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Abstract
The degree to which loci promoting reproductive isolation cluster in the genome—that 
is, the genetic architecture of reproductive isolation—can influence the tempo and 
mode of speciation. Tight linkage between these loci can facilitate speciation in the 
face of gene flow. Pheromones play a role in reproductive isolation in many Lepidoptera 
species, and the role of endogenously produced compounds as secondary metabolites 
decreases the likelihood of pleiotropy associated with many barrier loci. Heliconius but-
terflies use male sex pheromones to both court females (aphrodisiac wing pheromones) 
and ward off male courtship (male-transferred antiaphrodisiac genital pheromones), and 
it is likely that these compounds play a role in reproductive isolation between Heliconius 
species. Using a set of backcross hybrids between H. melpomene and H. cydno, we in-
vestigated the genetic architecture of putative male pheromone compound production. 
We found a set of 40 significant quantitative trait loci (QTL) representing 33 potential 
pheromone compounds. QTL clustered significantly on two chromosomes, chromo-
some 8 for genital compounds and chromosome 20 for wing compounds, and chromo-
some 20 was enriched for potential pheromone biosynthesis genes. There was minimal 
overlap between pheromone QTL and known QTL for mate choice and color pattern. 
Nonetheless, we did detect linkage between a QTL for wing androconial area and optix, 
a color pattern locus known to play a role in reproductive isolation in these species. This 
tight clustering of putative pheromone loci might contribute to coincident reproductive 
isolating barriers, facilitating speciation despite ongoing gene flow.
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1  | INTRODUC TION

The genetic architecture of population differences can profoundly 
affect the evolution and maintenance of new species, especially in 
the face of ongoing gene flow. For example, large effect loci are 
expected to facilitate speciation (Merrill et al., 2019; Via, 2012) be-
cause they are less likely to be lost to drift (Kimura, 1983) and a sin-
gle large effect locus can lead to substantial reproductive isolation 
on its own (Bradshaw & Schemske,  2003). Similarly, tight physical 
linkage of barrier loci, that is, those that contribute to reproductive 
isolation, will promote speciation by impeding the breakdown of 
genetic associations between traits that isolate emerging species 
(Felsenstein, 1981; Smadja & Butlin, 2011). As a result, there is con-
siderable interest in finding the genetic basis of traits that contribute 
to reproductive isolation and understanding both the effect size and 
distribution of loci across the genome.

Physical linkage between barrier traits has been detected in 
a variety of taxa, including pea aphids (Hawthorne & Via,  2001), 
Laupala crickets (Wiley et  al.,  2011), Heliconius butterflies (Merrill 
et  al.,  2019), Ficedula flycatchers (Sæther et  al.,  2007), stickleback 
fish (Bay et al., 2017), and Aquilegia columbines (Hodges et al., 2002). 
Barrier traits can include sex pheromones, chemical signals that 
mediate intraspecific communication important for mating. Due to 
their critical role in mate attraction, and their ability to convey in-
formation about species identity and male quality, pheromones can 
be important for establishing and maintaining reproductive isolation 
through relatively simple changes in chemical bouquets (Smadja & 
Butlin, 2009). As products of secondary metabolism (i.e., products 
not required for survival), alterations in endogenously produced or 
modified pheromones also have the potential to be both relatively 
simple at the molecular level and, if such changes are relatively late 
in the pathway, likely avoid major pleiotropic consequences.

Some of the best studied sex pheromones involved in speciation 
are those of female Lepidoptera, and in some cases, the genetic basis 
of variation in these pheromones is now well known. Both desat-
urases and fatty acyl-CoA reductases appear to be commonly in-
volved in pheromone biosynthetic variation. Desaturases introduce 
double or triple bonds between carbon molecules in pheromone 
components, for example turning alkanes (less common as pher-
omone components) into alkenes (a common component of lepi-
dopteran pheromones). Fatty acyl-CoA reductases, or FARs, turn 
fatty acids into fatty alcohols, for example turning octadecanoic acid 
into octadecanol. In Ctenopseustis, for example, differential regula-
tion of a desaturase drives differences in ratios of sex pheromone 
components between species (Albre et al., 2012). Desaturases are 
also important in Ostrinia (Fujii et al., 2015; Roelofs et al., 2002; Sakai 
et al., 2009) and Helicoverpa (Li et al., 2015, 2017). Fatty acyl-CoA re-
ductases are responsible for species-specific pheromone alterations 
in Ostrinia nubialis strains (Lassance et al., 2010, 2013). Within sin-
gle species, desaturases and FARs have received the most attention, 
being functionally characterized in a variety of Lepidoptera including 
Yponomeuta (Liénard et al., 2010), Agrotis (Ding & Löfstedt, 2015), 
Manduca (Buček et  al.,  2015), Bombyx (Moto et  al.,  2004), and 

Antheraea (Wang et al., 2010). In some cases, variation in these fe-
male pheromones has also been shown to contribute to reproductive 
isolation (e.g., Liebherr & Roelofs, 1975, Wu et al., 1999, Emelianov 
et al., 2001; reviewed in Smadja & Butlin, 2009).

In contrast, male pheromones in Lepidoptera appear more varied, 
with a diverse array of compound classes (Conner & Iyengar, 2016; 
Löfstedt et al., 2016). Many male Lepidopteran pheromones resem-
ble plant compounds and are thought to be diet-derived, especially 
terpenoids and pyrrolizine alkaloids, the latter of which can be de-
rived from either larval or adult feeding (Conner & Iyengar, 2016). In 
comparison with female pheromones, the genetic basis of variation 
in male sex pheromones has received less attention. In male Bicyclus 
anynana, a desaturase (Ban-Δ11) and two FARs (Ban-wFAR1 and Ban-
wFAR2) produce pheromone components and precursors (Liénard 
et al., 2014), and in the moth Ostrinia nubialis, males use the same 
Δ11-desaturase and Δ14-desaturase as females to produce pher-
omones (Lassance & Löfstedt,  2009). However, the role of these 
genes in mediating differences between species remains unclear.

Speciation is typically thought to rely on the accumulation of 
multiple reproductive barriers, involving divergence in many differ-
ent traits (Butlin & Smadja, 2017). In order to understand the extent 
of genetic linkage that underlies species differences, it will there-
fore be useful to study taxa in which multiple different traits can be 
mapped. Heliconius butterflies have been well studied in the con-
text of speciation (Bates, 1861; Jiggins, 2017; Merrill et al., 2015), 
and in particular, we know a great deal about the species complex 
of Heliconius melpomene and its sister lineage Heliconius cydno/ti-
mareta. Genetic loci underlying wing pattern and mate preference 
have been mapped in this group (Jiggins, 2017; Merrill et al., 2010, 
2019). The additional role of chemical signaling in reproductive iso-
lation has long been suspected (Jiggins,  2008), but only recently 
studied in any detail. Chemical profiles of the male wing androconia 
(patches of specialist scales on male wings that release pheromones) 
and genital regions (thought to act as aphrodisiacs and antiaphro-
disiacs, respectively) differ between species (Darragh et al., 2020; 
Estrada et al., 2011; Mann et al., 2017) and are important for mate 
choice, including altering behavior toward con- and heterospecific 
individuals (Darragh et al., 2017; González-Rojas et al., 2020; Mérot 
et al., 2015). Genital pheromones play a more complex role in mate 
choice in Heliconius, as they are transferred by males to females 
during mating and subsequently decrease advances by other males 
(Estrada, 2009; Gilbert, 1976; Schulz et al., 2007).

One challenge of studying the entire chemical profile is deter-
mining which combination of compounds are behaviorally active. 
The chemical bouquets of wings and genitals are complex, often con-
sisting of 30-70 compounds (Byers et al., 2020; Darragh et al., 2017, 
2020; Mann et  al.,  2017, this study), but it remains unknown how 
many of these are important for signaling. A single wing compound 
in H. melpomene, octadecanal, is known to be biologically active in 
H. melpomene and H. cydno (Byers et  al.,  2020), while the genital 
compound (E)-β-ocimene acts as the main antiaphrodisiac in H. mel-
pomene (Schulz et al., 2007). In addition, one bioactive genital com-
pound in H. cydno (hexyl 3-methylbutyrate, Estrada, 2009) is known. 
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It seems likely that additional compounds in the complex bouquet 
(30–70 compounds) produced by each of these species are biologi-
cally active, but this remains to be tested. The simple genetic control 
of pheromone components in other systems and their role as sec-
ondary metabolism products suggests that they can be altered rel-
atively simply without major pleiotropic consequences to essential 
organismal functions, as has been seen in some moth species (Groot 
et al., 2019), though pleiotropic effects have been seen in Drosophila 
(Bousquet et  al., 2012; Zelle et  al., 2020). In Drosophila, some loci 
specifically showed pleiotropy of production and perception of 
pheromones, thought to be rare in Lepidoptera (Haynes, 2016). In 
combination with their importance in inter- and intraspecific mate 
choice, such simple genetic control and relatively lower risk of plei-
otropy makes them ripe material for adaptation and speciation. We 
here conduct quantitative trait locus (QTL) analyses for wing andro-
conial area and wing and genital compounds that differ between 
Heliconius melpomene L. and H. cydno Doubleday (Figure 1; see also 
Byers et al., 2020, Darragh et al., 2020). We then investigated the 
patterns of QTL distribution across the genome to test for clustering 
of loci across chromosomes.

