Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Jan 7;25(6):895–930. doi: 10.1007/s12257-020-0049-y

Artificial Intelligence in Drug Discovery: A Comprehensive Review of Data-driven and Machine Learning Approaches

Hyunho Kim 1, Eunyoung Kim 1, Ingoo Lee 1, Bongsung Bae 1, Minsu Park 1, Hojung Nam 1,
PMCID: PMC7790479  PMID: 33437151

Abstract

As expenditure on drug development increases exponentially, the overall drug discovery process requires a sustainable revolution. Since artificial intelligence (AI) is leading the fourth industrial revolution, AI can be considered as a viable solution for unstable drug research and development. Generally, AI is applied to fields with sufficient data such as computer vision and natural language processing, but there are many efforts to revolutionize the existing drug discovery process by applying AI. This review provides a comprehensive, organized summary of the recent research trends in AI-guided drug discovery process including target identification, hit identification, ADMET prediction, lead optimization, and drug repositioning. The main data sources in each field are also summarized in this review. In addition, an in-depth analysis of the remaining challenges and limitations will be provided, and proposals for promising future directions in each of the aforementioned areas.

Keywords: drug discovery, artificial intelligence, data-driven, machine learning

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2020R1A2C2004628), and was supported by the Bio-Synergy Research Project (NRF-2017M3A9C 4092978) of the Ministry of Science, ICT.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

References

  • 1.J. A D, Grabowski H G, Hansen R W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ. 2016;47:20–33. doi: 10.1016/j.jhealeco.2016.01.012. [DOI] [PubMed] [Google Scholar]
  • 2.S. M P, Mytelka D S, Dunwiddie C T, Persinger C C, Munos B H, Lindborg S R, Schacht A L. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat. Rev. Drug Discov. 2010;9:203–214. doi: 10.1038/nrd3078. [DOI] [PubMed] [Google Scholar]
  • 3.H v d W, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov. 2003;2:192–204. doi: 10.1038/nrd1032. [DOI] [PubMed] [Google Scholar]
  • 4.K. K M, Pichika M R. Artificial intelligence in drug development: present status and future prospects. Drug Discov. Today. 2019;24:773–780. doi: 10.1016/j.drudis.2018.11.014. [DOI] [PubMed] [Google Scholar]
  • 5.X Y, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 2019;119:10520–10594. doi: 10.1021/acs.chemrev.8b00728. [DOI] [PubMed] [Google Scholar]
  • 6.J E, Sedrani R, Wiesmann C. The discovery of first-in-class drugs: origins and evolution. Nat. Rev. Drug Discov. 2014;13:577–587. doi: 10.1038/nrd4336. [DOI] [PubMed] [Google Scholar]
  • 7.D B. Unfinished business: target-based drug discovery. Drug Discov. Today. 2007;12:1007–1012. doi: 10.1016/j.drudis.2007.10.017. [DOI] [PubMed] [Google Scholar]
  • 8.Y. H H, Yao J, Chan L C, Wu T J, Hsu J L, Fang Y F, Wei Y, Wu Y, Huang W C, Liu C L, Chang Y C, Wang M Y, Li C W, Shen J, Chen M K, Sahin A A, Sood A, Mills G B, Yu D, Hortobagyi G N, Hung M C. Definition of PKC-a, CDK6, and MET as therapeutic targets in triple-negative breast cancer. Cancer Res. 2014;74:4822–4835. doi: 10.1158/0008-5472.CAN-14-0584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.B C, Butte A. Leveraging big data to transform target selection and drug discovery. Clin. Pharmacol. Ther. 2016;99:285–297. doi: 10.1002/cpt.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Kodama, K., M. Horikoshi, K. Toda, S. Yamada, K. Hara, J. Irie, M. Sirota, A. A. Morgan, R. Chen, H. Ohtsu, S. Maeda, T. Kadowaki, and A. J. Butte (2012) Expression-based genomewide association study links the receptor CD44 in adipose tissue with type 2 diabetes. Proc. Natl. Acad. Sci. USA. 109: 7049-7054. [DOI] [PMC free article] [PubMed]
  • 11.Zhu, Z., F. Zhang, H. Hu, A. Bakshi, M. R. Robinson, J. E. Powell, G. W. Montgomery, M. E. Goddard, N. R. Wray, P. M. Visscher, and J. Yang (2016) Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48: 481-487. [DOI] [PubMed]
  • 12.S v D, Võsa U, van der Graaf A, Franke L, de Magalhães J P. Gene co-expression analysis for functional classification and gene-disease predictions. Brief. Bioinform. 2018;19:575–592. doi: 10.1093/bib/bbw139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Petyuk, V. A., R. Chang, M. Ramirez-Restrepo, N. D. Beckmann, M. Y. R. Henrion, P. D. Piehowski, K. Zhu, S. Wang, J. Clarke, M. J. Huentelman, F. Xie, V. Andreev, A. Engel, T. Guettoche, L. Navarro, P. De Jager, J. A. Schneider, C. M. Morris, I. G. McKeith, R. H. Perry, S. Lovestone, R. L. Woltjer, T. G. Beach, L. I. Sue, G. E. Serrano, A. P. Lieberman, R. L. Albin, I. Ferrer, D. C. Mash, C. M. Hulette, J. F. Ervin, E. M. Reiman, J. A. Hardy, D. A. Bennett, E. Schadt, R. D. Smith, and A. J. Myers (2018) The human brainome: network analysis identifies HSPA2 as a novel Alzheimer's disease target. Brain. 141: 2721-2739. [DOI] [PMC free article] [PubMed]
  • 14.Lee, S., C. Zhang, Z. Liu, M. Klevstig, B. Mukhopadhyay, M. Bergentall, R. Cinar, M. Ståhlman, N. Sikanic, J. K. Park, S. Deshmukh, A. M. Harzandi, T. Kuijpers, M. Grøtli, S. J. Elsässer, B. D. Piening, M. Snyder, U. Smith, J. Nielsen, F. Bäckhed, G. Kunos, M. Uhlen, J. Boren, and A. Mardinoglu (2017) Network analyses identify liver-specific targets for treating liver diseases. Mol. Syst. Biol. 13: 938. [DOI] [PMC free article] [PubMed]
  • 15.Q Z, Li J, Song L, Zeng X, Wang G. Similarity computation strategies in the microRNA-disease network: a survey. Brief. Funct. Genomics. 2016;15:55–64. doi: 10.1093/bfgp/elv024. [DOI] [PubMed] [Google Scholar]
  • 16.X C, Xie D, Wang L, Zhao Q, You Z H, Liu H. BNPMDA: Bipartite Network Projection for MiRNADisease Association prediction. Bioinformatics. 2018;34:3178–3186. doi: 10.1093/bioinformatics/bty333. [DOI] [PubMed] [Google Scholar]
  • 17.P D, Luo J, Liang C, Xiao Q, Cao B. Human disease MiRNA inference by combining target information based on heterogeneous manifolds. J. Biomed. Inform. 2018;80:26–36. doi: 10.1016/j.jbi.2018.02.013. [DOI] [PubMed] [Google Scholar]
  • 18.S. K M, Novácek V, Nounu A. Discovering protein drug targets using knowledge graph embeddings. Bioinformatics. 2020;36:603–610. doi: 10.1093/bioinformatics/btz600. [DOI] [PubMed] [Google Scholar]
  • 19.P R, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, Rawling M, Savory E, Stebbing J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395:e30–e31. doi: 10.1016/S0140-6736(20)30304-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.M. H. S S, Preuss M, Waller M P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature. 2018;555:604–610. doi: 10.1038/nature25978. [DOI] [PubMed] [Google Scholar]
  • 21.E F, Dunham I, Sanseau P. In silico prediction of novel therapeutic targets using gene-disease association data. J. Transl. Med. 2017;15:182. doi: 10.1186/s12967-017-1285-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Mamoshina, P., M. Volosnikova, I. V. Ozerov, E. Putin, E. Skibina, F. Cortese, and A. Zhavoronkov (2018) Machine learning on human muscle transcriptomic data for biomarker discovery and tissue-specific drug target identification. Front. Genet. 9: 242. [DOI] [PMC free article] [PubMed]
  • 23.Piñero, J., Á. Bravo, N. Queralt-Rosinach, A. Gutiérrez- Sacristán, J. Deu-Pons, E. Centeno, J. García-García, F. Sanz, and L. I. Furlong (2017) DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45: D833-D839. [DOI] [PMC free article] [PubMed]
  • 24.Stoeger, T., M. Gerlach, R. I. Morimoto, and L. A. Nunes Amaral (2018) Large-scale investigation of the reasons why potentially important genes are ignored. PLoS Biol. 16: e2006643. [DOI] [PMC free article] [PubMed]
  • 25.Piñero, J., J. M. Ramírez-Anguita, J. Saüch-Pitarch, F. Ronzano, E. Centeno, F. Sanz, and L. I. Furlong (2020) The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 48: D845-D855. [DOI] [PMC free article] [PubMed]
  • 26.Davis, A. P., C. J. Grondin, R. J. Johnson, D. Sciaky, R. McMorran, J. Wiegers, T. C. Wiegers, and C. J. Mattingly (2019) The Comparative Toxicogenomics Database: update 2019. Nucleic Acids Res. 47: D948-D954. [DOI] [PMC free article] [PubMed]
  • 27.Vasaikar, S. V., J. Wang, and B. Zhang (2018) LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 46: D956–D963. [DOI] [PMC free article] [PubMed]
  • 28.Carvalho-Silva, D., A. Pierleoni, M. Pignatelli, C. Ong, L. Fumis, N. Karamanis, M. Carmona, A. Faulconbridge, A. Hercules, E. McAuley, A. Miranda, G. Peat, M. Spitzer, J. Barrett, D. G. Hulcoop, E. Papa, G. Koscielny, and I. Dunham (2019) Open Targets Platform: new developments and updates two years on. Nucleic Acids Res. 47: D1056-D1065. [DOI] [PMC free article] [PubMed]
  • 29.K. K B, Hann M M, Lakdawala A S, Santos R, Thomas P J, Todd K. Approaches to target tractability assessment - a practical perspective. Medchemcomm. 2018;9:606–613. doi: 10.1039/C7MD00633K. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Z H, Shi J, Gao Y, Cui C, Zhang S, Li J, Zhou Y, Cui Q. HMDD v3.0: a database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 2019;47:D1013–D1017. doi: 10.1093/nar/gky1010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.DepMap portal. https://depmap.org/portal/.
