cells (LAT) to the plasma membrane [133]. 

Phosphorylated LAT, in turn, serves as the primary docking site for the amino terminal SH2 

domain of PLCγ1 to the membrane [134, 135]. All three SH domains of PLCγ1, however, 

are required to stabilize association of PLCγ1 with LAT, which is required to activate T cells 

[126]. Following engagement of the TCR, PLCγ1 production of DAG leads to activation of 

not only PKC, but also Ras guanyl releasing protein (GRP)-dependent signaling events [136, 

137].

PLCγ1 is also activated by certain G protein-coupled receptors. We have shown that PLCγ1 

can be activated following stimulation by the G protein-coupled receptor, C-C chemokine 

Receptor 7, a Gαi/o receptor, to mediate activation of β1 integrin, heterodimeric adhesion 

receptors [138]. In addition, PLCγ1 and PLCγ2 are both activated by the angiotensin and 

bradykinin G protein coupled receptors.

Homozygous disruption of PLCγ1 in a mouse model revealed that this PLC plays an 

essential role in growth and development [139]. In the absence of PLCγ1, the mice die at 

day E9.0, although until that stage of development the embryos appear normal. This mouse 
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model revealed that although other PLCγ family members might be available, the role of 

PLCγ1 is essential and is not compensated by another PLC. In contrast, homozygous 

deletion of PLCγ2 leads to defects in platelet functions that are stimulated through β1 and 

β3 integrin adhesion proteins [140, 141]. PLCγ2 plays an essential role in B cell 

development, and function [20, 26]. Similar to PLCβ2, Rac, a member of the Rho-family of 

GTPases, can bind to and activate PLCγ2 [100]. This PLC family member can be activated 

through interactions with growth factor receptors, via phosphorylated tyrosines within their 

cytoplasmic tails via their intracellular tyrosine activation motifs (ITAMs). PLCγ2 also 

regulates calcium oscillations induced by the transcription factor, Nuclear Factor of 

Activated T cells (NFAT). Additionally, the SH2 domains can mediate activation of this 

receptor.

A role for PLCγ in neural development and certain neurological condition has become 

increasingly evident. PLCγ1 is highly expressed in the brain and is required for normal 

neuronal development and activation [114]. Since deregulation of PLCγ1 activation in 

response to brain derived neuronal factor can alter calcium influx and actin rearrangements 

that control neuronal migration, this PLC has been linked to diverse neurological disorders, 

including epilepsy, Huntington’s disease and depression [114]. In this case mis-regulation of 

PLCγ1 function has been observed in animal models of Huntington’s disease [142]. 

Moreover, genomic analysis has revealed a PLCγ2 variant that appears to be protective 

against Alzheimer’s disease, possibly acting via microglia-modulated immune responses 

[143]. Other physiological roles for PLCγ are provided by recent evidence suggesting that 

PLCγ1 activates Akt-mediated Notch1 signaling, which is required for intima formation of 

blood vessels, and also plays a role in influenza viral entry into human epithelial cells [144, 

145].

PLCγ1 is often mutated and highly expressed in several cancers being involved in 

tumorigenic processes including migration, invasion and in some cases, proliferation (as 

reviewed by [146]). Moderately to poorly differentiated breast tumors showed significantly 

higher levels of PLCγ1, compared with well differentiated tumors [147, 148]. Also, three 

distinct mutations in PLCγ2 were described in patients with chronic lymphocytic leukemia 

that were resistant to Ibrutinib treatment [148]. Indeed, studies have shown that mutated 

DNA sequences associated with human cancers and autoimmune diseases are well 

conserved between PLCγ1 und PLCγ2 and these mutations are gain-of-function effectors 

that destabilize normal regulatory signaling [149].

PLCδ1, 3, 4

There are three identified isoforms of PLCδ with similar amino acid sequences that are 

highly evolutionary conserved from lower to higher eukaryotes [150]. PLCδ family 

members are activated by levels of calcium that are normally found in the cytoplasm (10−7M 

to 10−5M), making them one of the most calcium sensitive PLC isoforms [151, 152]. While 

PLCδ1 is localized to the cytoplasm in quiescent cells, this PLC isoform shuttles between 

the nucleus and the cytoplasm in active cells [153]. Human PLCδ4 was found to be 

primarily nuclear in human adipose derived mesenchymal stem cells [154]. Depletion of 

PLCδ1 leads to a block in the cell cycle [155]. PLCδ family members are thought to have a 
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role in potentiating calcium signaling [151]. This form of PLC is similar to non-mammalian 

forms of PLC [15, 156] PLCδ1 can be activated by Gi/o and Gaq following stimulation of G 

protein-coupled receptors [157]. PLCδ is involved in regulating the activation of the actin 

cytoskeleton. Studies using PLCδ knockout mice have shown that PLCδ1 is required for 

maintenance of skin homeostasis; a recent study suggested that PLCδ1 is required for 

epidermal barrier integrity [158], whereas PLCδ3 regulates microvilli genesis within the 

intestine and the directed migration of neurons in the cerebral cortex of developing brains 

[159, 160]. Knockout of both PLCδ1 and PLCδ3 resulted in embryonic lethality [161].