2  | METHODS

Heliconius melpomene rosina and H. cydno chioneus (hereafter H. mel-
pomene and H. cydno) and their interspecific hybrids were reared in 
outdoor insectaries at the Smithsonian Tropical Research Institute in 
Gamboa, Panama. Initial stocks were established from wild-caught in-
dividuals, and outbred stocks were refreshed with more wild-caught 
individuals as necessary. Sexes were kept separately, and virgin fe-
males were kept separate from egg-laying females. To control for host 
plant effects, all larvae were fed on the same host plant (Passiflora 
platyloba var. williamsi), and adults were maintained on a 20% sugar 
solution and Gurania eriantha, Psiguria triphylla, Psiguria warscewiczii, 
and Psychotria poeppigiana as pollen sources. Pheromones were col-
lected from male individuals (both parental species and offspring of 
mapping crosses) following (Darragh et al., 2017). Wing and genital 
data from H. melpomene and wing data from H. cydno have previously 
been published in Darragh et al. (2017), Darragh, et al. (2019a), and 
Byers et al. (2020). Briefly, males of 7–14 days posteclosion had their 

wings and genitals removed and soaked in dichloromethane plus 
1 ng/μL 2-tetradecyl acetate (DCM +  IS) for one hour, after which 
the DCM + IS was removed to a fresh vial and stored at −20°C before 
gas chromatography–mass spectrometry analysis. Bodies were col-
lected and preserved in 20% dimethyl sulfoxide (DMSO) and 0.25 M 
EDTA (pH 8.0) and stored at −20°C for later DNA extraction.

Wing and genital extractions were run on an Agilent 7890B gas 
chromatograph coupled with an Agilent 5977 mass spectrometer 
(GC-MS) with electron ionization (Agilent Technologies, California, 
USA) with an HP-5MS capillary column (30 m length, 0.25 mm inner 
diameter) and helium as the carrier gas (1.2 mL/min). Injection used 
an Agilent ALS 7693 autosampler and was splitless, with an inlet 
temperature of 250°C. The oven was first held isothermally at 50°C 
for five minutes, then increased at 5°C/min to 320°C and again held 
isothermally for five minutes. Compounds were identified with a 
custom MS library and quantified using the internal standard area. 
Only compounds that could be definitively identified were included 
in the data set. To be included in the mapping experiment, com-
pounds had to be present in at least two thirds of the individuals 
from one of the parent species, that is, they had to be “typical” H. 
melpomene or H. cydno compounds. A limited set of wing compounds 
(three methyloctadecanals and two henicosenes from H. melpomene 
and H. cydno, respectively) were excluded from the wing analysis 
due to close retention times in the GC-MS data preventing defini-
tive identification of the species phenotype in the mapping individ-
uals. Absolute androconial area and absolute hindwing area were 
measured in the GNU Image Manipulation Program (GIMP) as pixel 
counts, then absolute androconial area was divided by hindwing area 
to produce the percentage of the hindwing taken by the androconial 
region, the relative androconial area.

Mapping crosses consisted of backcrosses of either an H. cydno 
or H. melpomene mother and an F1 father, as F1 females are nor-
mally sterile. Ten families were constructed as backcrosses to H. 
melpomene (representing 89 individuals for the wing phenotype, 
81 individuals for the genital phenotype, and 78 individuals for the 
hindwing relative androconial area phenotype), and fifteen fam-
ilies were constructed as backcrosses to H. cydno (127 individuals 
for the wing, 114 individuals for the genital phenotype, and 124 
individuals for the hindwing relative androconial area phenotype) 
for a total of 216 and 195 hybrid individuals for wing and genital 

F I G U R E  1   Heliconius cydno 
chioneus(left) andHeliconius melpomene 
rosina(right), the two butterfly species 
whose putative pheromone components 
and wing androconial area are mapped in 
this study
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studies, respectively. DNA extraction, library preparation, and QTL 
map construction are detailed in Byers et  al.  (2020) and Darragh, 
et al., bioRxiv. Briefly, Qiagen DNeasy kits (Qiagen) were used for 
DNA extraction, and individuals then genotyped either by RAD-seq 
or low-coverage whole genome sequencing using nextera-based li-
braries (Davey et al., 2017; Merrill et al., 2019; Picelli et al., 2014). 
Samples were sequenced by HiSeq 3000 (Illumina) by BGI (China). 
Linkage mapping was conducted using the standard Lep-MAP3 
(LM3) pipeline (Rastas, 2017). The initial linkage groups and marker 
order were constructed based on the H. melpomene genome for 21 
chromosomes, as H. melpomene and H. cydno have highly colinear 
genomes (Davey et  al.,  2017). This resulted in a linkage map with 
447,818 SNP markers, which was then evenly thinned by a factor of 
ten to 44,782 markers to ease computation.

To determine which cross direction to use for each compound, 
we inspected the distribution of the compound phenotype in the 
parents, F1 individuals, and the backcross individuals. Compounds 
that were present in equal amounts in both parent species (assessed 
using a Kruskal–Wallis test) were not mapped. Once cross direction 
was determined, the remaining compounds were log-transformed to 
approximate normality before being regressed against the linkage 
map using R/qtl2 (Broman et al., 2018). Due to the family structure 
present in our crosses, we additionally included a kinship matrix 
calculated by R/qtl2 using the LOCO (leave one chromosome out) 
method. Permutation testing was used (with 1000 replicates) to 
determine QTL threshold. Compounds are likely to be correlated, 
and our data set represents multiple testing of the same mapping 
crosses; therefore, we used Bonferroni correction separately for 
each cross direction to establish a second, more conservative, LOD 
threshold for significance by dividing the threshold by the number 
of compounds (traits) mapped in the relevant backcross direction. 
No correction was used for relative androconial area mapping as the 
trait was mapped alone due to its general lack of correlation with 
individual volatile compounds. QTL confidence intervals were ob-
tained using bayes_int. As R/qtl2 does not provide a function to 
calculate the traditional percentage of variance explained by a spe-
cific marker, we instead calculated the percentage of the parental 
difference explained by the genotype at a given marker as a fraction 
with the difference between the average phenotype of the two gen-
otypes as the numerator and the difference between the average 
phenotype of the two parental species as the denominator. This 
can result in values over 100% when more variance is present in the 
mapping population than the difference between the parent species 
accounts for.

To identify clustering of QTL, we first calculated the expected 
number of QTL per chromosome, taking into account the chromo-
some’s length in cM, then compared that against the observed distri-
bution of QTL per chromosome using a chi-squared test, computing 
p-values with Monte Carlo permutation with B  =  10,000 permu-
tations. Examination of the residuals was used to determine which 
chromosome(s) displayed clustering, with any residual over 2 consid-
ered significant, as in Erickson et al. (2016). We also repeated these 
tests taking into account chromosome length in basepairs because 

the relationship between map length and physical length can differ 
across chromosomes. The results were unchanged.

As our linkage map is based on whole genome sequencing data, 
we were able to recover the basepair intervals corresponding to 
the QTL centimorgan (cM) confidence intervals (defined as the out-
ermost markers at those cM positions) as well as their peaks (de-
fined as the first marker in at that cM position). Lepbase (Challis 
et al., 2016) was queried to identify genes within the main interval on 
chromosome 20 for wing fatty acid-derived compound production 
(identified as the minimum overlapping window of all Bonferroni-
significant compound confidence intervals). Genes were searched 
against the nr (nonredundant) protein database using BLASTp 
(Altschul et al., 1990) to obtain putative functional annotations, with 
no specific cutoff used to define a putative annotation; annotations 
were made when multiple hits with high alignment scores agreed on 
putative function.

3  | RESULTS

We first looked at the distribution of compounds in H. melpomene, H. 
cydno, and their hybrids. Analysis of the pheromones found a total 
of 31 compounds in the wings and 68 compounds in the genitals 
across the two species that were possible to map (i.e., not unknown 
or overlapping in the gas chromatography–mass spectrometry trace) 
(Figure 2, Table 1). There was limited overlap in compounds between 
the wings and genitals, with only the straight-chain alkanes henei-
cosane, docosane, tricosane, pentacosane, and hexacosane (all of 
which may be part of the normal whole-body cuticular hydrocar-
bon profile), the unsaturated aldehyde (Z)-11-icosenal, and the ni-
trogenous aromatic benzyl cyanide found in both body regions. A 
subset of compounds (6 in the wings and 18 in the genitals) were 
not mapped as they did not differ significantly between the parental 
species. The rest showed significant differences and thus had ad-
equate variation for QTL mapping to be feasible. Of the wing com-
pounds, 11 showed segregation in backcrosses to H. cydno and thus 
were mapped with those individuals; nine were mapped in back-
crosses to H. melpomene; and five showed segregation in both back-
cross directions and thus were mapped separately in backcrosses to 
each species. For the genital compounds, 19 were mapped in back-
crosses to H. cydno; 17 in backcrosses to H. melpomene; and 14 in 
both directions.