  • 32.Meyers, R. M., J. G. Bryan, J. M. McFarland, B. A. Weir, A. E. Sizemore, H. Xu, N. V. Dharia, P. G. Montgomery, G. S. Cowley, S. Pantel, A. Goodale, Y. Lee, L. D. Ali, G. Jiang, R. Lubonja, W. F. Harrington, M. Strickland, T. Wu, D. C. Hawes, V. A. Zhivich, M. R. Wyatt, Z. Kalani, J. J. Chang, M. Okamoto, K. Stegmaier, T. R. Golub, J. S. Boehm, F. Vazquez, D. E. Root, W. C. Hahn, and A. Tsherniak (2017) Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 49: 1779-1784. [DOI] [PMC free article] [PubMed]
  • 33.Tsherniak, A., F. Vazquez, P. G. Montgomery, B. A. Weir, G. Kryukov, G. S. Cowley, S. Gill, W. F. Harrington, S. Pantel, J. M. Krill-Burger, R. M. Meyers, L. Ali, A. Goodale, Y. Lee, G. Jiang, J. Hsiao, W. F. J. Gerath, S. Howell, E. Merkel, M. Ghandi, L. A. Garraway, D. E. Root, T. R. Golub, J. S. Boehm, and W. C. Hahn (2017) Defining a cancer dependency map. Cell. 170: 564-576.e16. [DOI] [PMC free article] [PubMed]
  • 34.Barretina, J., G. Caponigro, N. Stransky, K. Venkatesan, A. A. Margolin, S. Kim, C. J. Wilson, J. Lehár, G. V. Kryukov, D. Sonkin, A. Reddy, M. Liu, L. Murray, M. F. Berger, J. E. Monahan, P. Morais, J. Meltzer, A. Korejwa, J. Jané-Valbuena, F. A. Mapa, J. Thibault, E. Bric-Furlong, P. Raman, A. Shipway, I. H. Engels, J. Cheng, G. K. Yu, J. Yu, P. Aspesi, M. de Silva, K. Jagtap, M. D. Jones, L. Wang, C. Hatton, E. Palescandolo, S. Gupta, S. Mahan, C. Sougnez, R. C. Onofrio, T. Liefeld, L. MacConaill, W. Winckler, M. Reich, N. Li, J. P. Mesirov, S. B. Gabriel, G. Getz, K. Ardlie, V. Chan, V. E. Myer, B. L. Weber, J. Porter, M. Warmuth, P. Finan, J. L. Harris, M. Meyerson, T. R. Golub, M. P. Morrissey, W. R. Sellers, R. Schlegel, and L. A. Garraway (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 483: 603-607. [DOI] [PMC free article] [PubMed]
  • 35.Stransky, N., M. Ghandi, G. V. Kryukov, L. A. Garraway, J. Lehár, M. Liu, D. Sonkin, A. Kauffmann, K. Venkatesan, E. J. Edelman, M. Riester, J. Barretina, G. Caponigro, R. Schlegel, W. R. Sellers, F. Stegmeier, M. Morrissey, A. Amzallag, I. Pruteanu-Malinici, D. A. Haber, S. Ramaswamy, C. H. Benes, M. P. Menden, F. Iorio, M. R. Stratton, U. McDermott, M. J. Garnett, and J. Saez-Rodriguez (2015) Pharmacogenomic agreement between two cancer cell line data sets. Nature. 528: 84-87. [DOI] [PMC free article] [PubMed]
  • 36.Ghandi, M., F. W. Huang, J. Jané-Valbuena, G. V. Kryukov, C. C. Lo, E. R. McDonald, J. Barretina, E. T. Gelfand, C. M. Bielski, H. Li, K. Hu, A. Y. Andreev-Drakhlin, J. Kim, J. M. Hess, B. J. Haas, F. Aguet, B. A. Weir, M. V. Rothberg, B. R. Paolella, M. S. Lawrence, R. Akbani, Y. Lu, H. L. Tiv, P. C. Gokhale, A. de Weck, A. A. Mansour, C. Oh, J. Shih, K. Hadi, Y. Rosen, J. Bistline, K. Venkatesan, A. Reddy, D. Sonkin, M. Liu, J. Lehar, J. M. Korn, D. A. Porter, M. D. Jones, J. Golji, G. Caponigro, J. E. Taylor, C. M. Dunning, A. L. Creech, A. C. Warren, J. M. McFarland, M. Zamanighomi, A. Kauffmann, N. Stransky, M. Imielinski, Y. E. Maruvka, A. D. Cherniack, A. Tsherniak, F. Vazquez, J. D. Jaffe, A. A. Lane, D. M. Weinstock, C. M. Johannessen, M. P. Morrissey, F. Stegmeier, R. Schlegel, W. C. Hahn, G. Getz, G. B. Mills, J. S. Boehm, T. R. Golub, L. A. Garraway, and W. R. Sellers (2019) Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 569: 503-508. [DOI] [PMC free article] [PubMed]
  • 37.Yu, C., A. M. Mannan, G. M. Yvone, K. N. Ross, Y. L. Zhang, M. A. Marton, B. R. Taylor, A. Crenshaw, J. Z. Gould, P. Tamayo, B. A. Weir, A. Tsherniak, B. Wong, L. A. Garraway, A. F. Shamji, M. A. Palmer, M. A. Foley, W. Winckler, S. L. Schreiber, A. L. Kung, and T. R. Golub (2016) High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nat. Biotechnol. 34: 419-423. [DOI] [PMC free article] [PubMed]
  • 38.Szklarczyk, D., A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Simonovic, N. T. Doncheva, J. H. Morris, P. Bork, L. J. Jensen, and C. V. Mering (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47: D607-D613. [DOI] [PMC free article] [PubMed]
  • 39.Wang, Y., S. Zhang, F. Li, Y. Zhou, Y. Zhang, Z. Wang, R. Zhang, J. Zhu, Y. Ren, Y. Tan, C. Qin, Y. Li, X. Li, Y. Chen, and F. Zhu (2020) Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 48: D1031-D1041. [DOI] [PMC free article] [PubMed]
  • 40.N P, Malki K, Evans D, Vidler L, Ruble C, Scherschel J, Eastwood B, Collier D A. TractaViewer: a genome-wide tool for preliminary assessment of therapeutic target druggability. Bioinformatics. 2019;35:4509–4510. doi: 10.1093/bioinformatics/btz270. [DOI] [PubMed] [Google Scholar]
  • 41.Keiser, M. J., V. Setola, J. J. Irwin, C. Laggner, A. I. Abbas, S. J. Hufeisen, N. H. Jensen, M. B. Kuijer, R. C. Matos, T. B. Tran, R. Whaley, R. A. Glennon, J. Hert, K. L. H. Thomas, D. D. Edwards, B. K. Shoichet, and B. L. Roth (2009) Predicting new molecular targets for known drugs. Nature. 462: 175-181. [DOI] [PMC free article] [PubMed]
  • 42.G. M M, Huey R, Lindstrom W, Sanner M F, Belew R K, Goodsell D S, Olson A J. AutoDock4 and AutoDockTools4: Automated docking with selective Receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.O T, Olson A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.D. R K, Baumgartner M P, Camacho C J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 2013;53:1893–1904. doi: 10.1021/ci300604z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.P. J B, Mitchell J B O. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics. 2010;26:1169–1175. doi: 10.1093/bioinformatics/btq112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.L L, Wang B, Meroueh S O. Support vector regression scoring of receptor-ligand complexes for rankordering and virtual screening of chemical libraries. J. Chem. Inf. Model. 2011;51:2132–2138. doi: 10.1021/ci200078f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.M R, Hochuli J, Idrobo E, Sunseri J, Koes D R. Protein-ligand scoring with convolutional neural networks. J. Chem. Inf. Model. 2017;57:942–957. doi: 10.1021/acs.jcim.6b00740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Jimenez, J., M. Skalic, G. Martinez-Rosell, and G. De Fabritiis (2018) KDEEP: Protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. J. Chem. Inf. Model. 58: 287-296. [DOI] [PubMed]
  • 49.Imrie, F., A. R. Bradley, M. van der Schaar, and C. M. Deane (2018) Protein family-specific models using deep neural networks and transfer learning improve virtual screening and highlight the need for more data. J. Chem. Inf. Model. 58: 2319-2330. [DOI] [PubMed]
  • 50.M. M S-D, Zielenkiewicz P, Siedlecki P. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction. Bioinformatics. 2018;34:3666–3674. doi: 10.1093/bioinformatics/bty374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.K T, Shao M, Wang Y, Guan J, Zhou S. Boosting compound-protein interaction prediction by deep learning. Methods. 2016;110:64–72. doi: 10.1016/j.ymeth.2016.06.024. [DOI] [PubMed] [Google Scholar]
  • 52.Feinberg, E. N., D. Sur, Z. Wu, B. E. Husic, H. Mai, Y. Li, S. Sun, J. Yang, B. Ramsundar, and V. S. Pande (2018) PotentialNet for molecular property prediction. ACS Cent. Sci. 4: 1520-1530. [DOI] [PMC free article] [PubMed]
  • 53.Lim, J., S. Ryu, K. Park, Y. J. Choe, J. Ham, and W. Y. Kim (2019) Predicting drug-target interaction using a novel graph neural network with 3D structure-embedded graph representation. J. Chem. Inf. Model. 59: 3981-3988. [DOI] [PubMed]
  • 54.Landrum, G., B. Kelley, P. Tosco, sriniker, gedeck, NadineSchneider, R. Vianello, A. Dalke, AlexanderSavelyev, S. Turk, B. Cole, M. Swain, A. Vaucher, M. Wójcikowski, A. Pahl, JP, strets123, JLVarjo, P. Fuller, DoliathGavid, N. O'Boyle, P. P. Zarrinkar, G. Sforna, M. Nowotka, pzc, J. van Santen, J. H. Jensen, J. Domanski, D. Hall, and P. Avery (2018) rdkit/rdkit: 2018_03_1 (Q1 2018) Release. Zenodo. 10.5281/zenodo.1222070.
  • 55.N. M O, Banck M, James C A, Morley C, Vandermeersch T, Hutchison G R. Open Babel: An open chemical toolbox. J. Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Willighagen, E. L., J. W. Mayfield, J. Alvarsson, A. Berg, L. Carlsson, N. Jeliazkova, S. Kuhn, T. Pluskal, M. Rojas-Cherto, O. Spjuth, G. Torrance, C. T. Evelo, R. Guha, and C. Steinbeck (2017) Erratum to: The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching. J. Cheminform. 9: 53. [DOI] [PMC free article] [PubMed]
  • 57.C. W Y. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2011;32:1466–1474. doi: 10.1002/jcc.21707. [DOI] [PubMed] [Google Scholar]
  • 58.A M, Consonni V, Pavan M, Todeschini R. Dragon software: An easy approach to molecular descriptor calculations. Match-Commun. Math. Comput. Chem. 2006;56:237–248. [Google Scholar]
  • 59.Cao, D. S., Y. Z. Liang, J. Yan, G. S. Tan, Q. S. Xu, and S. Liu (2013) PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies. J. Chem. Inf. Model. 53: 3086-3096. [DOI] [PubMed]
  • 60.D. S C, Xiao N, Xu Q S, Chen A F. Rcpi: R/ Bioconductor package to generate various descriptors of proteins, compounds and their interactions. Bioinformatics. 2015;31:279–281. doi: 10.1093/bioinformatics/btu624. [DOI] [PubMed] [Google Scholar]
  • 61.H M, Tian Y S, Kawashita N, Takagi T. Mordred: a molecular descriptor calculator. J. Cheminform. 2018;10:4. doi: 10.1186/s13321-018-0258-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.F. R B. Quantitative structure-Activity relationship studies using gaussian processes. J. Chem. Inf. Comput Sci. 2001;41:830–835. doi: 10.1021/ci000459c. [DOI] [PubMed] [Google Scholar]
  • 63.V S, Liaw A, Tong C, Culberson J C, Sheridan R P, Feuston B P. Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003;43:1947–1958. doi: 10.1021/ci034160g. [DOI] [PubMed] [Google Scholar]
  • 64.Ma, J., R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik (2015) Deep neural nets as a method for quantitative structure- activity relationships. J. Chem. Inf. Model. 55: 263-274. [DOI] [PubMed]
  • 65.Y X, Ma J, Liaw A, Sheridan R P, Svetnik V. Demystifying Multitask Deep neural networks for quantitative structure-activity relationships. J. Chem. Inf. Model. 2017;57:2490–2504. doi: 10.1021/acs.jcim.7b00087. [DOI] [PubMed] [Google Scholar]
  • 66.F G, Mehridehnavi A, Fassihi A, Prez-Snchez H. Deep neural network in QSAR studies using deep belief network. Appl. Soft Comput. 2018;62:251–258. doi: 10.1016/j.asoc.2017.09.040. [DOI] [Google Scholar]
  • 67.Y K, Hamada S, Goto H. Validation Study of QSAR/DNN models using the competition datasets. Mol. Inf. 2020;39:1900154. doi: 10.1002/minf.201900154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Lusci, A., G. Pollastri, and P. Baldi (2013) Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J. Chem. Inf. Model. 53: 1563-1575. [DOI] [PMC free article] [PubMed]
  • 69.Duvenaud, D., D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams (2015) Convolutional networks on graphs for learning molecular fingerprints. arXiv. 1509.09292.
  • 70.D R, Hahn M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 2010;50:742–754. doi: 10.1021/ci100050t. [DOI] [PubMed] [Google Scholar]
  • 71.S J, Fulle S, Turk S. Mol2vec: Unsupervised machine learning approach with chemical intuition. J. Chem. Inf. Model. 2018;58:27–35. doi: 10.1021/acs.jcim.7b00616. [DOI] [PubMed] [Google Scholar]
  • 72.S. K C, Alla S R M. Descriptor Free QSAR modeling using deep learning with long short-term memory neural networks. Front. Artif. Intell. 2019;2:17. doi: 10.3389/frai.2019.00017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Winter, R., F. Noé, and D. A. Clevert (2019) Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations. Chem. Sci. 10: 1692–1701. [DOI] [PMC free article] [PubMed]
  • 74.Honda, S., S. Shi, and H. R. Ueda (2019) SMILES transformer: pre-trained molecular fingerprint for low data drug discovery. arXiv. 1911.04738.