Similar to PLCγ1, mis-regulation of PLCδ1 has been linked to Alzheimer’s disease [162]. 

Interestingly, this enzyme function is inhibited by sphingomyelin, a membrane lipid that is 

found in high concentrations in neurons. PLCδ1 is also mis-regulated in rat models of 

hypertension [163]. In addition, a decrease in PLCδ1 downregulation in cystic fibrosis cells 

resulted in dysregulation of Transient Receptor Potential Vanilloid 6 channel activity leading 

to an increase in the constitutive calcium influx, exacerbating cystic fibrosis effects [164].

PLCδ1 is expressed at high levels in hair follicles. Homozygous deletion of PLCδ1 leads to 

hair loss [165, 166]. The hair loss was due to an increase in leukocytes, specifically 

macrophages, neutrophils and T cells within the hair follicle [166]. Homozygous deletion of 

Plcδ3 or Plcδ4 had no apparent affect and the mice appeared normal.

During fertilization, a transient increase in Ca2+ precedes egg activation. Like other forms of 

PLC, this isoform appears to play a role in fertilization. Notably, PLCδ4−/− male mice are 

sterile [167, 168]. Even when PLCδ4−/− sperm were injected into eggs, few viable embryos 

developed. These studies implicate this family member in the regulation of fertilization 

[167]. In the same study, sperm isolated from PLCδ4 knockout mice were found to be 

inferior to sperm isolated from wild type mice in that the Ca2+ oscillations in these mice 

were delayed or did not occur at all [167].

Similar to several other PLC’s, PLCδ’s role in carcinogenesis is controversial. In one study, 

high expression levels of PLCδ significantly correlated with a shorter disease-free survival 

of patients with poorly-differentiated breast tumors suggesting a possible role as a tumor 

promoter [147]. In contrast, an unrelated study found that downregulation of PLCδ1 in 

breast cancers induced cell migration and invasion in an in vitro assay by inhibiting the 

phosphorylation of ERK1/2, suggesting a role as a tumor suppressor [169]. In support of the 

tumor suppressor effects, another study in colorectal cancer revealed that expression of 

PLCδ1, as shown by immunohistochemistry, was down-regulated in colorectal cancer 

samples, which was also linked to suppression of ERK1/2 phosphorylation [170] and 

increased autophagy of the colorectal cancer cells [171]. These results are in line with the 

concept that PLCδ1 may function as a tumor promoter or as tumor suppressor [147], and it 

is clear that further studies are needed to clarify the role of PLCδ in carcinogenesis.

PLCε

PLCε is the largest of the PLC family members with an apparent molecular weight of ~230 

kDa and was originally described in 1998 as a Let-60 Ras binding protein [172]. Two splice 

variants of PLCε have been reported, termed PLCε1a and PLCε1b that are widely 
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expressed, but distinct roles for these variants have not been described [173]. PLCε is 

expressed at the highest levels in the heart, liver and lung, but can also be found in the 

skeletal muscle, spleen brain, lungs, kidneys, pancreas, testis, uterus, thymus and intestine 

[7, 174, 175]. This class of PLC, which was originally identified in Caenorhabditis elegans, 

and was later cloned in humans [7, 172, 174, 175]. The Ras-associated (RA) domains 

consist of approximately 100 amino acids that interact directly with the Ras-family 

GTPases, Ras [7, 175] and Rho [176]. A point mutation at a lysine residue in the RA2 

domain of PLCε is sufficient to prevent Ras binding of the enzyme in a GTP-dependent 

manner [7]. Subsequently, it was found that PLCε could also be activated by the Gα12 and 

Gβ/γ released by activated G protein-coupled receptors [175, 177]. Later, it was shown that 

hydrolysis of Golgi-associated phosphatidylinositol 4- phosphate (PI4P) in cardiac myocytes 

is mediated by Gβγ via the RA2 and N-terminal CDC25 and cysteine-rich domains [178, 