Most compounds mapped did not produce significant QTL at ei-
ther the p = .05 or the Bonferroni-adjusted cutoff levels (the latter 
taking into account the number of compounds mapped) (Figures S1 
and S2). A total of 21 genital compounds and 14 wing compounds 
produced significant QTL, including three peaks already published in 
(Byers et al., 2020, Darragh, et al., bioRxiv) for octadecanal, 1-octa-
decanol, and (E)-β-ocimene. Of these QTL, nine genital and ten wing 
compounds were significant at the more conservative Bonferroni 
threshold (Tables  2 and 3; Table  4). The higher drop-out rate for 
genital compounds after Bonferroni correction is likely the result of 
the more stringent correction due to a higher number of compounds 
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corrected for. We also found a single significant QTL on chromo-
some 18 for relative hindwing androconial area in backcrosses to H. 
cydno (Figure S3). The percentage of parental difference explained 
by the peak markers at these QTL was highly variable, with values 
ranging from 0.6% to 130% for wing compounds and 1.9-170% for 
genital compounds, but most compounds fell within a range of ap-
proximately 20-50% of parental difference explained by the locus. 
Surprisingly, there was no obvious association between the amount 
of variance present in the backcrosses and the presence or absence 
of a QTL for each compound, as seen from the coefficient of vari-
ance values in Table 1, which did not differ between compounds that 
did and did not have a QTL-associated (t = 0.342, df = 78, p = .73).

Compounds that showed significant QTL tended to be of specific 
chemical classes. For the wings, of the 14 wing compounds with sig-
nificance at p = .05, 12 were fatty acid-derived compounds (FADs), 
including alkanes as well as oxygenated alkanes and alkenes (alde-
hydes and alcohols). The remaining two significant wing compounds 
were both nitrogenous aromatics. For the genitals, 10 compounds 
producing significant QTL were macrolides and eight were FADs 
(two alkanes, four saturated esters, and two unsaturated esters). The 
remaining three compounds were again nitrogenous aromatics (two 
compounds) and one terpene. This is in general agreement with the 
distribution of compound types in both body regions. The mapped 
wing compounds comprise 18 fatty acid-derived compounds, three 
nitrogenous aromatics, two non-nitrogenous aromatics, and two ter-
penoids, so the finding of significant QTL mostly for fatty acid-de-
rived compounds is not surprising. For the genitals, the mapped 
compounds consist of 22 fatty acid-derived compounds, 21 macro-
lides, four terpenoids, two nitrogenous aromatics, and one lactone.

Significant quantitative trait loci showed some same-chromo-
some clustering on specific chromosomes (Figure S4). Notably, these 
clusters did not overlap with chromosomes harboring known QTL 
for color pattern, mate choice, or other traits, which generally tend 
not to be clustered in the genome, apart from a close association 

between mate choice and a wing patterning gene (Figure 3). When 
either all QTL significant at p  <  0.05 or Bonferroni-corrected sig-
nificant QTL were combined with known QTL, clustering at the 
chromosomal level was statistically significant (χ2  =  64.036 for 
Bonferroni-significant QTL, χ2  =  78.524 for all significant QTL, 
p < .001 for both) for chromosomes 8 and 20. In particular, all but one 
QTL for FAD compounds in the wings mapped to chromosome 20 
(the exception mapped to chromosome 1 as well as having a peak on 
chromosome 20). The other significant wing compounds (all nitroge-
nous aromatics) mapped to chromosomes 10, 17, 19, and the Z chro-
mosome (chromosome 21). QTL on chromosome 20 were broadly 
overlapping, in part due to our relatively small mapping populations 
producing broad Bayesian confidence intervals for QTL location 
(Figure 4). In addition, the peaks themselves were strongly overlap-
ping on the latter half of chromosome 20. This chromosome-level 
clustering was statistically significant (χ2 = 178.39 for all significant 
QTL, χ2 = 113.02 for Bonferroni-corrected significant QTL, p < .001 
in both cases) and residual analysis identified chromosome 20 as the 
sole outlier. When broken down by chemical class, only FAD com-
pounds clustered significantly at the chromosomal level, again on 
chromosome 20 (χ2 = 232.49 for all significant QTL, p < .001), and 
this was also significant when only Bonferroni-corrected significant 
QTL were tested (χ2 = 137.55, p < .001).

Similar compound class-specific clustering at the chromosome 
level was seen to a lesser extent for the genitals, where six of the 
ten macrolides had QTL on chromosome 8, with the others more 
broadly dispersed on chromosomes 2, 7, 13, 14, and 20. The fatty ac-
id-derived compounds (mostly esters) mapped more broadly across 
the genome than in the wings, with QTL on chromosomes 1, 2, 3, 
6, 8, 9, 14, and 20. Chromosome-level clustering was again statisti-
cally significant (χ2 = 46.037 for all significant QTL, χ2 = 101.83 for 
Bonferroni-corrected significant QTL, p  =  .0017 and p  <  .001 re-
spectively) and residual analysis identified chromosomes 8 and 14 as 
the outliers when all QTL were considered, and chromosome 8 when 

F I G U R E  2   Major compounds found in the wings (left) and genitals (right) ofHeliconius melpomeneandH. cydno, arranged by compound 
type. Only those compounds comprising at least 1% of either species’ pheromone bouquet are included. n.s., not significant; ***:p < .005. 
Boxplots: line is the median, box outline the first and third quartiles, whiskers the most extreme point no more than 1.5 times the 
interquartile range. [image rotated for reviewer ease of viewing]
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TA B L E  1   Full list of compounds found in the wings and genitalia of Heliconius melpomene and H. cydno, details of statistical comparisons 
of amounts in both species, and cross direction(s) the compound was mapped in, if any. Coefficient of variance in backcrosses is the variance 
within the backcross direction divided by the mean amount found within that backcross direction, to control for variance differences due to 
compound abundance differences

Compound
Compound 
type

Mean H. 
cydno

Mean H. 
melpomene

Kruskal–
Wallis 
chi-squared 
statistic

Bonferroni-
adjusted 
p-value

Coefficient 
of variance in 
backcrosses to 
H. melpomene

Coefficient 
of 
variance in 
backcrosses 
to H. cydno

Mapped in 
backcrosses 
to

Wings

Icosane Alkane 6.977 0.033 41.397 3.85E-09 0.808 2.015 H. 
melpomene

Henicosane Alkane 1152.641 12.447 38.667 1.56E-08 0.564 1.158 Both species

Docosane Alkane 13.548 0.012 42.335 2.38E-09 0.961 2.208 H. cydno

Tricosane Alkane 62.532 1.146 38.938 1.36E-08 0.973 1.130 H. cydno

Pentacosane Alkane 4.568 8.458 3.732 1.00000 1.197 1.385 Not tested 
(no species 
difference)

Hexacosane Alkane 0.633 8.09 17.348 0.00096 2.081 1.943 H. 
melpomene

Octadecanol Saturated 
alcohol

Absent 345.636 42.618 2.06E-09 2.700 1.310 Both species

Methyloctadecanol Saturated 
alcohol

Absent 12.232 42.618 2.06E-09 5.689 1.028 H. 
melpomene

Octadecanal Saturated 
aldehyde

0.569 783.420 39.560 9.86E-09 1.766 0.909 both species

Nonadecanal, methyl 
branched

Saturated 
aldehyde

Absent 4.504 24.238 2.64E-05 11.269 1.739 H. 
melpomene

Icosanal Saturated 
aldehyde

0.432 22.596 40.297 6.76E-09 2.064 0.630 H. cydno

Tricosene (RI = 2265) Alkene 3.112 Absent 26.042 1.04E-05 1.952 3.985 H. cydno

Tricosene (RI = 2276) Alkene 0.405 7.215 35.296 8.78E-08 4.060 1.729 Both species

(Z)-16-methyl-9-
octadecenol

Unsaturated 
alcohol

Absent 7.501 40.267 6.87E-09 11.269 1.216 H. 
melpomene

(Z)-11-icosenol Unsaturated 
alcohol

28.174 772.157 38.667 1.56E-08 1.645 0.614 H. cydno

(Z)-13-docosenol Unsaturated 
alcohol

0.037 54.766 42.102 2.69E-09 4.636 1.938 both species

(Z)-9-octadecenal Unsaturated 
aldehyde

Absent 10.938 40.267 6.87E-09 5.378 1.284 H. 
melpomene

(Z)-11-icosenal Unsaturated 
aldehyde

3.29 150.687 39.756 8.92E-09 1.718 0.748 H. cydno

(Z)-13-docosenal Unsaturated 
aldehyde

0.276 62.556 41.226 4.20E-09 1.958 0.865 H. cydno

Naphthalene Aromatic 0.752 1.690 9.981 0.04903 1.666 1.731 H. 
melpomene

Syringaldehyde Aromatic 463.585 644.064 3.724 1.00000 0.656 0.567 Not tested 
(no species 
difference)