  • 75.Devlin, J., M. W. Chang, K. Lee, and K. Toutanova (2018) BERT: pre-training of deep bidirectional transformers for language understanding. arXiv. 1810.04805.
  • 76.H A-T, Ramsundar B, Pappu A S, Pande V. Low data drug discovery with one-shot learning. ACS Cent. Sci. 2017;3:283–293. doi: 10.1021/acscentsci.6b00367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.S. G R, Baumann K. Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data. J. Chem. Inf. Model. 2009;49:169–184. doi: 10.1021/ci8002649. [DOI] [PubMed] [Google Scholar]
  • 78.M J, Park D, Lee J, Jeon H, Ko M, Kim S, Choi Y, Tan A C, Kang J. ReSimNet: drug response similarity prediction using siamese neural networks. Bioinformatics. 2019;35:5249–5256. doi: 10.1093/bioinformatics/btz411. [DOI] [PubMed] [Google Scholar]
  • 79.Lamb, J., E. D. Crawford, D. Peck, J. W. Modell, I. C. Blat, M. J. Wrobel, J. Lerner, J. P. Brunet, A. Subramanian, K. N. Ross, M. Reich, H. Hieronymus, G. Wei, S. A. Armstrong, S. J. Haggarty, P. A. Clemons, R. Wei, S. A. Carr, E. S. Lander, and T. R. Golub (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 313: 1929-1935. [DOI] [PubMed]
  • 80.Park, K., Y. J. Ko, P. Durai, and C. H. Pan (2019) Machine learning-based chemical binding similarity using evolutionary relationships of target genes. Nucleic Acids Res. 47: e128. [DOI] [PMC free article] [PubMed]
  • 81.T C, Hao M, Takeda T, Bryant S H, Wang Y. Large-scale prediction of drug-target interaction: a datacentric review. AAPS J. 2017;19:1264–1275. doi: 10.1208/s12248-017-0092-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.H D, Takigawa I, Mamitsuka H, Zhu S. Similarity-based machine learning methods for predicting drugtarget interactions: a brief review. Brief Bioinform. 2014;15:734–747. doi: 10.1093/bib/bbt056. [DOI] [PubMed] [Google Scholar]
  • 83.K B. Y. ^Yamanishi. Bioinformatics. 2009;25:2397–2403. doi: 10.1093/bioinformatics/btp433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Xia, Z., L. Y. Wu, X. Zhou, and S. T. C. Wong (2010) Semisupervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol. 4 Suppl 2: S6. [DOI] [PMC free article] [PubMed]
  • 85.T v L, Nabuurs S B, Marchiori E. Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics. 2011;27:3036–3043. doi: 10.1093/bioinformatics/btr500. [DOI] [PubMed] [Google Scholar]
  • 86.Pahikkala, T., A. Airola, S. Pietila, S. Shakyawar, A. Szwajda, J. Tang, and T. Aittokallio (2015) Toward more realistic drugtarget interaction predictions. Brief. Bioinform. 16: 325-337. [DOI] [PMC free article] [PubMed]
  • 87.J K, Nam H. SELF-BLM: Prediction of drugtarget interactions via self-training SVM. PLoS One. 2017;12:e0171839. doi: 10.1371/journal.pone.0171839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.X C, Liu M X, Yan G Y. Drug-target interaction prediction by random walk on the heterogeneous network. Mol. Biosyst. 2012;8:1970–1978. doi: 10.1039/c2mb00002d. [DOI] [PubMed] [Google Scholar]
  • 89.Luo, Y., X. Zhao, J. Zhou, J. Yang, Y. Zhang, W. Kuang, J. Peng, L. Chen, and J. Zeng (2017) A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun. 8: 573. [DOI] [PMC free article] [PubMed]
  • 90.S W, Cho H, Zhai C, Berger B, Peng J. Exploiting ontology graph for predicting sparsely annotated gene function. Bioinformatics. 2015;31:i357–i364. doi: 10.1093/bioinformatics/btv260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.T E, Baber J C, Feher M. Novel 2D fingerprints for ligand-based virtual screening. J. Chem. Inf. Model. 2006;46:2423–2431. doi: 10.1021/ci060155b. [DOI] [PubMed] [Google Scholar]
  • 92.Dubchak, I., I. Muchnik, S. R. Holbrook, and S. H. Kim (1995) Prediction of protein folding class using global description of amino acid sequence. Proc. Natl. Acad. Sci. USA. 92: 8700-8704. [DOI] [PMC free article] [PubMed]
  • 93.Zhang, P., L. Tao, X. Zeng, C. Qin, S. Chen, F. Zhu, Z. Li, Y. Jiang, W. Chen, and Y. Z. Chen (2017) A protein network descriptor server and its use in studying protein, disease, metabolic and drug targeted networks. Brief. Bioinform. 18: 1057-1070. [DOI] [PMC free article] [PubMed]
  • 94.H Y, Chen J, Xu X, Li Y, Zhao H, Fang Y, Li X, Zhou W, Wang W, Wang Y. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One. 2012;7:e37608. doi: 10.1371/journal.pone.0037608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Z. C L, Huang M H, Zhong W Q, Liu Z Q, Xie Y, Dai Z, Zou X Y. Identification of drug-target interaction from interactome network with ‘guilt-by-association’ principle and topology features. Bioinformatics. 2016;32:1057–1064. doi: 10.1093/bioinformatics/btv695. [DOI] [PubMed] [Google Scholar]
  • 96.I L, Nam H. Identification of drug-target interaction by a random walk with restart method on an interactome network. BMC Bioinformatics. 2018;19:208. doi: 10.1186/s12859-018-2199-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Y W, Zeng J. Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics. 2013;29:i126–i134. doi: 10.1093/bioinformatics/btt234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Wen, M., Z. Zhang, S. Niu, H. Sha, R. Yang, Y. Yun, and H. Lu (2017) Deep-learning-based drug-target interaction prediction. J. Proteome Res. 16: 1401-1409. [DOI] [PubMed]
  • 99.Hu, P. W., K. C. C. Chan, and Z. H. You (2016) Large-scale prediction of drug-target interactions from deep representations. 2016 International Joint Conference on Neural Networks (IJCNN). July 24-29. Vancouver, BC, Canada.
  • 100.H O, Ozgur A, Ozkirimli E. DeepDTA: deep drug-target binding affinity prediction. Bioinformatics. 2018;34:i821–i829. doi: 10.1093/bioinformatics/bty593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.T H, Heidemeyer M, Ban F, Cherkasov A, Ester M. SimBoost: a read-across approach for predicting drugtarget binding affinities using gradient boosting machines. J. Cheminform. 2017;9:24. doi: 10.1186/s13321-017-0209-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.M T, Tomii K, Sese J. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics. 2019;35:309–318. doi: 10.1093/bioinformatics/bty535. [DOI] [PubMed] [Google Scholar]
  • 103.M G. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics. 2012;28:2304–2310. doi: 10.1093/bioinformatics/bts360. [DOI] [PubMed] [Google Scholar]
  • 104.Lee, I., J. Keum, and H. Nam (2019) DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences. PLoS Comput. Biol. 15: e1007129. [DOI] [PMC free article] [PubMed]
  • 105.Karimi, M., D. Wu, Z. Wang, and Y. Shen (2019) DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics. 35: 3329-3338. [DOI] [PMC free article] [PubMed]
  • 106.Shen, C., J. Ding, Z. Wang, D. Cao, X. Ding, and T. Hou (2020) From machine learning to deep learning: Advances in scoring functions for protein-ligand docking. WIREs Comput. Mol. Sci. 10: e1429.
  • 107.Sieg, J., F. Flachsenberg, and M. Rarey (2019) In need of bias control: evaluating chemical data for machine learning in structure-based virtual screening. J. Chem. Inf. Model. 59: 947-961. [DOI] [PubMed]
  • 108.Chen, L., A. Cruz, S. Ramsey, C. J. Dickson, J. S. Duca, V. Hornak, D. R. Koes, and T. Kurtzman (2019) Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening. PLoS One. 14: e0220113. [DOI] [PMC free article] [PubMed]
  • 109.Hanson, J., K. K. Paliwal, T. Litfin, Y. Yang, and Y. Zhou (2020) Getting to know your neighbor: protein structure prediction comes of age with contextual machine learning. J. Comput. Biol. 27: 796-814. [DOI] [PubMed]
  • 110.Shi, Q., W. Chen, S. Huang, Y. Wang, and Z. Xue (2019) Deep learning for mining protein data. Brief. Bioinform. bbz156. [DOI] [PubMed]
  • 111.Goodsell, D. S., C. Zardecki, L. Di Costanzo, J. M. Duarte, B. P. Hudson, I. Persikova, J. Segura, C. Shao, M. Voigt, J. D. Westbrook, J. Y. Young, and S. K. Burley (2020) RCSB Protein Data Bank: Enabling biomedical research and drug discovery. Protein Sci. 29: 52-65. [DOI] [PMC free article] [PubMed]
  • 112.J G, Obrezanova O, Champness E, Segall M. ADMET property prediction: The state of the art and current challenges. QSAR Comb. Sci. 2006;25:1172–1180. doi: 10.1002/qsar.200610093. [DOI] [Google Scholar]
  • 113.G M, Martiny V Y, Vayer P, Villoutreix B O, Miteva M A. Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov. Today. 2012;17:44–55. doi: 10.1016/j.drudis.2011.10.023. [DOI] [PubMed] [Google Scholar]
  • 114.S T, Wang J, Li Y, Li D, Xu L, Hou T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev. 2015;86:2–10. doi: 10.1016/j.addr.2015.01.009. [DOI] [PubMed] [Google Scholar]
  • 115.Zhao, Y. H., J. Le, M. H. Abraham, A. Hersey, P. J. Eddershaw, C. N. Luscombe, D. Boutina, G. Beck, B. Sherborne, I. Cooper, and J. A. Platts (2001) Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-Activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci. 90: 749-784. [DOI] [PubMed]
  • 116.Ponzoni, I., V. Sebastin-Prez, C. Requena-Triguero, C. Roca, M. J. Martnez, F. Cravero, M. F. Daz, J. A. Pez, R. G. Arrays, J. Adrio, and N. E. Campillo (2017) Hybridizing feature selection and feature learning approaches in QSAR modeling for drug discovery. Sci. Rep. 7: 2403. [DOI] [PMC free article] [PubMed]
  • 117.Wang, N. N., C. Huang, J. Dong, Z. J. Yao, M. F. Zhu, Z. K. Deng, B. Lv, A. P. Lu, A. F. Chen, and D. S. Cao (2017) Predicting human intestinal absorption with modified random forest approach: a comprehensive evaluation of molecular representation, unbalanced data, and applicability domain issues. RSC Adv. 7: 19007-19018.
  • 118.M Y, Chen J, Xu L, Shi X, Zhou X, Xi Z, An R, Wang X. A novel adaptive ensemble classification framework for ADME prediction. RSC Adv. 2018;8:11661–11683. doi: 10.1039/C8RA01206G. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Fredlund, L., S. Winiwarter, and C. Hilgendorf (2017) In vitro intrinsic permeability: a transporter-independent measure of Caco-2 cell permeability in drug design and development. Mol. Pharm. 14: 1601-1609. [DOI] [PubMed]
  • 120.Patel, R. D., S. P. Kumar, C. N. Patel, S. S. Shankar, H. A. Pandya, and H. A. Solanki (2017) Parallel screening of druglike natural compounds using Caco-2 cell permeability QSAR model with applicability domain, lipophilic ligand efficiency index and shape property: A case study of HIV-1 reverse transcriptase inhibitors. J. Mol. Struct. 1146: 80-95.
