Skip to main content
. 2021 Jan 7;6:324–342. doi: 10.1016/j.idm.2021.01.001

Table 2.

The 23 selected papers on other (not compartmental) COVID-19 models.

Models Model type Study area Outcomes References
Agent based model Stochastic 38 countries or provinces in Asia, Europe and North America (Kai & Guy-PhilippeGoldstein, 2020), Singapore (Koo, Cook, Park, & Sun, 2020) The impact of universal Masking (Kai & Guy-PhilippeGoldstein, 2020), the likelihood of human-to-human transmission of SARS-CoV-2 (Koo et al., 2020) (Kai & Guy-PhilippeGoldstein, 2020; Koo et al., 2020)
Branching process model Stochastic Wuhan The impact of contact tracing and isolation Hellewell et al. (2020)
Bayesian method Stochastic Outside Hubei in Chinese mainland(J. Zhang et al., 2020, Zhang et al., 2020), China(Verity, Okell, Dorigatti, & Winskill, 2020), Singapore, Tianjin(Ganyani et al., 2020) R0, Incubation period, serial interval (J. Zhang et al., 2020, Zhang et al., 2020), age-stratified estimates of CFR and IFR (Verity et al., 2020), generation interval (Ganyani et al., 2020) (Ganyani et al., 2020; Verity et al., 2020; J.; Zhang et al., 2020, Zhang et al., 2020)
Generalized Linear Models Stochastic China Incubation period, the effect of human mobility and control measures Kraemer et al. (2020)
Generalized growth model Stochastic Lima (Munayco et al., 2020), Iran (Muniz-Rodriguez et al., 2020), South Korea (Shim, Tariq, Choi, Lee, & Chowell, 2020) R0(Munayco et al., 2020; Muniz-Rodriguez et al., 2020; Shim et al., 2020), the impact of social distancing (Munayco et al., 2020; Muniz-Rodriguez et al., 2020),doubling time (Shim et al., 2020) (Munayco et al., 2020; Muniz-Rodriguez et al., 2020; Shim et al., 2020)
Linear growth & exponential growth model Stochastic Italy, Japan The effect of the changes in testing rates on epidemic growth rate Omori, Mizumoto, and Chowell (2020)
Exponential growth Stochastic China R0 (Thompson, 2020; S. Zhao, Q. Li, Pei, et al., 2020; S. Zhao et al., 2020, Zhao et al., 2020, Zhao et al., 2020), the estimates of the unreported number of COVID-19 (Zhao et al., 2020, Zhao et al., 2020, Zhao et al., 2020), the risk of sustained transmission (Thompson, 2020), the impact of reporting rate (S. Zhao, Q. Li, Pei, et al., 2020) (Thompson, 2020; S. Zhao, Q. Li, Pei, et al., 2020; Zhao et al., 2020, Zhao et al., 2020, Zhao et al., 2020)
Second derivative model Stochastic China The assessment the detection rate Chen and Yu (2020)
Poisson Transmission Model Stochastic China R0 Zhu and Chen (2020)
Segmented Poisson model Stochastic Canada, France, Germany, Italy, UK and USA Turning point, duration and attack rate Zhang et al., 2020, Zhang et al., 2020
Analytically solvable model Stochastic China The estimates of the contribution of different transmission routes, generation time Ferretti et al. (2020)
Gaussian distribution theory Stochastic China, South Korea, Italy, Iran R0, incubation period (L. Li, Pei, et al., 2020)
Phenomenological models Stochastic China, Hubei(Roosa et al., 2020a), Guangdong, Zhejiang(Roosa et al., 2020b) Short-term prediction of cumulative confirmed cases (Roosa et al., 2020a, 2020b)
Transmission model with zoonotic infections Stochastic Wuhan R0, doubling time, incubation period, serial interval (Q. Li, Pei, et al., 2020)
Data-driven and model-free estimations Canada The prediction of epidemic trends with different public health interventions, mortality Scarabel, Pellis, Bragazzi, and Wu (2020)