3,5-Dimethoxy-4-
hydroxy benzyl alcohol

Aromatic 3.58 4.162 0.373 1.00000 1.386 1.500 Not tested 
(no species 
difference)

Methyl salicylate Aromatic 2.848 3.348 0.347 1.00000 0.967 1.300 Not tested 
(no species 
difference)

(Continues)
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Compound
Compound 
type

Mean H. 
cydno

Mean H. 
melpomene

Kruskal–
Wallis 
chi-squared 
statistic

Bonferroni-
adjusted 
p-value

Coefficient 
of variance in 
backcrosses to 
H. melpomene

Coefficient 
of 
variance in 
backcrosses 
to H. cydno

Mapped in 
backcrosses 
to

Ethyl 4-hydroxy-3,5-
dimethoxybenzoate

Aromatic 2.856 35.573 15.736 0.00226 1.594 1.133 H. cydno

Ethanone, 1,4-hydroxy-
3,5-dimethoxyphenyl-

Aromatic 1.992 2.981 2.918 1.00000 1.559 1.374 Not tested 
(no species 
difference)

Propenone, 
1,4-hydroxy-3,5-
dimethoxyphenyl-

Aromatic 2.052 3.932 5.665 0.53653 1.776 1.557 Not tested 
(no species 
difference)

Benzyl cyanide Aromatic 
(nitrogenous)

1.813 Absent 30.542 1.01E-06 1.172 2.074 Both species

Methyl 3-indoleacetate Aromatic 
(nitrogenous)

0.013 3.782 32.668 3.39E-07 2.038 0.923 H. cydno

Methyl 
3-indolecarboxylate

Aromatic 
(nitrogenous)

Absent 2.098 25.994 1.06E-05 3.205 1.106 H. 
melpomene

cis-Linalool oxide Terpenoid 3.407 Absent 30.542 1.01E-06 1.536 9.434 H. cydno

Dihydroactinidiolide Terpenoid 3.020 1.236 11.507 0.02149 0.937 0.567 Both species

Genitals

Icosane Alkane 3.115 18.638 22.192 0.0002 1.328 1.355 H. cydno

Henicosane Alkane 550.519 1964.756 30.882 1.87E-06 0.977 0.771 H. cydno

Docosane Alkane Absent 28.170 40.267 1.51E-08 1.630 3.035 Both species

Tricosane Alkane 45.678 167.126 18.854 0.0010 1.325 1.132 H. cydno

Pentacosane Alkane 8.393 109.178 32.664 7.45E-07 0.958 1.795 Both species

11-Methylpentacosane Alkane Absent 45.773 29.705 3.42E-06 2.220 4.709 H. cydno

Hexacosane Alkane Absent 18.852 24.238 5.79E-05 3.424 5.194 H. cydno

Heptacosane Alkane 352.867 146.631 6.057 0.9419 1.208 1.683 Not tested 
(no species 
difference)

1-Docosanol Saturated 
alcohol

1187.774 516.916 4.296 1.0000 1.786 1.117 Not tested 
(no species 
difference)

1-Tetracosanol Saturated 
alcohol

171.351 362.030 5.295 1.0000 1.798 2.115 Not tested 
(no species 
difference)

1,3-Docosanediol 
(cyclic dimethylsilyl 
derivative)

Saturated 
alcohol

297.605 141.388 9.778 0.1201 1.893 1.742 Not tested 
(no species 
difference)

1,3-Tricosanediol 
(cyclic dimethylsilyl 
derivative)

Saturated 
alcohol

195.132 223.311 1.702 1.0000 2.076 1.780 Not tested 
(no species 
difference)

Hexacosanal Saturated 
aldehyde

1093.627 76.717 19.523 0.0007 1.907 1.728 H. 
melpomene

Hexyl 3-methylbutyrate Saturated 
ester

421.064 Absent 40.612 1.26E-08 3.050 1.466 Both species

Hexyl hexanoate Saturated 
ester

111.474 Absent 43.371 3.08E-09 NA (absent) 2.054 H. cydno

Butyl hexadecanoate Saturated 
ester

Absent 257.447 35.810 1.48E-07 2.706 NA (absent) H. 
melpomene

(Continues)
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Compound
Compound 
type

Mean H. 
cydno

Mean H. 
melpomene

Kruskal–
Wallis 
chi-squared 
statistic

Bonferroni-
adjusted 
p-value

Coefficient 
of variance in 
backcrosses to 
H. melpomene

Coefficient 
of 
variance in 
backcrosses 
to H. cydno

Mapped in 
backcrosses 
to

Octadecanoic acid ester Saturated 
ester

43.400 4.679 18.310 0.0013 2.249 1.498 Both species

Butyl octadecanoate Saturated 
ester

Absent 88.671 29.705 3.42E-06 2.514 NA (absent) H. 
melpomene

Isopropyl 
octadecanoate

Saturated 
ester

97.088 Absent 43.371 3.08E-09 3.986 2.100 H. 
melpomene

Hexyl octadecanoate 
(RI = 2550)

Saturated 
ester

24.217 121.817 11.402 0.0498887 3.289 2.790 Not tested 
(no species 
difference)

Hexyl octadecanoate 
(RI = 2590)

Saturated 
ester

415.139 0.259 41.397 8.45E-09 3.158 1.552 H. 
melpomene

Henicosene (RI = 2068) Alkene Absent 80.148 33.700 4.37E-07 1.030 1.589 H. cydno

Henicosene (RI = 2072) Alkene 81.486 30.527 5.041 1.0000 1.214 2.130 Not tested 
(no species 
difference)

Tricosene (RI = 2275) Alkene 217.571 38.420 6.746 0.6391 1.257 1.238 Not tested 
(no species 
difference)

Tricosene (RI = 2270) Alkene 64.338 135.602 10.462 0.0829 1.357 1.246 Not tested 
(no species 
difference)

(Z)-13-Docosen-1-ol Unsaturated 
alcohol

71.558 102.798 3.592 1.0000 1.200 1.511 Not tested 
(no species 
difference)

Tetracosenol Unsaturated 
alcohol

2559.806 786.420 10.576 0.0779 1.529 1.456 Not tested 
(no species 
difference)

(Z)-3-Hexenyl 
isobutyrate

Unsaturated 
ester

26.306 Absent 28.250 7.25E-06 3.315 1.828 Both species

Hexyl hexadecenoate Unsaturated 
ester

63.084 7.823 20.025 0.0005 2.258 1.997 Both species

Butyl oleate Unsaturated 
ester

Absent 1760.544 42.618 4.52E-09 1.931 4.234 Both species

Isopropyl oleate Unsaturated 
ester

2259.264 50.216 40.297 1.48E-08 2.401 2.288 H. 
melpomene

(Z)-3-Hexenyl 
hexadecanoate

Unsaturated 
ester

97.210 374.827 11.170 0.0565 1.919 1.908 not tested 
(no species 
difference)

Isopropyl 
octadecadienoate

Unsaturated 
ester

740.075 Absent 46.234 7.13E-10 3.590 1.590 H. 
melpomene

Isopropyl 
9,12-octadecadienoate

Unsaturated 
ester

405.054 Absent 46.234 7.13E-10 4.420 1.695 Both species

Hexyl octadecenoate 
and (Z)-3-Hexenyl 
octadecenoate

Unsaturated 
ester

2898.234 2253.323 1.037 1.0000 1.472 1.399 not tested 
(no species 
difference)

Hexenyl 
octadecatrienoate 
& (Z)-3-Hexenyl 
octadecatrienoate

Unsaturated 
ester

367.972 352.581 0.707 1.0000 1.954 2.049 Not tested 
(no species 
difference)

(Continues)
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Compound
Compound 
type

Mean H. 
cydno

Mean H. 
melpomene

Kruskal–
Wallis 
chi-squared 
statistic

Bonferroni-
adjusted 
p-value

Coefficient 
of variance in 
backcrosses to 
H. melpomene

Coefficient 
of 
variance in 
backcrosses 
to H. cydno

Mapped in 
backcrosses 
to

(Z)-3-Hexenyl 
octadecanoate

Unsaturated 
ester

35.961 139.479 10.460 0.0830 2.432 3.251 Not tested 
(no species 
difference)

5-Decanolide Lactone 36.466 Absent 32.920 6.53E-07 NA (absent) 2.610 H. cydno

15-Tetradecanolide Macrolide 41.895 14.383 8.691 0.2175 1.672 1.720 Not tested 
(no species 
difference)