  • 121.H S, Nguyen K, Kerns E, Yan Z, Yu K R, Shah P, Jadhav A, Xu X. Highly predictive and interpretable models for PAMPA permeability. Bioorg. Med. Chem. 2017;25:1266–1276. doi: 10.1016/j.bmc.2016.12.049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Chi, C. T., M. H. Lee, C. F. Weng, and M. K. Leong (2019) In silico prediction of PAMPA effective permeability using a two-QSAR approach. Int. J. Mol. Sci. 20: 3170. [DOI] [PMC free article] [PubMed]
  • 123.K L, Didziapetris R. Physicochemical QSAR analysis of passive permeability across Caco-2 monolayers. J. Pharm. Sci. 2019;108:78–86. doi: 10.1016/j.xphs.2018.10.006. [DOI] [PubMed] [Google Scholar]
  • 124.Oja, M., S. Sild, and U. Maran (2019) Logistic classification models for pH-permeability profile: predicting permeability classes for the biopharmaceutical classification system. J. Chem. Inf. Model. 59: 2442-2455. [DOI] [PubMed]
  • 125.M S, Jang D, Nam H, Lee K H, Lee D. Predicting the absorption potential of chemical compounds through a deep learning approach. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018;15:432–440. doi: 10.1109/TCBB.2016.2535233. [DOI] [PubMed] [Google Scholar]
  • 126.Wenzel, J., H. Matter, and F. Schmidt (2019) Predictive multitask deep neural network models for ADME-Tox properties: learning from large data sets. J. Chem. Inf. Model. 59: 1253-1268. [DOI] [PubMed]
  • 127.E G. Medicinal chemistry - an introduction; fundamentals of medicinal chemistry (Gareth Thomas) J. Chem. Educ. 2004;81:1271. doi: 10.1021/ed081p1271. [DOI] [Google Scholar]
  • 128.Kumar, R., A. Sharma, M. H. Siddiqui, and R. K. Tiwari (2017) Prediction of drug-plasma protein binding using artificial intelligence based algorithms. Comb. Chem. High Throughput Screen. 21: 57-64. [DOI] [PubMed]
  • 129.Wang, N. N., Z. K. Deng, C. Huang, J. Dong, M. F. Zhu, Z. J. Yao, A. F. Chen, A. P. Lu, Q. Mi, and D. S. Cao (2017) ADME properties evaluation in drug discovery: Prediction of plasma protein binding using NSGA-II combining PLS and consensus modeling. Chemometr. Intell. Lab. Syst. 170: 84-95.
  • 130.Sun, L., H. Yang, J. Li, T. Wang, W. Li, G. Liu, and Y. Tang (2018) In silico prediction of compounds binding to human plasma proteins by QSAR models. ChemMedChem. 13: 572-581. [DOI] [PubMed]
  • 131.Toma, C., D. Gadaleta, A. Roncaglioni, A. Toropov, A. Toropova, M. Marzo, and E. Benfenati (2019) QSAR development for plasma protein binding: influence of the ionization state. Pharm. Res. 36: 28. [DOI] [PMC free article] [PubMed]
  • 132.Z Y, Yang Y, Li X, Cao D, Ouyang D. An Integrated transfer learning and multitask learning approach for pharmacokinetic parameter prediction. Mol. 2019;Pharm.16:533–541. doi: 10.1021/acs.molpharmaceut.8b00816. [DOI] [PubMed] [Google Scholar]
  • 133.Prachayasittikul, V., A. Worachartcheewan, A. P. Toropova, A. A. Toropov, N. Schaduangrat, V. Prachayasittikul, and C. Nantasenamat (2017) Large-scale classification of P-glycoprotein inhibitors using SMILES-based descriptors. SAR QSAR Environ. Res. 28: 1-16. [DOI] [PubMed]
  • 134.C. G G, García-Pedrajas N. Boosted feature selectors: a case study on prediction P-gp inhibitors and substrates. J. Comput. Aided Mol. Des. 2018;32:1273–1294. doi: 10.1007/s10822-018-0171-5. [DOI] [PubMed] [Google Scholar]
  • 135.V H, Roy K D, Kovalenko A. Prediction of Pglycoprotein inhibitors with machine learning classification models and 3D-RISM-KH theory based solvation energy descriptors. J. Comput. Aided Mol. Des. 2019;33:965–971. doi: 10.1007/s10822-019-00253-5. [DOI] [PubMed] [Google Scholar]
  • 136.Shi, T., Y. Yang, S. Huang, L. Chen, Z. Kuang, Y. Heng, and H. Mei (2019) Molecular image-based convolutional neural network for the prediction of ADMET properties. Chemometr. Intell. Lab. Syst. 194: 103853.
  • 137.A. A T, Toropova A P, Beeg M, Gobbi M, Salmona M. QSAR model for blood-brain barrier permeation. J. Pharmacol. Toxicol. Methods. 2017;88:7–18. doi: 10.1016/j.vascn.2017.04.014. [DOI] [PubMed] [Google Scholar]
  • 138.Wang, Z., H. Yang, Z. Wu, T. Wang, W. Li, Y. Tang, and G. Liu (2018) In silico prediction of blood-brain barrier permeability of compounds by machine learning and resampling methods. ChemMedChem. 13: 2189-2201. [DOI] [PubMed]
  • 139.Yuan, Y., F. Zheng, and C. G. Zhan (2018) Improved prediction of blood-brain barrier permeability through machine learning with combined use of molecular property-based descriptors and fingerprints. AAPS J. 20: 54. [DOI] [PMC free article] [PubMed]
  • 140.R M, Xia L Y, Chen H H, Huang H H, Liang Y. Improved classification of blood-brain-barrier drugs using deep learning. Sci. Rep. 2019;9:8802. doi: 10.1038/s41598-019-44773-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Hunt, P. A., M. D. Segall, and J. D. Tyzack (2018) WhichP450: a multi-class categorical model to predict the major metabolising CYP450 isoform for a compound. J. Comput. Aided Mol. Des. 32: 537-546. [DOI] [PubMed]
  • 142.Tian, S., Y. Djoumbou-Feunang, R. Greiner, and D. S. Wishart (2018) CypReact: A software tool for in silico reactant prediction for human cytochrome P450 enzymes. J. Chem. Inf. Model. 58: 1282-1291. [DOI] [PubMed]
  • 143.Shan, X., X. Wang, C. D. Li, Y. Chu, Y. Zhang, Y. Xiong, and D. Q. Wei (2019) Prediction of CYP450 enzyme-substrate selectivity based on the network-based label space division method. J. Chem. Inf. Model. 59: 4577-4586. [DOI] [PubMed]
  • 144.X L, Xu Y, Lai L, Pei J. Prediction of human cytochrome P450 inhibition using a multitask deep autoencoder neural network. Mol. Pharm. 2018;15:4336–4345. doi: 10.1021/acs.molpharmaceut.8b00110. [DOI] [PubMed] [Google Scholar]
  • 145.Pang, X., B. Zhang, G. Mu, J. Xia, Q. Xiang, X. Zhao, A. Liu, G. Du, and Y. Cui (2018) Screening of cytochrome P450 3A4 inhibitors via in silico and in vitro approaches. RSC Adv. 8: 34783-34792. [DOI] [PMC free article] [PubMed]
  • 146.Wu, Z., T. Lei, C. Shen, Z. Wang, D. Cao, and T. Hou (2019) ADMET evaluation in drug discovery. 19. Reliable prediction of human cytochrome P450 inhibition using artificial intelligence approaches. J. Chem. Inf. Model. 59: 4587-4601. [DOI] [PubMed]
  • 147.S H, Li M, Ye X, Wang H, Yu W, He W, Wang Y, Qiao Y. Site of metabolism prediction for oxidation reactions mediated by oxidoreductases based on chemical bond. Bioinformatics. 2017;33:363–372. doi: 10.1093/bioinformatics/btw617. [DOI] [PubMed] [Google Scholar]
  • 148.Šícho, M., C. De Bruyn Kops, C. Stork, D. Svozil, and J. Kirchmair (2017) FAME 2: simple and effective machine learning model of cytochrome P450 regioselectivity. J. Chem. Inf. Model. 57: 1832-1846. [DOI] [PubMed]
  • 149.A. R F, Goldmann D D, Schneider G, Goller A H. MetScore: Site of metabolism prediction beyond cytochrome P450 enzymes. ChemMedChem. 2018;13:2281–2289. doi: 10.1002/cmdc.201800309. [DOI] [PubMed] [Google Scholar]
  • 150.Cai, Y., H. Yang, W. Li, G. Liu, P. W. Lee, and Y. Tang (2019) Computational prediction of site of metabolism for UGTcatalyzed reactions. J. Chem. Inf. Model. 59: 1085-1095. [DOI] [PubMed]
  • 151.Lee, P. W. (2014) Handbook of Metabolic Pathways of Xenobiotics. John Wiley & Sons
  • 152.S P, Kafel R. MetStabOn-online platform for metabolic stability predictions. Int. J. Mol. Sci. 2018;19:1040. doi: 10.3390/ijms19041040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Esaki, T., R. Watanabe, H. Kawashima, R. Ohashi, Y. Natsume-Kitatani, C. Nagao, and K. Mizuguchi (2019) Data curation can improve the prediction accuracy of metabolic intrinsic clearance. Mol. Inform. 38: e1800086. [DOI] [PMC free article] [PubMed]
  • 154.Liu, K., X. Sun, L. Jia, J. Ma, H. Xing, J. Wu, H. Gao, Y. Sun, F. Boulnois, and J. Fan (2019) Chemi-net: A molecular graph convolutional network for accurate drug property prediction. Int. J. Mol. Sci. 20: 3389. [DOI] [PMC free article] [PubMed]
  • 155.Z. D. Z. Quantitative structure - pharmacokinetic relationships for plasma clearance of basic drugs with consideration of the major elimination pathway. J. Pharm. Pharm. Sci. 2017;20:135–147. doi: 10.18433/J3MG71. [DOI] [PubMed] [Google Scholar]
  • 156.Wakayama, N., K. Toshimoto, K. Maeda, S. Hotta, T. Ishida, Y. Akiyama, and Y. Sugiyama (2018) In silico prediction of major clearance pathways of drugs among 9 routes with two-step support vector machines. Pharm. Res. 35: 197. [DOI] [PubMed]
  • 157.Watanabe, R., R. Ohashi, T. Esaki, H. Kawashima, Y. Natsume-Kitatani, C. Nagao, and K. Mizuguchi (2019) Development of an in silico prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in plasma as a descriptor. Sci. Rep. 9: 18782. [DOI] [PMC free article] [PubMed]
  • 158.Chen, J., H. Yang, L. Zhu, Z. Wu, W. Li, Y. Tang, and G. Liu (2020) In silico prediction of human renal clearance of compounds using quantitative structure-pharmacokinetic relationship models. Chem. Res. Toxicol. 33: 640-650. [DOI] [PubMed]
  • 159.H H, Thakkar S, Chen M, Tong W. Development of decision forest models for prediction of drug-induced liver injury in humans using a large set of FDA-approved drugs. Sci. Rep. 2017;7:17311. doi: 10.1038/s41598-017-17701-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Kim, E. and H. Nam (2017) Prediction models for drug-induced hepatotoxicity by using weighted molecular fingerprints. BMC Bioinformatics. 18: 227. [DOI] [PMC free article] [PubMed]
  • 161.E K, Montanari F, Ecker G F. Predicting drug-induced liver injury: The importance of data curation. Toxicology. 2017;389:139–145. doi: 10.1016/j.tox.2017.06.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Ai, H., W. Chen, L. Zhang, L. Huang, Z. Yin, H. Hu, Q. Zhao, J. Zhao, and H. Liu (2018) Predicting drug-induced liver injury using ensemble learning methods and molecular fingerprints. Toxicol. Sci. 165: 100-107. [DOI] [PubMed]
  • 163.Hammann, F., V. Schning, and J. Drewe (2019) Prediction of clinically relevant drug-induced liver injury from structure using machine learning. J. Appl. Toxicol. 39: 412-419. [DOI] [PubMed]
  • 164.He, S., T. Ye, R. Wang, C. Zhang, X. Zhang, G. Sun, and X. Sun (2019) An in silico model for predicting drug-induced hepatotoxicity. Int. J. Mol. Sci. 20: 1897. [DOI] [PMC free article] [PubMed]
  • 165.Williams, D. P., S. E. Lazic, A. J. Foster, E. Semenova, and P. Morgan (2019) Predicting drug-induced liver injury with Bayesian machine learning. Chem. Res. Toxicol. 33: 239-248. [DOI] [PubMed]
  • 166.Munawar, S., M. J. Windley, E. G. Tse, M. H. Todd, A. P. Hill, J. I. Vandenberg, and I. Jabeen (2018) Experimentally validated pharmacoinformatics approach to predict hERG inhibition potential of new chemical entities. Front. Pharmacol. 9: 1035. [DOI] [PMC free article] [PubMed]
  • 167.Siramshetty, V. B., Q. Chen, P. Devarakonda, and R. Preissner (2018) The catch-22 of predicting hERG blockade using publicly accessible bioactivity data. J. Chem. Inf. Model. 58: 1224-1233. [DOI] [PubMed]
  • 168.Cai, C., P. Guo, Y. Zhou, J. Zhou, Q. Wang, F. Zhang, J. Fang, and F. Cheng (2019) Deep learning-based prediction of druginduced cardiotoxicity. J. Chem. Inf. Model. 59: 1073-1084. [DOI] [PMC free article] [PubMed]
  • 169.Konda, L. S. K., S. K. Praba, and R. Kristam (2019) hERG liability classification models using machine learning techniques. Comput. Toxicol. 12: 100089.