179]. G protein-coupled receptors that activate PLCε include the adrenergic and PGE 

receptors. At the same time Gαs has been shown to stimulate activation of PLCε [180] 

while Gα12 and Gα13 can activate RhoA which can stimulate PLCε [180, 181]. Not only is 

this PLC family member activated by Ras and RhoA, it can also function as a guanine 

nucleotide exchange factor (GEF) for the Ras superfamily of GTPases [175]. In a 

contrasting study, the CDC25 domain of PLCε was found to serve as a GEF for Rap1 but 

not for other Ras family members [182]. These characteristics of PLCε reveal that this 

enzyme can be activated not only by subunits of heterotrimeric G proteins, but also by small 

GTPases.

This ability of PLCε to be regulated by both Ras and Rho suggest that it can contribute to 

both proliferation and to migration. More interestingly, since PLCβ can be activated by Rho, 

both PLC family members may work together to regulate signal transduction pathways that 

are activated following stimulation of cells by Rho to control cell migration. Similarly, since 

PLCε can be regulated by Ras, a downstream effector of PLCγ signaling following 

activation of growth factor receptors such as the epidermal growth factor (EGF) receptor, the 

signaling pathways may work together to promote proliferation. The ability of PLCε to 

coordinate signaling through these pathways points to regulatory mechanisms that may be 

more complex than originally thought.

Since PLCε can regulate inflammatory ligands for G protein-coupled receptors, it was 

suggested that PLCε may protect against ischemia/ reperfusion injuries [183]. In contrast, in 

a separate study it was shown that PLCε is often upregulated in patients with heart failure 

[184] and recently it was shown that chronic activation of this isoform leads to cardiac 

hypertrophy [178]. Additionally, PLCε-null mice have abnormal development of aortic and 

pulmonary valves [185]. The role of PLCε in carcinogenesis is controversial, although the 

enzyme is thought to play important roles in the regulation of cancer development and 

progression, possibly acting as either an oncogene or tumor suppressor depending upon the 

type of tumor [186, 187]. Inflammatory processes induced by PLCε are thought to be 

involved in the progression towards cancer [188]. Mutation analysis of the PLCE1 gene 

landscape via The Cancer Genome Atlas (TCGA) database showed that PLCE1 is an often-

mutated gene in several types of cancer, in particular digestive tract cancer such as gastric 

cancer and esophageal squamous carcinoma, but also including skin cancer, lung cancer and 

head and neck cancers [187].
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PLCη1,2

PLCη consists of two members that are the most recently discovered PLC’s and are most 

closely related to PLCδ subtype [189]. The sequence homology between PLCη1 and PLCη2 

are ~50% similar. PLCη1 has an apparent molecular weight of 115kDa in mouse and 

humans, while PLCη2 is larger at 125kDa. PLCη can be activated by G protein-coupled 

receptors and RTK’s [190] with PLC activity amplified by both intracellular Ca2+ 

mobilization and extracellular Ca2+ entry [191]. PLCη sequence analysis showed a novel 

EF-hand domain including a non-canonical EF-loop 2 sequence that is responsible for the 

enhanced binding of Ca2+ and enhanced hydrolysis of PIP2 [189]. The PLCη1 and PLCη2, 

isoforms are localized to the brain and neurons and are extremely sensitive to changes in 

calcium levels within the physiological range [8, 9, 192, 193]. Like PLCδ, this form of PLC 

responds to the 100nM calcium concentrations found inside the cell [194]. However, PLCη 
is more sensitive than PLCδ [8] and PLCη can modulate a sustained Ca2+ release via 

production of IP3 [189].

PLCη2 is expressed in the infant brain, specifically in the hippocampus, cerebral cortex and 

olfactory bulb [9], where it may play an important role in calcium mobilization required for 

axon growth and retraction, growth cone guidance, the generation of synapses and 

neurological responses [9]. In humans, loss of the human chromosomal region, which 

encodes PLCη2 has been linked to mental retardation [195] and role for PLCη2 in neurite 

growth has been postulated [196]. Alzheimer’s disease has been linked to altered calcium 

homeostasis within neurons of the central nervous system with calcium accumulation 

occurring in disease affected neuronal cells [197]. Since PLCη is expressed in these same 

regions of the brain, a potential role for PLCη in Alzheimer’s disease pathogenesis has been 

postulated [197].