Brassicalactone Macrolide 127.495 Absent 43.371 3.08E-09 7.229 3.880 H. cydno

16-Hexadecanolide Macrolide 89.514 0.670 35.448 1.78E-07 3.725 2.279 H. cydno

Hexadecenolide Macrolide 165.488 6.866 36.495 1.04E-07 2.022 1.125 H. 
melpomene

Hexadecen-11-olide Macrolide 110.815 Absent 43.371 3.08E-09 2.821 1.560 Both species

9,11-Hexadecadien-11-
olide

Macrolide 72.479 Absent 37.952 4.93E-08 3.581 3.002 H. 
melpomene

12-Octadecanolide Macrolide 105.430 Absent 46.234 7.13E-10 4.128 1.714 H. cydno

18-Octadecanolide Macrolide 168.048 7.014 38.587 3.56E-08 1.781 1.794 Both species

Octadecen-11-olide Macrolide 175.211 Absent 43.371 3.08E-09 4.519 1.431 Both species

(E)-Octadec-9-en-12-
olide

Macrolide 345.939 Absent 46.234 7.13E-10 2.973 1.382 H. 
melpomene

(Z)-9-Octadecen-11-
olide

Macrolide 7508.774 Absent 46.234 7.13E-10 2.408 1.018 H. 
melpomene

(Z)-9-Octadecen-13-
olide

Macrolide 5855.658 7.282 42.618 4.52E-09 3.164 1.189 H. 
melpomene

9-Octadecen-18-olide Macrolide 350.327 8.330 39.121 2.71E-08 1.990 2.463 H. cydno

(Z9,E11)- 
9,11-Octadecadien 
−13-olide

Macrolide 19714.248 Absent 46.234 7.13E-10 3.522 1.569 H. 
melpomene

Octadeca-9,11-
dien-13-olide and 
11-Octadecanolide

Macrolide 77.716 Absent 26.042 2.27E-05 8.944 2.486 H. cydno

Octadecadienolide 
(RI = 2095)

Macrolide 642.378 Absent 46.234 7.13E-10 4.887 2.099 H. cydno

Octadecadienolide 
(RI = 2178)

Macrolide 101.588 Absent 30.542 2.22E-06 5.516 1.763 H. cydno

(Z9,E11,Z15)-9,11,15- 
Octadecatrien-13-
olide

Macrolide 1052.733 Absent 40.612 1.26E-08 2.743 1.659 H. 
melpomene

13-Icosanolide Macrolide 45.901 Absent 40.612 1.26E-08 8.011 2.404 H. cydno

Icosen-13-olide Macrolide 781.655 Absent 46.234 7.13E-10 3.350 1.718 H. 
melpomene

Docosen-22-olide Macrolide 109.681 Absent 26.042 2.27E-05 3.537 2.431 H. 
melpomene

Tetracosenolide Macrolide 489.085 Absent 43.371 3.08E-09 4.259 1.714 Both species

Benzyl cyanide Aromatic 
(nitrogenous)

287.978 Absent 46.234 7.13E-10 3.830 1.128 Both species

2-sec-Butyl-3-
methoxypyrazine

Aromatic 
(nitrogenous)

3.569 32.656 29.318 4.18E-06 0.821 1.846 H. cydno

(Continues)
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only Bonferroni-corrected QTL were included. The clustering on 
chromosome 8 is solely due to the presence of macrolide QTL on this 
chromosome, while chromosome 14 contains QTL for both a mac-
rolide and three FAD compounds. When broken down by chemical 
class, only macrolide compounds clustered significantly at the chro-
mosomal level in the genitals, again on chromosome 8 (χ2 = 58.079 
for all significant QTL, p < .001), and this was also significant when 
only Bonferroni-corrected significant QTL were tested (χ2 = 110.88, 
p < .001). Again, the QTL peaks themselves were strongly overlap-
ping in the middle of chromosome 8 (Figure  4) rather than being 
dispersed across the chromosome. Two compounds had significant 
QTL in both wings and genitals: henicosane and benzyl cyanide. 
Both data sets showed QTL on the same chromosomes (20 and 17, 
respectively, with additional QTL for benzyl cyanide in the wings on 
other chromosomes). The henicosane QTL were within 1.5  cM of 
one another, while the benzyl cyanide QTL on chromosome 17 were 
2.3 cM apart.

The strong clustering of QTL for wing fatty acid-derived com-
pounds on chromosome 20 suggested a common gene or set of 
linked genes responsible for fatty acid-derived compound metab-
olism or its regulation. We searched the region between 43.11 and 
56.37  cM (9,398,348–14,585,564 basepairs) for potential candi-
date genes that could be responsible for this clustering. This region 
spanned the confidence intervals for all Bonferroni-significant QTL 
apart from 1-octadecanol and contained 363 genes. Annotated 
proteins from this region (from Lepbase, Challis et  al.,  2016) were 
searched using BLASTp against the NCBI nonredundant (nr) data-
base, revealing a total of 20 genes potentially involved in the bio-
synthesis of the wing compounds within this confidence interval on 
chromosome 20. These genes include two acetyl-CoA carboxylases 
(involved in primary metabolism), fifteen fatty acyl-CoA reductases 
(FARs), and two alcohol dehydrogenases (the latter two families in-
volved in both primary and secondary metabolism), none of which 
have been functionally characterized. Comparing our candidates to 
those identified in Liénard et al. (2014), none of our FARs fall within 

the pheromone gland FAR (pgFAR) clade, whose members fall on 
chromosome 19. Inspecting the genome for additional secondary 
metabolism fatty acid-derived metabolism genes, we identified clus-
ters of FARs on chromosomes 19 and 20 (Figure 5), with a more even 
distribution of alcohol dehydrogenases and desaturases across the 
genome. Notably, we did not identify any QTL on chromosome 19 
for fatty acid-derived compound production in the wings.

4  | DISCUSSION

The genetic basis for traits contributing to reproductive isolation 
remains poorly studied. This is especially the case for differences 
in chemical signaling between closely related nonmodel species, 
in particular for species with complex chemical signatures where 
multiple components may play a role in mate choice or species 
recognition. Here, we mapped a total of 40 QTL controlling the 
segregation of wing and genital pheromone bouquet compounds 
in crosses between Heliconius melpomene and its close relative H. 
cydno. There was significant evidence for nonrandom clustering of 
QTL, most notably for wing compounds on chromosome 20, which 
showed broadly overlapping QTL with closely spaced peaks. There 
could be a number of reasons for this clustering of loci. First, the-
ory predicts that mutations controlling species differences may 
accumulate, and persist, in regions already resistant to gene flow, 
such that recombination is less likely to disrupt species differences 
(Smadja & Butlin, 2011). Second, functionally similar genes are likely 
to occur in close linkage due to, for example, tandem gene duplica-
tion, such that chemically similar compounds could be regulated by 
linked genes due to functional similarities between their synthesis 
pathways (Osbourn,  2010). Finally, related compounds could dif-
fer between species as a pleiotropic effect of the same mutation if 
they are downstream products of the same biochemical pathway 
or in the case of a multifunctional enzyme. The end result of all of 
these processes is linkage that can facilitate speciation by impeding 

Compound
Compound 
type

Mean H. 
cydno

Mean H. 
melpomene

Kruskal–
Wallis 
chi-squared 
statistic

Bonferroni-
adjusted 
p-value

Coefficient 
of variance in 
backcrosses to 
H. melpomene

Coefficient 
of 
variance in 
backcrosses 
to H. cydno

Mapped in 
backcrosses 
to

2-Isobutyl-3-
methoxypyrazine

Aromatic 
(nitrogenous)

21.148 13.267 1.094 1.0000 1.043 0.920 Not tested 
(no species 
difference)

β-Myrcene Terpenoid Absent 12.799 31.666 1.25E-06 1.537 4.384 H. cydno

(Z)-β-Ocimene Terpenoid 0.930 55.408 40.857 1.11E-08 1.303 7.025 Both species

(E)-β-Ocimene Terpenoid Absent 35192.726 42.618 4.52E-09 0.812 3.982 H. cydno

Alloocimene Terpenoid Absent 16.255 27.815 9.08E-06 1.886 7.272 H. 
melpomene

Dihydroedulan II Terpenoid 20.336 24.824 0.072 1.0000 0.948 1.003 Not tested 
(no species 
difference)
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TA B L E  4   Details of quantitative trait loci passing a significance threshold of either p = .05 or a Bonferroni-corrected threshold

Compound 
(highlighted = Bonferroni-
significant QTL) Compound type

Mapped in which 
backcross direction? Chromosome Linkage group

QTL peak  
position (cM)

QTL peak position 
(bp)

Bayesian confidence 
interval (cM)

Bayesian confidence interval 
(bp)