  • 170.Lee, A. A., Q. Yang, A. Bassyouni, C. R. Butler, X. Hou, S. Jenkinson, and D. A. Price (2019) Ligand biological activity predicted by cleaning positive and negative chemical correlations. Proc. Natl. Acad. Sci. USA. 116: 3373-3378. [DOI] [PMC free article] [PubMed]
  • 171.Lee, H. M., M. S. Yu, S. R. Kazmi, S. Y. Oh, K. H. Rhee, M. A. Bae, B. H. Lee, D. S. Shin, K. S. Oh, H. Ceong, D. Lee, and D. Na (2019) Computational determination of hERG-related cardiotoxicity of drug candidates. BMC Bioinformatics. 20: 250. [DOI] [PMC free article] [PubMed]
  • 172.Ogura, K., T. Sato, H. Yuki, and T. Honma (2019) Support vector machine model for hERG inhibitory activities based on the integrated hERG database using descriptor selection by NSGA-II. Sci. Rep. 9: 12220. [DOI] [PMC free article] [PubMed]
  • 173.Zhang, Y., J. Zhao, Y. Wang, Y. Fan, L. Zhu, Y. Yang, X. Chen, T. Lu, Y. Chen, and H. Liu (2019) Prediction of hERG K+ channel blockage using deep neural networks. Chem. Biol. Drug Des. 94: 1973-1985. [DOI] [PubMed]
  • 174.T S, Yuki H, Ogura K, Honma T. Construction of an integrated database for hERG blocking small molecules. PLoS One. 2018;13:e0199348. doi: 10.1371/journal.pone.0199348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.H K, Nam H. hERG-Att: Self-attention-based deep neural network for predicting hERG blockers. Comput. Biol. Chem. 2020;87:107286. doi: 10.1016/j.compbiolchem.2020.107286. [DOI] [PubMed] [Google Scholar]
  • 176.Lei, T., F. Chen, H. Liu, H. Sun, Y. Kang, D. Li, Y. Li, and T. Hou (2017) ADMET evaluation in drug discovery. Part 17: development of quantitative and qualitative prediction models for chemical-induced respiratory toxicity. Mol. Pharm. 14: 2407-2421. [DOI] [PubMed]
  • 177.Lei, T., H. Sun, Y. Kang, F. Zhu, H. Liu, W. Zhou, Z. Wang, D. Li, Y. Li, and T. Hou (2017) ADMET evaluation in drug discovery. 18. reliable prediction of chemical-induced urinary tract toxicity by boosting machine learning approaches. Mol. Pharm. 14: 3935-3953. [DOI] [PubMed]
  • 178.J L, Patlewicz G, Williams A J, Thomas R S, Shah I. Predicting organ toxicity using in vitro bioactivity data and chemical structure. Chem. Res. Toxicol. 2017;30:2046–2059. doi: 10.1021/acs.chemrestox.7b00084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Y X, Pei J, Lai L. Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. J. Chem. Inf. Model. 2017;57:2672–2685. doi: 10.1021/acs.jcim.7b00244. [DOI] [PubMed] [Google Scholar]
  • 180.Zhang, H., P. Yu, J. X. Ren, X. B. Li, H. L. Wang, L. Ding, and W. B. Kong (2017) Development of novel prediction model for drug-induced mitochondrial toxicity by using naive Bayes classifier method. Food Chem. Toxicol. 110: 122-129. [DOI] [PubMed]
  • 181.Fan, D., H. Yang, F. Li, L. Sun, P. Di, W. Li, Y. Tang, and G. Liu (2018) In silico prediction of chemical genotoxicity using machine learning methods and structural alerts. Toxicol. Res. 7: 211-220. [DOI] [PMC free article] [PubMed]
  • 182.C J, Yang H, Di P, Li W, Tang Y, Liu G. In silico prediction of chemical reproductive toxicity using machine learning. J. Appl. Toxicol. 2019;39:844–854. doi: 10.1002/jat.3772. [DOI] [PubMed] [Google Scholar]
  • 183.Zheng, S., Y. Wang, W. Liu, W. Chang, G. Liang, Y. Xu, and F. Lin (2019) In silico prediction of hemolytic toxicity on the human erythrocytes for small molecules by machine-learning and genetic algorithm. J. Med. Chem. 12: 6499-6512. [DOI] [PubMed]
  • 184.Fernandez, M., F. Ban, G. Woo, M. Hsing, T. Yamazaki, E. Leblanc, P. S. Rennie, W. J. Welch, and A. Cherkasov (2018) Toxic colors: the use of deep learning for predicting toxicity of compounds merely from their graphic images. J. Chem. Inf. Model. 58: 1533-1543. [DOI] [PubMed]
  • 185.Abbasi, K., A. Poso, J. Ghasemi, M. Amanlou, and A. Masoudi-Nejad (2019) Deep transferable compound representation across domains and tasks for low data drug discovery. J. Chem. Inf. Model. 59: 4528-4539. [DOI] [PubMed]
  • 186.A K, Mishra A, Newton M A H, Sattar A. Efficient toxicity prediction via simple features using shallow neural networks and decision trees. ACS Omega. 2019;4:1874–1888. doi: 10.1021/acsomega.8b03207. [DOI] [Google Scholar]
  • 187.Zakharov, A. V., T. Zhao, D. T. Nguyen, T. Peryea, T. Sheils, A. Yasgar, R. Huang, N. Southall, and A. Simeonov (2019) Novel consensus architecture to improve performance of large-scale multitask deep learning QSAR models. J. Chem. Inf. Model. 59: 4613-4624. [DOI] [PMC free article] [PubMed]
  • 188.J W, Hou T. Advances in computationally modeling human oral bioavailability. Adv. Drug Deliv. Rev. 2015;86:11–16. doi: 10.1016/j.addr.2015.01.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.M. C. H. The current limits in virtual screening and property prediction. Future Med. Chem. 2018;10:1623–1635. doi: 10.4155/fmc-2017-0303. [DOI] [PubMed] [Google Scholar]
  • 190.Wu, Z., B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing, and V. Pande (2018) MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 9: 513-530. [DOI] [PMC free article] [PubMed]
  • 191.Merck Molecular Activity Challenge (2012) https://www.kaggle.com/c/MerckActivity.
  • 192.D. A W, Le T C. Performance of deep and shallow neural networks, the universal approximation theorem, activity cliffs, and QSAR. Mol. Inform. 2017;36:1600118. doi: 10.1002/minf.201600118. [DOI] [PubMed] [Google Scholar]
  • 193.S R, Kwon Y, Kim W Y. A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification. Chem. Sci. 2019;10:8438–8446. doi: 10.1039/C9SC01992H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Xiong, Z., D. Wang, X. Liu, F. Zhong, X. Wan, X. Li, Z. Li, X. Luo, K. Chen, H. Jiang, and M. Zheng (2019) Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. J. Med. Chem. 63: 8749-8760. [DOI] [PubMed]
  • 195.G. M. M. On outliers and activity cliffs-Why QSAR often disappoints. J. Chem. Inf. Model. 2006;46:1535. doi: 10.1021/ci060117s. [DOI] [PubMed] [Google Scholar]
  • 196.Kohonen, P., J. A. Parkkinen, E. L. Willighagen, R. Ceder, K. Wennerberg, S. Kaski, and R. C. Grafstrm (2017) A transcriptomics data-driven gene space accurately predicts liver cytopathology and drug-induced liver injury. Nat. Commun. 8: 15932. [DOI] [PMC free article] [PubMed]
  • 197.Rueda-Zrate, H. A., I. Imaz-Rosshandler, R. A. Crdenas-Ovando, J. E. Castillo-Fernndez, J. Noguez-Monroy, and C. Rangel-Escareo (2017) A computational toxicogenomics approach identifies a list of highly hepatotoxic compounds from a large microarray database. PLoS One. 12: e0176284. [DOI] [PMC free article] [PubMed]
  • 198.Su, R., H. Wu, B. Xu, X. Liu, and L. Wei (2019) Developing a multi-dose computational model for drug-induced hepatotoxicity prediction based on toxicogenomics data. IEEE/ACM Trans. Comput. Biol. Bioinform. 16: 1231-1239. [DOI] [PubMed]
  • 199.G S, Fechner U. Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discov. 2005;4:649–663. doi: 10.1038/nrd1799. [DOI] [PubMed] [Google Scholar]
  • 200.W. P. W. Virtual chemical libraries. J. Med. Chem. 2019;62:1116–1124. doi: 10.1021/acs.jmedchem.8b01048. [DOI] [PubMed] [Google Scholar]
  • 201.Reymond, J. L., L. Ruddigkeit, L. Blum, and R. van Deursen (2012) The enumeration of chemical space. WIREs Comput. Mol. Sci. 2: 717-733.
  • 202.B S-L, Aspuru-Guzik A. Inverse molecular design using machine learning: Generative models for matter engineering. Science. 2018;361:360–365. doi: 10.1126/science.aat2663. [DOI] [PubMed] [Google Scholar]
  • 203.Elton, D. C., Z. Boukouvalas, M. D. Fuge, and P. W. Chung (2019) Deep learning for molecular design—a review of the state of the art. Mol. Syst. Des. Eng. 4: 828-849.
  • 204.Brown, N., M. Fiscato, M. H. S. Segler, and A. C. Vaucher (2019) GuacaMol: Benchmarking models for de novo molecular design. J. Chem. Inf. Model. 59: 1096-1108. [DOI] [PubMed]
  • 205.I H, Lehn J M. Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self-assembly. Proc. Natl. Acad. Sci. USA. 1997;94:2106–2110. doi: 10.1073/pnas.94.6.2106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.J. M L. Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem. Eur. J. 1999;5:2455–2463. doi: 10.1002/(SICI)1521-3765(19990903)5:9<2455::AID-CHEM2455>3.0.CO;2-H. [DOI] [Google Scholar]
  • 207.Kwon, Y., J. Yoo, Y. S. Choi, W. J. Son, D. Lee, and S. Kang (2019) Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation. J. Cheminform. 11: 70. [DOI] [PMC free article] [PubMed]
  • 208.Segler, M. H. S., T. Kogej, C. Tyrchan, and M. P. Waller (2018) Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci. 4: 120-131. [DOI] [PMC free article] [PubMed]
  • 209.Gómez-Bombarelli, R., J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, and A. Aspuru-Guzik (2018) Automatic chemical design using a datadriven continuous representation of molecules. ACS Cent. Sci. 4: 268-276. [DOI] [PMC free article] [PubMed]
  • 210.S K, Cho K. Conditional molecular design with deep generative models. J. Chem. Inf. Model. 2019;59:43–52. doi: 10.1021/acs.jcim.8b00263. [DOI] [PubMed] [Google Scholar]
  • 211.Arús-Pous, J., S. V. Johansson, O. Prykhodko, E. J. Bjerrum, C. Tyrchan, J. L. Reymond, H. Chen, and O. Engkvist (2019) Randomized SMILES strings improve the quality of molecular generative models. J. Cheminform. 11: 71. [DOI] [PMC free article] [PubMed]
  • 212.Gupta, A., A. T. Müller, B. J. H. Huisman, J. A. Fuchs, P. Schneider, and G. Schneider (2018) Generative recurrent networks for de novo drug design. Mol. Inform. 37: 1700111. [DOI] [PMC free article] [PubMed]
  • 213.Merk, D., F. Grisoni, L. Friedrich, and G. Schneider (2018) Tuning artificial intelligence on the de novo design of naturalproduct-inspired retinoid X receptor modulators. Commun. Chem. 1: 68.