PLCζ

PLCζ is the smallest of the mammalian PLC family members with a molecular mass of ~70 

kDa in humans and ~74 kDa in mice [10, 198]. Interestingly, studies have shown PLC-like 

activities in plants with non-specific PLC hydrolyzing membrane phospholipids like 

phosphatidylcholine (PC) and phosphatidylethanolamine and another PLC with structural 

similarities to PLCζ [29]. In mammals, PLCζ expression has been confined to sperm heads 

[10, 198, 199] where it serves to activate eggs during fertilization [10, 200]. Subsequent 

studies have also identified further mammalian orthologues of PLCζ in human, hamster, 

monkey, and horse sperm [201, 202]. Although some studies suggested the possibility that a 

post-acrosomal sheath WW domain-binding protein, termed PAWP, could be responsible for 

eliciting Ca2+ oscillations at egg activation [203–205], more recent studies now convincingly 

suggest that PAWP is not required to stimulate Ca2+ oscillations during egg activation, while 

strong evidence supports PLCζ as a soluble sperm factor responsible for the Ca2+ 

oscillations [206–210].

In line with its key role as a sperm factor, PLCζ generally localizes to distinct regions of the 

sperm head in mammals [211–213]. In humans, three distinct populations of PLCζ within 

the sperm head have been determined in the acrosomal, equatorial and post-acrosomal 

regions [211, 214–216]. Although this is the only isoform of PLC identified, which lacks the 
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N-terminal PH domain, it shares the closest homology with PLCδ1 [217]. The absence of 

the PH domain demonstrates that presence is not required for membrane localization of 

PLCζ. It is unclear, however, how PLCζ targets the plasma membrane in the absence of the 

PH domain. There is some indication that the C2 domain may contribute to targeting PLCζ 
to membrane-bound PIP2. Following fusion of sperm with the egg, PLCζ is released into an 

egg, which until that point, is arrested at the second meiotic division. Ca2+ oscillations that 

mediate activation of an egg are due to IP3 mediated Ca2+ release. The presence of PLCζ 
within the cytoplasm leads to Ca2+ oscillations, which are classically observed during 

activation of the egg and release from the meiotic arrest [218]. In addition, immuno-

depletion of PLCζ suppresses Ca2+ release. After the egg is fertilized the Ca2+ oscillations 

end when the pronuclei merge [219, 220]. Sperm from infertile men who are unable to 

activate eggs have been reported to exhibit reduced or abolished types of PLCζ [214, 216, 

221]. Also, the proportion of sperm expressing PLCζ correlates with fertilization rates 

following intracytoplasmic sperm injection making PLCζ a diagnostic marker of 

fertilization [75].

Methods to inhibit PLC

There are several chemical inhibitors that can be used to block PLC function. A commonly 

used pan inhibitor, 1-[6-((17β-3-methoxyestra-1,3,5(10)trien-17-yl)amino)hexyl)-1H-

pyrrole-2,5-dione, (U73122), of phospholipase C, is thought to function by blocking 

translocation of the enzyme to the membrane [222]. For example, using 2μM U73122 in 

contrast to the control U73343, we found that stimulation of CCR7 through one of its 

ligands, CCL21 [138], but not CCL19 promoted PLC dependent migration of T cells via β1 

integrin adhesion proteins. In the same study were able to determine that the PLCγ1 isoform 

regulated migration by preventing CCL21 directed migration with targeted siRNA. This data 

suggests that one G protein-coupled receptor can activate PLCγ1 through two different 

ligands to control migration in T cells. In this case we speculate that PLCγ1 mediates 

integrin activation through inside-out signaling leading to activation of β1-integrins.

Recently, it has been shown that U73122 forms covalent associations with human PLCβ3, 

when the phospholipase is associated with mixed micelles [223]. While U73122 has been 

used as a pan inhibitor of PLC in numerous studies [21, 138, 224–228], in the study by 

Klein et al., instead of inhibiting PLC, U73122 activated human PLCγ1, human PLCβ2 and 

human PLCβ3, which had been incorporated into micelles to differing magnitudes. Since the 

PLC used in these studies was in a purified form, it is unclear, how U73122 functions to 

regulate the extent of PLC activation. In a second study, 1μM U73122 was found to directly 

inhibit G protein activated inwardly rectifying potassium channels. This was in contrast to a 

second PLC inhibitor, 2-Nitro-4-carboxyphenylN,N -diphenylcarbamate (NCDC), which did 

not have that effect [229]. NCDC, however, is also thought to have non-specific effects that 

are not related to PLC functions [230].