Percent parental difference explained by 
genotype at QTL position

Significance 
level

Wing compounds

Henicosane Alkane to H. melpomene 20 Hmel220003o 49.55 12126129 49.55–56.37 12126129–14572192 11.291% Bonferroni

Icosane Alkane to H. melpomene 20 Hmel220003o 53.72 12917911 48.03–56.37 11779327–14572192 14.531% p = .05

Methyloctadecanol Saturated alcohol to H. melpomene 20 Hmel220003o 50.31 12374765 43.11–56.37 9369865–14572192 43.435% Bonferroni

1-Octadecanol Saturated alcohol to H. melpomene 20 Hmel220003o 51.82 12652775 10.91–56.37 1642405–14572192 27.709% Bonferroni

Icosanal Saturated aldehyde to H. cydno 20 Hmel220003o 54.47 13171256 43.87–56.37 10168518–14572192 12.782% p = .05

Octadecanal Saturated aldehyde to H. melpomene 20 Hmel220003o 47.66 11725848 46.90–56.37 11161989–14572192 41.411% Bonferroni

Octadecanal Saturated aldehyde to H. cydno 20 Hmel220003o 45.76 10947362 42.35–54.85 9267450–13276882 0.602% Bonferroni

(Z)-11-Icosenol Unsaturated alcohol to H. cydno 20 Hmel220003o 55.23 13279240 41.97–56.37 9257056–14572192 8.816% p = .05

(Z)-13-Docosenol Unsaturated alcohol to H. melpomene 20 Hmel220003o 35.16 7515365 10.91–53.34 1642405–12908798 101.480% p = .05

(Z)-16-Methyl-9-octadecenol Unsaturated alcohol to H. melpomene 20 Hmel220003o 51.82 12652775 46.90–56.37 11161989–14572192 38.888% Bonferroni

(Z)-11-Icosenal Unsaturated aldehyde to H. cydno 20 Hmel220003o 54.85 13267611 45.76–56.37 10947362–14572192 22.717% Bonferroni

(Z)-13-Docosenal Unsaturated aldehyde to H. cydno 20 Hmel220003o 53.72 12917911 45.00–56.37 10642774–14572192 28.582% Bonferroni

(Z)-9-Octadecenal Unsaturated aldehyde to H. melpomene 1 Hmel201001o 33.92 9955174 30.13–39.60 8218856–12832776 33.544% Bonferroni

(Z)-9-Octadecenal Unsaturated aldehyde to H. melpomene 20 Hmel220003o 55.23 13279240 41.60–56.37 9243035–14572192 30.508% p = .05

Benzyl cyanide Aromatic (nitrogenous) to H. melpomene 10 Hmel210001o 48.87 14461296 0.00–56.87 9690–17959960 59.570% p = .05

Benzyl cyanide Aromatic (nitrogenous) to H. melpomene 17 Hmel217001o 26.34 5596551 20.28–42.25 4078122–10433378 67.126% Bonferroni

Benzyl cyanide Aromatic (nitrogenous) to H. cydno 19 Hmel219001o 3.34 606313 0.57–56.75 9879–16007669 130.336% p = .05

Methyl 3-indoleacetate Aromatic (nitrogenous) to H. cydno 21 Hmel221001o 28.8 8478732 0.00–53.43 5031–13351436 59.220% Bonferroni

Genital compounds

Docosane Alkane to H. melpomene 14 Hmel214004o 44.79 7697378 0.46–49.71 3905–8850536 45.983% p = .05

Henicosane Alkane to H. cydno 20 Hmel220003o 51.06 12488808 47.66–56.37 11725848–14572192 43.720% p = .05

Butyl hexadecanoate Saturated ester to H. melpomene 14 Hmel214004o 49.34 8723724 0.46–49.71 3905–8850536 37.817% p = .05

Hexyl-3-methylbutyrate Saturated ester to H. melpomene 3 Hmel203003o 4.07 234227 0.48–12.4 4867–2439819 5.863% Bonferroni

Hexyloctadecanoate (RI = 2590) Saturated ester to H. melpomene 8 Hmel208001o 30.87 5987924 0.93–48.72 41886–9309727 46.335% Bonferroni

Octadecanoic acid ester Saturated ester to H. cydno 6 Hmel206001o 0.00 4240 0.00–4.54 4240–374231 81.615% p = .05

Butyl oleate Unsaturated ester to H. melpomene 1 Hmel201001o 33.92 9955174 32.02–53.99 9550244–16234374 45.537% p = .05

Butyl oleate Unsaturated ester to H. melpomene 2 Hmel202001o 25.82 4658742 0.80–53.9 10283–8996050 69.303% p = .05

Butyl oleate Unsaturated ester to H. cydno 9 Hmel209001o 15.42 2427002 2.54–45.73 10536–8672501 3.995% p = .05

Isopropyl oleate Unsaturated ester to H. melpomene 14 Hmel214004o 41.76 7370836 0.46–49.71 3905–8850536 16.385% Bonferroni

2-sec-Butyl-3-methoxypyrazine Aromatic (nitrogenous) to H. cydno 5 Hmel205001o 24.39 4427722 0.91–51.7 9444–9821895 38.866% Bonferroni

Benzyl cyanide Aromatic (nitrogenous) to H. melpomene 17 Hmel217001o 24.07 5377468 13.84–46.04 2863810–14762684 1.960% p = .05

(Z)-9-Octadecen-11-olide Macrolide to H. melpomene 8 Hmel208001o 30.49 5341821 0.93–48.72 41886–9309727 12.192% Bonferroni

(Z)-9-Octadecen-13-olide Macrolide to H. melpomene 8 Hmel208001o 31.25 6072562 0.93–48.72 41886–9309727 15.975% Bonferroni

(Z9,E11)- 9,11-Octadecadien 
−13-olide

Macrolide to H. melpomene 8 Hmel208001o 30.49 5341821 0.93–48.72 41886–9309727 2.826% Bonferroni

12-Octadecanolide Macrolide to H. cydno 8 Hmel208001o 24.81 4512378 0.93–48.72 41886–9309727 31.434% Bonferroni

9-Octadecen-18-olide Macrolide to H. cydno 20 Hmel220003o 3.33 237724 1.82–27.58 21924–6617001 50.049% p = .05

Brassicalactone Macrolide to H. cydno 14 Hmel214001o 0.46 3905 0.46–49.71 3905–8850536 70.539% p = .05

Icosen-13-olide Macrolide to H. melpomene 13 Hmel213001o 17.47 5860206 0.00–35.27 11191–13125309 7.936% p = .05

Hexadecen-11-olide Macrolide to H. cydno 7 Hmel207001o 46.71 11245622 34.20–60.34 7556459–14241586 26.673% p = .05

Hexadecenolide Macrolide to H. melpomene 8 Hmel208001o 30.49 5341821 0.93–48.72 41886–9309727 170.403% Bonferroni

(Z9,E11,Z15)-9,11,15- 
Octadecatrien-13-olide

Macrolide to H. melpomene 2 Hmel202001o 14.84 2034014 0.80–53.9 10283–8996050 13.320% p = .05

(E)-β-Ocimene Terpenoid to H. cydno 6 Hmel206001o 35.98 8298418 16.66–45.45 3143646–10034766 6.873% p = .05
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TA B L E  4   Details of quantitative trait loci passing a significance threshold of either p = .05 or a Bonferroni-corrected threshold

Compound 
(highlighted = Bonferroni-
significant QTL) Compound type

Mapped in which 
backcross direction? Chromosome Linkage group

QTL peak  
position (cM)

QTL peak position 
(bp)

Bayesian confidence 
interval (cM)

Bayesian confidence interval 
(bp)

Percent parental difference explained by 
genotype at QTL position

Significance 
level

Wing compounds

Henicosane Alkane to H. melpomene 20 Hmel220003o 49.55 12126129 49.55–56.37 12126129–14572192 11.291% Bonferroni

Icosane Alkane to H. melpomene 20 Hmel220003o 53.72 12917911 48.03–56.37 11779327–14572192 14.531% p = .05

Methyloctadecanol Saturated alcohol to H. melpomene 20 Hmel220003o 50.31 12374765 43.11–56.37 9369865–14572192 43.435% Bonferroni

1-Octadecanol Saturated alcohol to H. melpomene 20 Hmel220003o 51.82 12652775 10.91–56.37 1642405–14572192 27.709% Bonferroni

Icosanal Saturated aldehyde to H. cydno 20 Hmel220003o 54.47 13171256 43.87–56.37 10168518–14572192 12.782% p = .05

Octadecanal Saturated aldehyde to H. melpomene 20 Hmel220003o 47.66 11725848 46.90–56.37 11161989–14572192 41.411% Bonferroni

Octadecanal Saturated aldehyde to H. cydno 20 Hmel220003o 45.76 10947362 42.35–54.85 9267450–13276882 0.602% Bonferroni

(Z)-11-Icosenol Unsaturated alcohol to H. cydno 20 Hmel220003o 55.23 13279240 41.97–56.37 9257056–14572192 8.816% p = .05