  • 214.Zheng, S., X. Yan, Q. Gu, Y. Yang, Y. Du, Y. Lu, and J. Xu (2019) QBMG: quasi-biogenic molecule generator with deep recurrent neural network. J. Cheminform. 11: 5. [DOI] [PMC free article] [PubMed]
  • 215.Awale, M., F. Sirockin, N. Stiefl, and J. L. Reymond (2019) Drug analogs from fragment-based long short-term memory generative neural networks. J. Chem. Inf. Model. 59: 1347-1356. [DOI] [PubMed]
  • 216.Arús-Pous, J., T. Blaschke, S. Ulander, J. L. Reymond, H. Chen, and O. Engkvist (2019) Exploring the GDB-13 chemical space using deep generative models. J. Cheminform. 11: 20. [DOI] [PMC free article] [PubMed]
  • 217.Pogány, P., N. Arad, S. Genway, and S. D. Pickett (2019) De novo molecule design by translating from reduced graphs to SMILES. J. Chem. Inf. Model. 59: 1136-1146. [DOI] [PubMed]
  • 218.Y L, Zhang L, Liu Z. Multi-objective de novo drug design with conditional graph generative model. J. Cheminform. 2018;10:33. doi: 10.1186/s13321-018-0287-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 219.Polykovskiy, D., A. Zhebrak, D. Vetrov, Y. Ivanenkov, V. Aladinskiy, P. Mamoshina, M. Bozdaganyan, A. Aliper, A. Zhavoronkov, and A. Kadurin (2018) Entangled conditional adversarial autoencoder for de novo drug discovery. Mol. Pharm. 15: 4398-4405. [DOI] [PubMed]
  • 220.Lim, J., S. Ryu, J. W. Kim, and W. Y. Kim (2018) Molecular generative model based on conditional variational autoencoder for de novo molecular design. J. Cheminform. 10: 31. [DOI] [PMC free article] [PubMed]
  • 221.S H, Radinsky K. Prototype-based compound discovery using deep generative models. Mol. Pharmaceutics. 2018;15:4406–4416. doi: 10.1021/acs.molpharmaceut.8b00474. [DOI] [PubMed] [Google Scholar]
  • 222.Skalic, M., J. Jiménez, D. Sabbadin, and G. De Fabritiis (2019) Shape-based generative modeling for de novo drug design. J. Chem. Inf. Model. 59: 1205-1214. [DOI] [PubMed]
  • 223.Lim, J., S. Y. Hwang, S. Moon, S. Kim, and W. Y. Kim (2020) Scaffold-based molecular design with a graph generative model. Chem. Sci. 11: 1153-1164. [DOI] [PMC free article] [PubMed]
  • 224.Kadurin, A., S. Nikolenko, K. Khrabrov, A. Aliper, and A. Zhavoronkov (2017) druGAN: An advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol. Pharmaceutics. 14: 3098-3104. [DOI] [PubMed]
  • 225.T B, Olivecrona M, Engkvist O, Bajorath J, Chen H. Application of generative autoencoder in de novo molecular design. Mol. Inform. 2018;37:1700123. doi: 10.1002/minf.201700123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Prykhodko, O., S. V. Johansson, P. C. Kotsias, J. Arús-Pous, E. J. Bjerrum, O. Engkvist, and H. Chen (2019) A de novo molecular generation method using latent vector based generative adversarial network. J. Cheminform. 11: 74. [DOI] [PMC free article] [PubMed]
  • 227.Zhou, Z., S. Kearnes, L. Li, R. N. Zare, and P. Riley (2019) Optimization of molecules via deep reinforcement learning. Sci. Rep. 9: 10752. [DOI] [PMC free article] [PubMed]
  • 228.Olivecrona, M., T. Blaschke, O. Engkvist, and H. Chen (2017) Molecular de-novo design through deep reinforcement learning. J. Cheminform. 9: 48. [DOI] [PMC free article] [PubMed]
  • 229.M P, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci. Adv. 2018;4:eaap7885. doi: 10.1126/sciadv.aap7885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 230.Putin, E., A. Asadulaev, Y. Ivanenkov, V. Aladinskiy, B. Sanchez-Lengeling, A. Aspuru-Guzik, and A. Zhavoronkov (2018) Reinforced adversarial neural computer for de novo molecular design. J. Chem. Inf. Model. 58: 1194-1204. [DOI] [PubMed]
  • 231.Putin, E., A. Asadulaev, Q. Vanhaelen, Y. Ivanenkov, A. V. Aladinskaya, A. Aliper, and A. Zhavoronkov (2018) Adversarial threshold neural computer for molecular de novo design. Mol. Pharmaceutics. 15: 4386-4397. [DOI] [PubMed]
  • 232.Liu, X., K. Ye, H. W. T. van Vlijmen, A. P. Ijzerman, and G. J. P. van Westen (2019) An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A2A receptor. J. Cheminform. 11: 35. [DOI] [PMC free article] [PubMed]
  • 233.N S, Falkman G, Karlsson A, Mathiason G, Boström J. Deep reinforcement learning for multiparameter optimization in de novo drug design. J. 2019;Chem.Inf.Model.59:3166–3176. doi: 10.1021/acs.jcim.9b00325. [DOI] [PubMed] [Google Scholar]
  • 234.Zhavoronkov, A., Y. A. Ivanenkov, A. Aliper, M. S. Veselov, V. A. Aladinskiy, A. V. Aladinskaya, V. A. Terentiev, D. A. Polykovskiy, M. D. Kuznetsov, A. Asadulaev, Y. Volkov, A. Zholus, R. R. Shayakhmetov, A. Zhebrak, L. I. Minaeva, B. A. Zagribelnyy, L. H. Lee, R. Soll, D. Madge, L. Xing, T. Guo, and A. Aspuru-Guzik (2019) Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37: 1038-1040. [DOI] [PubMed]
  • 235.Polykovskiy, D., A. Zhebrak, B. Sanchez-Lengeling, S. Golovanov, O. Tatanov, S. Belyaev, R. Kurbanov, A. Artamonov, V. Aladinskiy, M. Veselov, A. Kadurin, S. Johansson, H. Chen, S. Nikolenko, A. Aspuru-Guzik, and A. Zhavoronkov (2018) Molecular Sets (MOSES): A benchmarking platform for molecular generation models. ArXiv. 1811.12823. [DOI] [PMC free article] [PubMed]
  • 236.Kawai, K., Y. Karuo, A. Tarui, K. Sato, and M. Omote (2020) Effect of structural descriptors on the design of cyclin dependent kinase inhibitors using similarity-based molecular evolution. Mol. Inform. 39: 1900126. [DOI] [PubMed]
  • 237.Yoshikawa, N., K. Terayama, M. Sumita, T. Homma, K. Oono, and K. Tsuda (2018) Population-based de novo molecule generation, using grammatical evolution. Chem. Lett. 47: 1431-1434.
  • 238.J. H. J. A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space. Chem. Sci. 2019;10:3567–3572. doi: 10.1039/C8SC05372C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 239.R. H H, Eden M R. Evolutionary algorithm for de novo molecular design with multi-dimensional constraints. Comput. Chem Eng. 2015;83:267–277. doi: 10.1016/j.compchemeng.2015.06.012. [DOI] [Google Scholar]
  • 240.C R, Virshup A, Yang W, Beratan D N. Strategy to discover diverse optimal molecules in the small molecule universe. J. Chem. Inf. Model. 2015;55:529–537. doi: 10.1021/ci500749q. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 241.Boolell, M., M. J. Allen, S. A. Ballard, S. Gepi-Attee, G. J. Muirhead, A. M. Naylor, I. H. Osterloh, and C. Gingell (1996) Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int. J. Impot Res. 8: 47-52. [PubMed]
  • 242.Ning, Y. M., J. L. Gulley, P. M. Arlen, S. Woo, S. M. Steinberg, J. J. Wright, H. L. Parnes, J. B. Trepel, M. J. Lee, Y. S. Kim, H. Sun, R. A. Madan, L. Latham, E. Jones, C. C. Chen, W. D. Figg, and W. L. Dahut (2010) Phase II trial of bevacizumab, thalidomide, docetaxel, and prednisone in patients with metastatic castration-resistant prostate cancer. J. Clin. Oncol. 28: 2070-2076. [DOI] [PMC free article] [PubMed]
  • 243.Singhal, S., J. Mehta, R. Desikan, D. Ayers, P. Roberson, P. Eddlemon, N. Munshi, E. Anaissie, C. Wilson, M. Dhodapkar, J. Zeldis, and B. Barlogie (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med. 341: 1565-1571. [DOI] [PubMed]
  • 244.R. J D, Loughnan M S, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc. Natl. Acad. Sci. USA. 1994;91:4082–4085. doi: 10.1073/pnas.91.9.4082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.P. N H, Verspoor K, Kusljic S, Halgamuge S. A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration. BMC Bioinformatics. 2018;19:129. doi: 10.1186/s12859-018-2123-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 246.Wu, C., R. C. Gudivada, B. J. Aronow, and A. G. Jegga (2013) Computational drug repositioning through heterogeneous network clustering. BMC Syst. Biol. 7: S6. [DOI] [PMC free article] [PubMed]
  • 247.Blondel, V. D., J. L. Guillaume, R. Lambiotte, and E. Lefebvre (2008) Fast unfolding of communities in large networks. J. Stat. Mech. 2008: P10008.