It should also be noted that in rabbit parietal cells, use of the U73122 led to a number of 

unexpected effects including mis-regulation of Ca2+ mobilization, and acid secretion 

induced by an agonist. Of equal concern, the negative control U73343 blocked acid secretion 

[231]. Therefore, this PLC inhibitor when used, should be used with caution.
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Similarly, there are at least three other known inhibitors and two activators of PLC, yet they 

are not specific. These inhibitors include O-(Octahydro-4,7-mthano-1H-iden-5-

yl)carbonopotassium dithioate, [232], Edelfosine [233] and RHC 80267 (O,O’[1,6-

Hexanediylbis(iminocarbonyl)]dioxime cyclohexanone) [234]. The two activators are 

m-3M3FBS (2,4,6-Trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide) , and the 

ortho version o-3M3FBS [235].

Heterozygous deletion of a specific PLC family member via siRNA, however, can yield 

targeted results [138]. As mentioned, in these studies, PLCγ1 specific siRNA was used to 

confirm the role of this PLC isoform in the regulation of β1 integrins during the adhesion of 

primary T cells. In the future it may be advisable to determine the specific PLC family 

member involved in a cellular response, by using siRNAs. More recently the discovery of 

Clustered Regularly Spaced Short Palindromic Repeats-Cas9 (CRISPR Cas9) technology, 

which was originally described in bacterial systems, allows for long-term targeted disruption 

or in some cases activation of specific genes[236, 237]. This technology, will likely be used 

to target specific PLC isoforms in the future.

The highly specific 3-phosphoinositide-dependent protein kinase 1(PDK1) inhibitor 2-O-

benzyl-myo-inositol 1,3,4,5,6-pentakisphosphate (2-O-Bn-InsP5) can also block PLCγ1 

dependent cell functions such as EGFR-induced phosphorylation of PLCγ1. This interaction 

takes place through the PH domain of PDK1. The loss of phosphorylation blocks PLCγ1 

activity and downstream the cell migration and invasion [238], and has been considered as a 

lead compound for an anti-metastatic drug.

Future Directions

Hierarchy of isozymes

It is unclear how the different isoforms of PLC are activated in cells receiving multiple 

stimuli from different receptors. With thirteen identified isoforms, expressed in multiple cell 

types, it will be important to define how the different signaling events that are linked to each 

isoform are controlled. Since PLC activation leads to release of IP3 and DAG in response to 

activation, it will be important to determine how cells discriminates between multiple PLC 

signals to determine the hierarchy, intensity and duration of signaling events. As mentioned, 

PLCβ2 and PLCγ2 are activated by Rac while PLCε is activated by RhoA. These 

observations suggest that key regulators of cell motility function through different PLC 

family members, and may have pivotal roles in defining where and when a cell migrates.

PLC enzymes are found in every cell in the body, where they play critical roles in regulating 

diverse cellular responses (as reviewed in [28]). As mentioned, some family members serve 

as scaffolds for other signaling proteins, while others can serve as GAPs or GEFs, for 

secondary signaling proteins. Other PLCs function to amplify the Ca2+oscillations in the 

cell. Certain PLC family members can travel to the nucleus to control signaling there. With 

PLC family members playing key roles in numerous cell functions, it will be important to 

define how each PLC is regulated and how the cellular environment affects the duration and 

intensity of the response.
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Figure 1. Three major pathways for activating phospholipase C (PLC).
PLC can be activated by either tyrosine kinase receptors, T-cell receptors, B-cell receptors, 

Fc receptors, integrin adhesion proteins or G protein-coupled receptors (GPCRs) via cognate 

ligands including neurotransmitters, histamine, hormones and growth factors to promote 

signaling and Ca2+ mobilization. For simplicity, this figure shows activation by integrins, 

GPCRs and tyrosine kinases only.
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Figure 2. PIP2 cleaves to produce diacylglycerol and inositol triphosphate.
Phosphatidylinositol (4,5) – bisphosphate (PIP2) is cleaved by PLC to release diacylglycerol 

(DAG), which remains membrane bound and Inositol triphosphate (IP3). The inositol ring is 

outlined in blue.
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Figure 3. Structures of the 6 different identified members of the PLC family.
Relative positions of pleckstrin homology domain (PH), EF-hand, X and Y domains and the 

C2 domains are shown. Unique domains found in individual family members include the: 

Post synaptic density (PSD)-95, Drosophila disc large tumor suppressor (DlgA), and Zonula 

occludens-1 protein (zo-1) (PDZ), src homology 2 (SH2) and src homology 3 (SH3), Ras-

GEF binding, and Ras associated (RA) domains. The PDZ domain is only found in one 

spliced form of PLCη.
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