(Z)-13-Docosenol Unsaturated alcohol to H. melpomene 20 Hmel220003o 35.16 7515365 10.91–53.34 1642405–12908798 101.480% p = .05

(Z)-16-Methyl-9-octadecenol Unsaturated alcohol to H. melpomene 20 Hmel220003o 51.82 12652775 46.90–56.37 11161989–14572192 38.888% Bonferroni

(Z)-11-Icosenal Unsaturated aldehyde to H. cydno 20 Hmel220003o 54.85 13267611 45.76–56.37 10947362–14572192 22.717% Bonferroni

(Z)-13-Docosenal Unsaturated aldehyde to H. cydno 20 Hmel220003o 53.72 12917911 45.00–56.37 10642774–14572192 28.582% Bonferroni

(Z)-9-Octadecenal Unsaturated aldehyde to H. melpomene 1 Hmel201001o 33.92 9955174 30.13–39.60 8218856–12832776 33.544% Bonferroni

(Z)-9-Octadecenal Unsaturated aldehyde to H. melpomene 20 Hmel220003o 55.23 13279240 41.60–56.37 9243035–14572192 30.508% p = .05

Benzyl cyanide Aromatic (nitrogenous) to H. melpomene 10 Hmel210001o 48.87 14461296 0.00–56.87 9690–17959960 59.570% p = .05

Benzyl cyanide Aromatic (nitrogenous) to H. melpomene 17 Hmel217001o 26.34 5596551 20.28–42.25 4078122–10433378 67.126% Bonferroni

Benzyl cyanide Aromatic (nitrogenous) to H. cydno 19 Hmel219001o 3.34 606313 0.57–56.75 9879–16007669 130.336% p = .05

Methyl 3-indoleacetate Aromatic (nitrogenous) to H. cydno 21 Hmel221001o 28.8 8478732 0.00–53.43 5031–13351436 59.220% Bonferroni

Genital compounds

Docosane Alkane to H. melpomene 14 Hmel214004o 44.79 7697378 0.46–49.71 3905–8850536 45.983% p = .05

Henicosane Alkane to H. cydno 20 Hmel220003o 51.06 12488808 47.66–56.37 11725848–14572192 43.720% p = .05

Butyl hexadecanoate Saturated ester to H. melpomene 14 Hmel214004o 49.34 8723724 0.46–49.71 3905–8850536 37.817% p = .05

Hexyl-3-methylbutyrate Saturated ester to H. melpomene 3 Hmel203003o 4.07 234227 0.48–12.4 4867–2439819 5.863% Bonferroni

Hexyloctadecanoate (RI = 2590) Saturated ester to H. melpomene 8 Hmel208001o 30.87 5987924 0.93–48.72 41886–9309727 46.335% Bonferroni

Octadecanoic acid ester Saturated ester to H. cydno 6 Hmel206001o 0.00 4240 0.00–4.54 4240–374231 81.615% p = .05

Butyl oleate Unsaturated ester to H. melpomene 1 Hmel201001o 33.92 9955174 32.02–53.99 9550244–16234374 45.537% p = .05

Butyl oleate Unsaturated ester to H. melpomene 2 Hmel202001o 25.82 4658742 0.80–53.9 10283–8996050 69.303% p = .05

Butyl oleate Unsaturated ester to H. cydno 9 Hmel209001o 15.42 2427002 2.54–45.73 10536–8672501 3.995% p = .05

Isopropyl oleate Unsaturated ester to H. melpomene 14 Hmel214004o 41.76 7370836 0.46–49.71 3905–8850536 16.385% Bonferroni

2-sec-Butyl-3-methoxypyrazine Aromatic (nitrogenous) to H. cydno 5 Hmel205001o 24.39 4427722 0.91–51.7 9444–9821895 38.866% Bonferroni

Benzyl cyanide Aromatic (nitrogenous) to H. melpomene 17 Hmel217001o 24.07 5377468 13.84–46.04 2863810–14762684 1.960% p = .05

(Z)-9-Octadecen-11-olide Macrolide to H. melpomene 8 Hmel208001o 30.49 5341821 0.93–48.72 41886–9309727 12.192% Bonferroni

(Z)-9-Octadecen-13-olide Macrolide to H. melpomene 8 Hmel208001o 31.25 6072562 0.93–48.72 41886–9309727 15.975% Bonferroni

(Z9,E11)- 9,11-Octadecadien 
−13-olide

Macrolide to H. melpomene 8 Hmel208001o 30.49 5341821 0.93–48.72 41886–9309727 2.826% Bonferroni

12-Octadecanolide Macrolide to H. cydno 8 Hmel208001o 24.81 4512378 0.93–48.72 41886–9309727 31.434% Bonferroni

9-Octadecen-18-olide Macrolide to H. cydno 20 Hmel220003o 3.33 237724 1.82–27.58 21924–6617001 50.049% p = .05

Brassicalactone Macrolide to H. cydno 14 Hmel214001o 0.46 3905 0.46–49.71 3905–8850536 70.539% p = .05

Icosen-13-olide Macrolide to H. melpomene 13 Hmel213001o 17.47 5860206 0.00–35.27 11191–13125309 7.936% p = .05

Hexadecen-11-olide Macrolide to H. cydno 7 Hmel207001o 46.71 11245622 34.20–60.34 7556459–14241586 26.673% p = .05

Hexadecenolide Macrolide to H. melpomene 8 Hmel208001o 30.49 5341821 0.93–48.72 41886–9309727 170.403% Bonferroni

(Z9,E11,Z15)-9,11,15- 
Octadecatrien-13-olide

Macrolide to H. melpomene 2 Hmel202001o 14.84 2034014 0.80–53.9 10283–8996050 13.320% p = .05

(E)-β-Ocimene Terpenoid to H. cydno 6 Hmel206001o 35.98 8298418 16.66–45.45 3143646–10034766 6.873% p = .05
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recombination that will otherwise disrupt the genetic associations 
between traits that characterize emerging species.

In the case of the compounds described here, it is likely that 
shared biosynthetic origins play an important role in their chromo-
somal distributions. The majority of the wing compounds found in 
either species are fatty acid-derived compounds (FADs; 19 of 31), 
and the majority of these FADs (12 of 19) were associated with a sig-
nificant QTL on chromosome 20. It is interesting that there was clus-
tering of one class of biosynthetic enzyme in this pathway, the fatty 
acyl-CoA reductases (FARs), on both chromosomes 19 and 20, but 
no QTL on chromosome 19 for any wing or genital FAD compound, 
suggesting the FARs on chromosome 19 are not involved in puta-
tive pheromone compound production. Similarly, QTL for genital 
compounds exhibited slight clustering of loci underlying macrolide 
compound production on chromosome 8, but otherwise were more 
evenly spread across the genome, likely due to their greater biosyn-
thetic diversity. The QTL for shared macrolide compounds may also 
be due to shared biosynthetic origins of these compounds, but the 
biosynthesis of macrolides is less well understood and consequently 
we were unable to identify candidate genes on this chromosome. 
We also found a QTL on chromosome 3 for hexyl 3-methylbutyr-
ate, a known bioactive component of the genital pheromone of H. 
cydno (Estrada, 2009) whose genetic basis was previously unknown. 
Of note, the QTL for relative androconial area roughly peaks on the 
gene optix (chromosome 18), a locus-controlling red color patterns in 
Heliconius (Reed et al., 2011; Van Belleghem et al., 2017). This locus 
is also known to control male-specific scales in the basal heliconiine 
Dryas iuila and has an expression domain in the hindwing androco-
nia region (Martin et al., 2014). This overlap raises the possibility for 
coupled control of color pattern and androconial pheromone pro-
duction differences between Heliconius species.

Overall, we found no evidence for linkage of any of the chemical 
QTL clusters with other loci or QTL that have been shown to play 
a difference in the strong assortative mating observed between H. 
melpomene and H. cydno. The major wing patterning genes are lo-
cated on chromosomes 1 (aristalless), 10 (WntA), 15 (Cortex), and 18 

(optix), only chromosome 1 of which harbors a chemical QTL, but 
the peak does not include the aristalless gene. In addition, major 
QTL for male mate choice map to chromosome 1, 17, and 18 (Merrill 
et al., 2019), but, similarly, the chemical QTL we identified on chro-
mosomes 1 and 17 do not overlap with the major QTL identified for 
male mate choice. We might expect an overlap between chemical 
QTL and female mate choice QTL (as females likely assess males par-
tially based on their wing androconial chemistry), but the latter has 
not been mapped in this species pair. Nonetheless, the clustering of 
wing compounds in particular might contribute to pheromone-based 
speciation, particularly in the face of gene flow (Via, 2012). If more 
than one pheromone component that maps to chromosome 20 is 
involved in reproductive isolation, and if genes responsible for their 
production are tightly linked (or if pleiotropy occurs), this may also 
facilitate speciation (Felsenstein, 1981; Merrill et al., 2019; Smadja & 
Butlin, 2011) and prevent the breakup of potentially adaptive pher-
omone bouquet mixtures. Evidence suggests that mixture effects 
are important in pheromone processing (Clifford & Riffell, 2013; Lei 
et al., 2013; Riffell et al., 2009), and these mixtures might be main-
tained through tight genetic linkage between biosynthetic loci, fa-
cilitated by gene evolutionary events such as tandem duplication. 
In contrast to the tight clustering seen on chromosome 20 for wing 
FAD compounds, we saw more limited clustering for the more chem-
ically diverse genital compounds, likely due to their more diverse po-
tential biosynthesis pathways. This might hamper any potential role 
in reproductive isolation. Given their known function as antiaphro-
disiacs, genital compounds are not so likely to play a major role in 
isolation between Heliconius species (Estrada, 2009; Gilbert, 1976; 
Schulz et al., 2007).