  • 248.T N, Yu H, Paccanaro A. Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods. 2012;9:471–472. doi: 10.1038/nmeth.1938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 249.P S, Guo J, Winnenburg R, Baumbach J. Drug repurposing by integrated literature mining and drug-genedisease triangulation. Drug Discov. Today. 2017;22:615–619. doi: 10.1016/j.drudis.2016.10.008. [DOI] [PubMed] [Google Scholar]
  • 250.H C, Zhang Z. Prediction of drug-disease associations for drug repositioning through drug-miRNAdisease heterogeneous network. IEEE Access. 2018;6:45281–45287. doi: 10.1109/ACCESS.2018.2860632. [DOI] [Google Scholar]
  • 251.V M, Navarro C, Cano C, Fajardo W, Blanco A. DrugNet: network-based drug-disease prioritization by integrating heterogeneous data. Artif. Intell. Med. 2015;63:41–49. doi: 10.1016/j.artmed.2014.11.003. [DOI] [PubMed] [Google Scholar]
  • 252.V M, Cano C, Blanco A. ProphNet: a generic prioritization method through propagation of information. BMC Bioinformatics. 2014;15:S5. doi: 10.1186/1471-2105-15-S1-S5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253.H L, Wang J, Li M, Luo J, Peng X, Wu F X, Pan Y. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics. 2016;32:2664–2671. doi: 10.1093/bioinformatics/btw228. [DOI] [PubMed] [Google Scholar]
  • 254.H L, Li M, Wang S, Liu Q, Li Y, Wang J. Computational drug repositioning using low-rank matrix approximation and randomized algorithms. Bioinformatics. 2018;34:1904–1912. doi: 10.1093/bioinformatics/bty013. [DOI] [PubMed] [Google Scholar]
  • 255.C. K Y, Wang W X, Zhang G, Wang J L, Patel A. BiRWDDA: A novel drug repositioning method based on multisimilarity fusion. J. Comput. Biol. 2019;26:1230–1242. doi: 10.1089/cmb.2019.0063. [DOI] [PubMed] [Google Scholar]
  • 256.A G, Stein G Y, Ruppin E, Sharan R. PREDICT: A method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 2011;7:496. doi: 10.1038/msb.2011.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257.Napolitano, F., Y. Zhao, V. M. Moreira, R. Tagliaferri, J. Kere, M. D'Amato, and D. Greco (2013) Drug repositioning: A machinelearning approach through data integration. J. Cheminform. 5: 30. [DOI] [PMC free article] [PubMed]
  • 258.Y W, Chen S, Deng N, Wang Y. Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data. PLoS One. 2013;8:e78518. doi: 10.1371/journal.pone.0078518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 259.E K, Choi A S, Nam H. Drug repositioning of herbal compounds via a machine-learning approach. BMC Bioinformatics. 2019;20:247. doi: 10.1186/s12859-019-2811-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 260.W Z, Yue X, Huang F, Liu R, Chen Y, Ruan C. Predicting drug-disease associations and their therapeutic function based on the drug-disease association bipartite network. Methods. 2018;145:51–59. doi: 10.1016/j.ymeth.2018.06.001. [DOI] [PubMed] [Google Scholar]
  • 261.D. H L, Nguyen-Ngoc D. Drug repositioning by integrating known disease-gene and drug-target associations in a semi-supervised learning model. Acta Biotheor. 2018;66:315–331. doi: 10.1007/s10441-018-9325-z. [DOI] [PubMed] [Google Scholar]
  • 262.P X, Cao Y, Zhang T, Wang X, Pan S, Shen T. Drug repositioning through integration of prior knowledge and projections of drugs and diseases. Bioinformatics. 2019;35:4108–4119. doi: 10.1093/bioinformatics/btz182. [DOI] [PubMed] [Google Scholar]
  • 263.X W, Zhang Y, Huang Y, Fang Y. Predicting drug-disease associations by network embedding and biomedical data integration. Data Technol. Appl. 2019;53:217–229. doi: 10.1108/DTA-01-2019-0004. [DOI] [Google Scholar]
  • 264.M M, Ghadirinia M, Sharifi-Zarchi A, Zare-Mirakabad F. The assessment of efficient representation of drug features using deep learning for drug repositioning. BMC Bioinformatics. 2019;20:577. doi: 10.1186/s12859-019-3165-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Abdolhosseini, F., B. Azarkhalili, A. Maazallahi, A. Kamal, S. A. Motahari, A. Sharifi-Zarchi, and H. Chitsaz (2019) Cell identity codes: understanding cell identity from gene expression profiles using deep neural networks. Sci. Rep. 9: 2342. [DOI] [PMC free article] [PubMed]
  • 266.E A, Mofrad M R K. Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS One. 2015;10:e0141287. doi: 10.1371/journal.pone.0122621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 267.Y D, Kazmierczak S, Fortney K. Drug Repurposing using deep embeddings of gene expression profiles. Mol. Pharm. 2018;15:4314–4325. doi: 10.1021/acs.molpharmaceut.8b00284. [DOI] [PubMed] [Google Scholar]
  • 268.Stathias, V., J. Turner, A. Koleti, D. Vidovic, D. Cooper, M. Fazel-Najafabadi, M. Pilarczyk, R. Terryn, C. Chung, A. Umeano, D. J. B. Clarke, A. Lachmann, J. E. Evangelista, A. Ma'ayan, M. Medvedovic, and S. C. Schurer (2020) LINCS Data Portal 2.0: next generation access point for perturbationresponse signatures. Nucleic Acids Res. 48: D431-D439. [DOI] [PMC free article] [PubMed]
  • 269.You, J., R. D. McLeod, and P. Hu (2019) Predicting drug-target interaction network using deep learning model. Comput. Biol. Chem. 80: 90-101. [DOI] [PubMed]
  • 270.Aliper, A., S. Plis, A. Artemov, A. Ulloa, P. Mamoshina, and A. Zhavoronkov (2016) Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm. 13: 2524-2530. [DOI] [PMC free article] [PubMed]
  • 271.X Z, Zhu S, Liu X, Zhou Y, Nussinov R, Cheng F. deepDR: a network-based deep learning approach to in silico drug repositioning. Bioinformatics. 2019;35:5191–5198. doi: 10.1093/bioinformatics/btz418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 272.P X, Zhao L, Zhang T, Ye Y, Zhang Y. Inferring drug-related diseases based on convolutional neural network and gated recurrent unit. Molecules. 2019;24:2712. doi: 10.3390/molecules24152712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 273.Y M-S, Omidi Y, Amanlou M, Masoudi-Nejad A. Drug databases and their contributions to drug repurposing. Genomics. 2019;112:1087–1095. doi: 10.1016/j.ygeno.2019.06.021. [DOI] [PubMed] [Google Scholar]
  • 274.F. C. In silico oncology drug repositioning and polypharmacology. Methods Mol. Biol. 2019;1878:243–261. doi: 10.1007/978-1-4939-8868-6_15. [DOI] [PubMed] [Google Scholar]
  • 275.March-Vila, E., L. Pinzi, N. Sturm, A. Tinivella, O. Engkvist, H. Chen, and G. Rastelli (2017) On the integration of in silico drug design methods for drug repurposing. Front. Pharmacol. 8: 298. [DOI] [PMC free article] [PubMed]
  • 276.W. W. M F, Alkema W. Application of text mining in the biomedical domain. Methods. 2015;74:97–106. doi: 10.1016/j.ymeth.2015.01.015. [DOI] [PubMed] [Google Scholar]
  • 277.Nugent, T., V. Plachouras, and J. L. Leidner (2016) Computational drug repositioning based on side-effects mined from social media. PeerJ. Computer Science. 2: e46.
  • 278.Rastegar-Mojarad, M., R. K. Elayavilli, D. Li, R. Prasad, and H. Liu (2015) A new method for prioritizing drug repositioning candidates extracted by literature-based discovery. Proceedings of 2015 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015. November 9-12. Washington, DC, USA.
  • 279.E. W S, Sanger T M. Systematic drug repositioning through mining adverse event data in ClinicalTrials.gov. PeerJ. 2017;5:e3154. doi: 10.7717/peerj.3154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 280.K P. A review of computational drug repurposing. Transl. Clin. Pharmacol. 2019;27:59–63. doi: 10.12793/tcp.2019.27.2.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 281.RDKit. http://www.rdkit.org/.
  • 282.D D. Data sets representative of the structures and experimental properties of FDA-approved drugs. ACS Med. Chem. Lett. 2018;9:204–209. doi: 10.1021/acsmedchemlett.7b00462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 283.Kim, S., P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B. A. Shoemaker, J. Wang, B. Yu, J. Zhang, and S. H. Bryant (2016) PubChem substance and compound databases. Nucleic Acids Res. 44: D1202-D1213. [DOI] [PMC free article] [PubMed]
  • 284.A. J. W. Internet-based tools for communication and collaboration in chemistry. Drug Discovery Today. 2008;13:502–506. doi: 10.1016/j.drudis.2008.03.015. [DOI] [PubMed] [Google Scholar]
  • 285.Ursu, O., J. Holmes, C. G. Bologa, J. J. Yang, S. L. Mathias, V. Stathias, D. T. Nguyen, S. Schurer, and T. Oprea (2019) DrugCentral 2018: an update. Nucleic Acids Res. 47: D963-D970. [DOI] [PMC free article] [PubMed]
  • 286.Ursu, O., J. Holmes, J. Knockel, C. G. Bologa, J. J. Yang, S. L. Mathias, S. J. Nelson, and T. I. Oprea (2017) DrugCentral: online drug compendium. Nucleic Acids Res. 45: D932-D939. [DOI] [PMC free article] [PubMed]
  • 287.DailyMed. https://dailymed.nlm.nih.gov/dailymed/.
  • 288.M K, Letunic I, Jensen L J, Bork P. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016;44:D1075–D1079. doi: 10.1093/nar/gkv1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 289.Tatonetti, N. P., P. P. Ye, R. Daneshjou, and R. B. Altman (2012) Data-driven prediction of drug effects and interactions. Sci. Transl. Med. 4: 125ra31. [DOI] [PMC free article] [PubMed]
  • 290.Fang, H., Z. Su, Y. Wang, A. Miller, Z. Liu, P. C. Howard, W. Tong, and S. M. Lin (2014) Exploring the FDA adverse event reporting system to generate hypotheses for monitoring of disease characteristics. Clin. Pharmacol. Ther. 95: 496-498. [DOI] [PMC free article] [PubMed]
  • 291.Cai, M. C., Q. Xu, Y. J. Pan, W. Pan, N. Ji, Y. B. Li, H. J. Jin, K. Liu, and Z. L. Ji (2015) ADReCS: An ontology database for aiding standardization and hierarchical classification of adverse drug reaction terms. Nucleic Acids Res. 43: D907-D913. [DOI] [PMC free article] [PubMed]
  • 292.Subramanian, A., R. Narayan, S. M. Corsello, D. D. Peck, T. E. Natoli, X. Lu, J. Gould, J. F. Davis, A. A. Tubelli, J. K. Asiedu, D. L. Lahr, J. E. Hirschman, Z. Liu, M. Donahue, B. Julian, M. Khan, D. Wadden, I. C. Smith, D. Lam, A. Liberzon, C. Toder, M. Bagul, M. Orzechowski, O. M. Enache, F. Piccioni, S. A. Johnson, N. J. Lyons, A. H. Berger, A. F. Shamji, A. N. Brooks, A. Vrcic, C. Flynn, J. Rosains, D. Y. Takeda, R. Hu, D. Davison, J. Lamb, K. Ardlie, L. Hogstrom, P. Greenside, N. S. Gray, P. A. Clemons, S. Silver, X. Wu, W. N. Zhao, W. Read-Button, X. Wu, S. J. Haggarty, L. V. Ronco, J. S. Boehm, S. L. Schreiber, J. G. Doench, J. A. Bittker, D. E. Root, B. Wong, and T. R. Golub (2017) A next generation Connectivity Map: L1000 platform and the first 1,000,000 profiles. Cell. 171: 1437-1452.e17. [DOI] [PMC free article] [PubMed]
  • 293.Barrett, T., D. B. Troup, S. E. Wilhite, P. Ledoux, D. Rudnev, C. Evangelista, I. F. Kim, A. Soboleva, M. Tomashevsky, and R. Edgar (2007) NCBI GEO: Mining tens of millions of expression profiles - Database and tools update. Nucleic Acids Res. 35: D760-D765. [DOI] [PMC free article] [PubMed]
  • 294.Barrett, T., T. O. Suzek, D. B. Troup, S. E. Wilhite, W. C. Ngau, P. Ledoux, D. Rudnev, A. E. Lash, W. Fujibuchi, and R. Edgar (2005) NCBI GEO: Mining millions of expression profiles -Database and tools. Nucleic Acids Res. 33: D562-D566. [DOI] [PMC free article] [PubMed]