Some of the compounds found on wings and in genitalia might 
have a plant origin. Several compounds in the wings and genitals did 
not differ between parental species, and many of these have been 
shown to be affected by larval diet in Heliconius melpomene. Most 
of the invariant wing compounds are aromatics, which are expected 
to be plant derived in Heliconius (Darragh, et al., 2019a). Notably, we 
reared all mapping butterflies on the same larval and adult diets, 

F I G U R E  3   QTL for various traits 
across theHeliconius melpomeneandH. 
cydnogenomes. Wing color/pattern 
loci represent the four major color loci 
(Jiggins, 2017); male mate choice loci 
are from (Merrill et al., 2019); (relative) 
androconia area and Bonferroni-
significant wing and genital compound loci 
from this study.
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thus effectively creating a dietary common garden experiment, and 
so we do not expect larval or adult diet to affect the result of the 
QTL mapping. Many male moth pheromone components are derived 
from host plant volatiles with minimal alterations, potentially due to 
females’ pre-existing biases for detecting these compounds during 
the host plant search (Conner & Iyengar, 2016). However, many of our 
mapped Heliconius compounds do appear to have a genetic basis (i.e., 
a QTL was found), in line with the biosynthesis of FAD and related 
compounds by female moths. Breaking our compounds down into 

four classes (FADs, macrolides, aromatics, and terpenoids), we failed 
to find QTL (at the p = .05 level) for 54%, 58%, 43%, and 83% of these 
classes, respectively, across both wings and genitals. In particular, ter-
penoids that differ between species may be the result of differential 
larval host plant use. It is of course possible that plant derived com-
pounds could show a genetic basis if there were species differences in 
the genes regulating their uptake, and one example might be icosanal, 
which has been shown to be influenced by larval host plant (Darragh, 
et al., 2019a) but which is also associated with a QTL in this study.

F I G U R E  4   Chromosome-specific QTL plots for compounds with significant QTL (after Bonferroni correction) on those chromosomes, 
with the entire chromosome length shown. Red: compound mapped in backcrosses toH. melpomene; blue: compound mapped in backcrosses 
toH. cydno

F I G U R E  5   Location of candidate 
genes for fatty acid-derived compound 
biosynthesis across the genome 
ofHeliconius melpomene. Horizontal dotted 
lines on chromosomes 19 and 20 indicate 
the endpoints of zoomed in regions
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This study provides a first step toward better characterizing 
the genes causing chemical differences between species. Fatty 
acid-derived compound biosynthesis candidate genes and QTL for 
FAD compounds are both clustered on chromosome 20. These FAD 
compounds are produced from acetyl-CoA followed by rounds of 
chain elongation, desaturation, fatty acyl-CoA reduction, oxidiza-
tion, and acetyltransferase activity to produce the final pheromone 
compounds. The fatty acyl-CoA reduction step, key to pheromone 
biosynthesis, uses FARs to remove the CoA moiety and return an 
alcohol. More than half of these FAR candidates are found in tan-
dem duplications, as are the two alcohol dehydrogenase candidates. 
These duplications could have provided raw material for the origin of 
new biosynthetic function and thus increased pheromone diversity. 
FARs also cluster on chromosome 19, and these FARs (unlike those 
on chromosome 20) fall within the pheromone gland FAR (pgFAR) 
subfamily (Liénard et al., 2014; Löfstedt et al., 2016). However, these 
phylogenetic analyses of FARs in Heliconius, Bombyx, Danaus, and 
Bicyclus do not generally show lineage-specific clustering of the 
chromosome 20 FARs; instead, they are dispersed throughout the 
tree. This suggests an ancient evolutionary origin of the Heliconius 
chromosome 20 FAR cluster, in contrast to Heliconius-specific dupli-
cations of chromosome 19 FARs in the pgFAR subfamily which are 
clustered in the tree.

Single FAR and alcohol dehydrogenase genes are missing from 
H. cydno (Byers et al., 2020), suggesting an obvious mechanism for 
the striking difference in FAD compounds between the two species; 
these differences may also be due to, for example, differential regu-
lation of FARs or other biosynthetic genes, or mutations within these 
genes. Alternately, a single FAR gene or small set of genes may be 
responsible for the biosynthesis of the majority of FAD compounds 
in Heliconius, similar to the situation found with eloF in Drosophila, 
where knockdown of the gene produces widely pleiotropic effects 
on cuticular hydrocarbon profiles (Combs et al., 2018). Similar effects 
are seen in Spodoptera litura, where RNAi of FAR17 alone alters lev-
els of the four major sex pheromone components (Lin et al., 2017). 
Another option, though one we consider unlikely, is that this tight 
cluster of FARs on chromosome 20 serves as a supergene, allow-
ing multiple phenotypic traits (here individual chemical compounds) 
to cosegregate and maintaining strong integration of the chemical 
phenotype. Supergenes have been described for other phenotypic 
morphs in Heliconius (Joron et  al.,  2011), but we are unaware of 
mechanisms on chromosome 20 that might contribute to supergene 
formation and maintenance, for example a chromosomal inversion, 
which would have likely been evident in our linkage map.

Information on potential biosynthetic gene clustering in other 
Lepidoptera species is largely lacking, as most studies have produced 
transcriptomes of pheromone glands rather than linkage maps or 
transcriptomes mapped to genomes. Additionally, as much work in 
Lepidoptera has focused on single pheromone components and thus 
single biosynthetic genes (Groot et al., 2016), clustering of QTL and 
candidate genes is rarely discussed. The lack of annotated genomes 
in many lepidopteran species also can prevent in-depth assessment 
of clustering of candidate genes, requiring mapping QTL linkage 

groups back to Bombyx or other well-annotated genomes. However, 
such clustering has been seen in Nasonia wasps, where both QTL for 
multiple cuticular hydrocarbon components and candidate desatu-
rase genes overlap strongly across the genome (Niehuis et al., 2011, 
2013). Clusters of acetyltransferases and desaturases exist in 
Heliothis (inferred from synteny with Bombyx mori), but the acetyl-
transferases do not appear to underlie the QTL for sex pheromone 
differences between H. virescens and H. subflexa (Groot et al., 2013, 
2014). Quantitative trait loci for multiple compounds were investi-
gated in Heliothis, finding multiple chromosomes responsible for the 
production of the same compound classes (all FADs), with more lim-
ited clustering (Sheck et al., 2006). This is similar in pattern to what 
we found in the genital pheromone components, although the latter 
cover multiple compound classes.

Understanding the genetic architecture of complex traits 
can allow us to understand their potential role in speciation. 
Determining whether the observed clustering QTL on chromo-
somes 8 and 20 reflect tight linkage of multiple biosynthetic and/
or regulatory genes or a single “master” locus responsible for the 
biosynthesis or regulation of multiple pheromone components will 
contribute to our understanding of both pheromone biosynthesis 
and pleiotropy and linkage in general. With genes in hand, CRISPR 
(a technique that works in Heliconius, Livraghi et  al.,  2018) could 
be used to alter gene function, allowing confirmation of the role of 
pheromone components via behavioral assays. As major effect loci 
(as these QTL appear to be) and tight linkage (as potentially seen 
here) can both facilitate the speciation process, especially in the 
face of gene flow (Felsenstein,  1981; Merrill et  al.,  2010; Smadja 
& Butlin,  2011; Via,  2012), the QTL identified here could be bar-
rier or speciation genes in Heliconius. These specific QTL may be 
involved in interspecific mate choice and reproductive isolation, 
and thus, the genes underlying them could contribute to the main-
tenance of species boundaries. We have here identified a total of 
40 QTL underlying species differences in 33 potential pheromone 
components, demonstrated clustering of these QTL for wing and 
genital compounds on specific chromosomes not linked to known 
loci for species differences, and identified candidate genes underly-
ing the production of the major chemical class of wing compounds. 
Together, these findings further our knowledge of chemical ecol-
ogy, pheromone genetics, and their potential roles in Heliconius but-
terfly mate choice and speciation.
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