  • 295.Parkinson, H., M. Kapushesky, M. Shojatalab, N. Abeygunawardena, R. Coulson, A. Farne, E. Holloway, N. Kolesnykov, P. Lilja, M. Lukk, R. Mani, T. Rayner, A. Sharma, E. William, U. Sarkans, and A. Brazma (2007) ArrayExpress - A public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 35: D747-750. [DOI] [PMC free article] [PubMed]
  • 296.Yang, W., J. Soares, P. Greninger, E. J. Edelman, H. Lightfoot, S. Forbes, N. Bindal, D. Beare, J. A. Smith, I. R. Thompson, S. Ramaswamy, P. A. Futreal, D. A. Haber, M. R. Stratton, C. Benes, U. McDermott, and M. J. Garnett (2013) Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41: D955-D961. [DOI] [PMC free article] [PubMed]
  • 297.O. B. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004;32:D267–D270. doi: 10.1093/nar/gkh061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 298.F. B R. Medical subject headings. Bull. 1963;Med.Libr.Assoc.51:114–116. [PMC free article] [PubMed] [Google Scholar]
  • 299.Piñero, J., N. Queralt-Rosinach, À. Bravo, J. Deu-Pons, A. Bauer-Mehren, M. Baron, F. Sanz, and L. I. Furlong (2015) DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes. Database. 2015: bav028. [DOI] [PMC free article] [PubMed]
  • 300.H O, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999;27:29–34. doi: 10.1093/nar/27.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 301.Hewett, M., D. E. Oliver, D. L. Rubin, K. L. Easton, J. M. Stuart, R. B. Altman, and T. E. Klein (2002) PharmGKB: the pharmacogenetics knowledge base. Nucleic Acids Res. 30: 163-165. [DOI] [PMC free article] [PubMed]
  • 302.Tate, J. G., S. Bamford, H. C. Jubb, Z. Sondka, D. M. Beare, N. Bindal, H. Boutselakis, C. G. Cole, C. Creatore, E. Dawson, P. Fish, B. Harsha, C. Hathaway, S. C. Jupe, C. Y. Kok, K. Noble, L. Ponting, C. C. Ramshaw, C. E. Rye, H. E. Speedy, R. Stefancsik, S. L. Thompson, S. Wang, S. Ward, P. J. Campbell, and S. A. Forbes (2019) COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 47: D941-D947. [DOI] [PMC free article] [PubMed]
  • 303.Lappalainen, I., J. Lopez, L. Skipper, T. Hefferon, J. D. Spalding, J. Garner, C. Chen, M. Maguire, M. Corbett, G. Zhou, J. Paschall, V. Ananiev, P. Flicek, and D. M. Church (2013) DbVar and DGVa: public archives for genomic structural variation. Nucleic Acids Res. 41: D936-D941. [DOI] [PMC free article] [PubMed]
  • 304.Mailman, M. D., M. Feolo, Y. Jin, M. Kimura, K. Tryka, R. Bagoutdinov, L. Hao, A. Kiang, J. Paschall, L. Phan, N. Popova, S. Pretel, L. Ziyabari, M. Lee, Y. Shao, Z. Y. Wang, K. Sirotkin, M. Ward, M. Kholodov, K. Zbicz, J. Beck, M. Kimelman, S. Shevelev, D. Preuss, E. Yaschenko, A. Graeff, J. Ostell, and S. T. Sherry (2007) The NCBI dbGaP database of genotypes and phenotypes. Nat. Genet. 39: 1181-1186. [DOI] [PMC free article] [PubMed]
  • 305.E. M S, Sirotkin K, Ward M, Sherry S T. dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res. 2000;28:352–355. doi: 10.1093/nar/28.1.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 306.Liu, Z., M. Su, L. Han, J. Liu, Q. Yang, Y. Li, and R. Wang (2017) Forging the basis for developing protein-ligand interaction scoring functions. Acc. Chem. Res. 50: 302-309. [DOI] [PubMed]
  • 307.Su, M., Q. Yang, Y. Du, G. Feng, Z. Liu, Y. Li, and R. Wang (2019) Comparative assessment of scoring functions: The CASF-2016 update. J. Chem. Inf. Model. 59: 895-913. [DOI] [PubMed]
  • 308.Mysinger, M. M., M. Carchia, J. J. Irwin, and B. K. Shoichet (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem. 55: 6582-6594. [DOI] [PMC free article] [PubMed]
  • 309.Carlson, H. A., R. D. Smith, K. L. Damm-Ganamet, J. A. Stuckey, A. Ahmed, M. A. Convery, D. O. Somers, M. Kranz, P. A. Elkins, G. Cui, C. E. Peishoff, M. H. Lambert, and J. B. Dunbar Jr. (2016) CSAR 2014: A benchmark exercise using unpublished data from pharma. J. Chem. Inf. Model. 56: 1063-1077. [DOI] [PMC free article] [PubMed]
  • 310.Kim, S., J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, and E. E. Bolton (2019) PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 47: D1102-D1109. [DOI] [PMC free article] [PubMed]
  • 311.Mendez, D., A. Gaulton, A. P. Bento, J. Chambers, M. De Veij, E. Felix, M. P. Magarinos, J. F. Mosquera, P. Mutowo, M. Nowotka, M. Gordillo-Maranon, F. Hunter, L. Junco, G. Mugumbate, M. Rodriguez-Lopez, F. Atkinson, N. Bosc, C. J. Radoux, A. Segura-Cabrera, A. Hersey, and A. R. Leach (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 47: D930-D940. [DOI] [PMC free article] [PubMed]
  • 312.M. K G, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 2016;44:D1045–1053. doi: 10.1093/nar/gkv1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 313.Wishart, D. S., Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu, A. Maciejewski, N. Gale, A. Wilson, L. Chin, R. Cummings, D. Le, A. Pon, C. Knox, and M. Wilson (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46: D1074-D1082. [DOI] [PMC free article] [PubMed]
  • 314.M K, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–D361. doi: 10.1093/nar/gkw1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 315.Alexander, S. P. H., H. E. Benson, E. Faccenda, A. J. Pawson, J. L. Sharman, J. C. McGrath, W. A. Catterall, M. Spedding, J. A. Peters, A. J. Harmar, and CGTP Collaborators (2013) The concise guide to PHARMACOLOGY 2013/14: overview. Br. J. Pharmacol. 170: 1449-1458. [DOI] [PMC free article] [PubMed]
  • 316.Hecker, N., J. Ahmed, J. von Eichborn, M. Dunkel, K. Macha, A. Eckert, M. K. Gilson, P. E. Bourne, and R. Preissner (2012) SuperTarget goes quantitative: update on drug-target interactions. Nucleic Acids Res. 40: D1113-D1117. [DOI] [PMC free article] [PubMed]
  • 317.Gunther, S., M. Kuhn, M. Dunkel, M. Campillos, C. Senger, E. Petsalaki, J. Ahmed, E. G. Urdiales, A. Gewiess, L. J. Jensen, R. Schneider, R. Skoblo, R. B. Russell, P. E. Bourne, P. Bork, and R. Preissner (2008) SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic Acids Res. 36: D919-D922. [DOI] [PMC free article] [PubMed]
  • 318.M K, von Mering C, Campillos M, Jensen L J, Bork P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 2008;36:D684–D688. doi: 10.1093/nar/gkm795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 319.H Y, Lou C, Sun L, Li J, Cai Y, Wang Z, Li W, Liu G, Tang Y. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35:1067–1069. doi: 10.1093/bioinformatics/bty707. [DOI] [PubMed] [Google Scholar]
  • 320.P T. ChemIDplus-super source for chemical and drug information. Med. 2002;Ref.ServQ.21:53–59. doi: 10.1300/J115v21n01_04. [DOI] [PubMed] [Google Scholar]
  • 321.Richard, A. M., R. S. Judson, K. A. Houck, C. M. Grulke, P. Volarath, I. Thillainadarajah, C. Yang, J. Rathman, M. T. Martin, J. F. Wambaugh, T. B. Knudsen, J. Kancherla, K. Mansouri, G. Patlewicz, A. J. Williams, S. B. Little, K. M. Crofton, and R. S. Thomas (2016) ToxCast chemical landscape: Paving the road to 21st century toxicology. Chem. Res. Toxicol. 29: 1225-1251. [DOI] [PubMed]
  • 322.Tox21 Challenge. https://tripod.nih.gov/tox21/challenge/.
  • 323.Watford, S., L. Ly Pham, J. Wignall, R. Shin, M. T. Martin, and K. P. Friedman (2019) ToxRefDB version 2.0: Improved utility for predictive and retrospective toxicology analyses. Reprod. Toxicol. 89: 145-158. [DOI] [PMC free article] [PubMed]
  • 324.Sterling, T. and J. J. Irwin (2015) ZINC 15 — ligand discovery for everyone. J. Chem. Inf. Model. 55: 2324–2337 [DOI] [PMC free article] [PubMed]
  • 325.Blum, L. C. and J. L. Reymond (2009) 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc.131: 8732-8733. [DOI] [PubMed]
  • 326.L R, van Deursen R, Blum L C, Reymond J L. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 2012;52:2864–2875. doi: 10.1021/ci300415d. [DOI] [PubMed] [Google Scholar]
  • 327.Ramakrishnan, R., P. O. Dral, M. Rupp, and O. A. von Lilienfeld (2014) Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data. 1: 140022. [DOI] [PMC free article] [PubMed]
  • 328.Visini, R., M. Awale, and J. L. Reymond (2017) Fragment database FDB-17. J. Chem. Inf. Model. 57: 700-709. [DOI] [PubMed]
  • 329.Sun, J., N. Jeliazkova, V. Chupakin, J. F. Golib-Dzib, O. Engkvist, L. Carlsson, J. Wegner, H. Ceulemans, I. Georgiev, V. Jeliazkov, N. Kochev, T. J. Ashby, and H. Chen (2017) ExCAPE-DB: an integrated large scale dataset facilitating Big Data analysis in chemogenomics. J. Cheminform. 9: 17. [DOI] [PMC free article] [PubMed]
  • 330.A. G M, Rundegren J. Minoxidil: Mechanisms of action on hair growth. Br. J. Dermatol. 2004;150:186–194. doi: 10.1111/j.1365-2133.2004.05785.x. [DOI] [PubMed] [Google Scholar]
  • 331.Steinbach, G., P. M. Lynch, R. K. Phillips, M. H. Wallace, E. Hawk, G. B. Gordon, N. Wakabayashi, B. Saunders, Y. Shen, T. Fujimura, L. K. Su, B. Levin, L. Godio, S. Patterson, M. A. Rodriguez-Bigas, S. L. Jester, K. L. King, M. Schumacher, J. Abbruzzese, R. N. DuBois, W. N. Hittelman, S. Zimmerman, J. W. Sherman, and G. Kelloff (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med. 342: 1946-1952. [DOI] [PubMed]
  • 332.J V E, Murgueitio M S, Dunkel M, Koerner S, Bourne P E, Preissner R. PROMISCUOUS: A database for network-based drug-repositioning. Nucleic Acids Res. 2011;39:D1060–D1066. doi: 10.1093/nar/gkq1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 333.Luo, H., P. Zhang, X. H. Cao, D. Du, H. Ye, H. Huang, C. Li, S. Qin, C. Wan, L. Shi, L. He, and L. Yang (2016) DPDR-CPI, a server that predicts drug positioning and drug repositioning via chemical-protein interactome. Sci. Rep. 6: 35996. [DOI] [PMC free article] [PubMed]
  • 334.A. S B, Patel C J. A standard database for drug repositioning. Sci. Data. 2017;4:170029. doi: 10.1038/sdata.2017.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 335.K S, Glicksberg B S, Hodos R, Johnson K W, Badgeley M A, Readhead B, Tomlinson M S, O'Connor T, Miotto R, Kidd B A, Chen R, Ma'ayan A, Dudley J T. Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning. Brief Bioinform. 2018;19:656–678. doi: 10.1093/bib/bbw136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 336.K. C C, Wagner A H, Feng Y Y, Kiwala S, Coffman A C, Spies G, Wollam A, Spies N C, Griffith O L, Griffith M. DGIdb 3.0: A redesign and expansion of the drug-gene interaction database. Nucleic Acids Res. 2018;46:D1068–D1073. doi: 10.1093/nar/gkx1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 337.S K, Carmody L, Vasilevsky N, Jacobsen J O B, Danis D, Gourdine J P, Gargano M, Harris N L, Matentzoglu N, McMurry J A, Osumi-Sutherland D, Cipriani V, Balhoff J P, Conlin T, Blau H, Baynam G, Palmer R, Gratian D, Dawkins H, Segal M, Jansen A C, Muaz A, Chang W H, Bergerson J, Laulederkind S J F, Yuksel Z, Beltran S, Freeman A F, Sergouniotis P I, Durkin D, Storm A L, Hanauer M, Brudno M, Bello S M, Sincan M, Rageth K, Wheeler M T, Oegema R, Lourghi H, Della Rocca M G, Thompson R, Castellanos F, Priest J, Cunningham-Rundles C, Hegde A, Lovering R C, Hajek C, Olry A, Notarangelo L, Similuk M, Zhang X A, Gomez-Andres D, Lochmuller H, Dollfus H, Rosenzweig S, Marwaha S, Rath A, Sullivan K, Smith C, Milner J D, Leroux D, Boerkoel C F, Klion A, Carter M C, Groza T, Smedley D, Haendel M A, Mungall C, Robinson P N. Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Res. 2019;47:D1018–D1027. doi: 10.1093/nar/gky1105. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biotechnology and Bioprocess Engineering are provided here courtesy of Nature Publishing Group

RESOURCES