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Background: Korean Red Ginseng (KRG) is a natural product with antiinflammatory and anticarcinogenic
effects. We have previously reported that the endocrine-disrupting compound bisphenol A (BPA)-
induced cyclooxygenase-2 (COX-2) via nuclear translocation of nuclear factor-kappa B (NF-«kB) and
activation of mitogen-activated protein kinase and promoted the migration of A549. Here, in this study,
we assessed the protective effect of KRG on the BPA-induced reactive oxygen species (ROS) and
expression of COX-2 and matrix metalloproteinase-9 (MMP-9) in A549 cells.
Methods: The effects of KRG on the upregulation of ROS production and COX-2 and MMP-9 expression by
BPA were evaluated by fluorescence-activated cell sorting (FACs) analysis, quantitative reverse tran-
scription polymerase chain reaction, and western blotting. Antimigration ability by KRG was evaluated by
migration assay in A549 cells.
Results: KRG significantly suppressed the BPA-induced COX-2, the activity of NF-kB, the production of
ROS, and the migration of A549 cells. These effects led to the downregulation of the expression of MMP-
9.
Conclusions: Overall, our results suggest that KRG exerts an antiinflammatory effect on BPA-treated A549
cells via the suppression of ROS and downregulation of NF-kB activation and COX-2 expression which
leads to a decrease in cellular migration and MMP-9 expression. These results provide a new possible
therapeutic application of KRG to protect BPA-induced possible inflammatory disorders.
© 2020 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

inflammatory responses [8]. Hyperestrogenic stimulation and
inflammation are linked by a feed-forward loop [9]. There is

Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC)
that is used to manufacture polycarbonate plastics and epoxy resins
for many consumer products, including plastic cups, food storage
containers, and beverage cans [1,2]. BPA exposure causes repro-
ductive disorders, such as precocious puberty, prostate develop-
mental abnormalities, decreased sperm production, and
reproductive organ malignancies [3,4]. The cellular effects of BPA
are mediated by binding to estrogen receptors (ERs) alpha and beta
[5]. Disrupted ER signaling can cause reproductive disorders and
inflammatory dysregulation [6,7]. In an endometriosis animal
model, ER hyperstimulation caused enhanced cell proliferation and
vascularization and increased neuron innervation and the

accumulating evidence of cross-talk between ER signaling and the
inflammasome; therefore, an ER agonistic ligand-like BPA very
likely affects inflammation [10—12]. BPA exposure stimulates
interferon signaling and activates inflammasome activity, leading
to the deterioration of autoimmune diseases such as systemic lupus
erythematosus [13]. Studies have examined the effects of BPA on
hormone-dependent and other tumors [14]. BPA produces
inflammation and reactive oxygen species (ROS) in human lung
cancer cells and promotes the development of pulmonary inflam-
matory diseases [15,16]. Previously, we showed that BPA induces
cyclooxygenase-2 (COX-2) and the migration in A549 human lung
cancer cells [15]. Although precautions to minimize exposure to
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environmental chemicals are useful, remedies that will alleviate
possible adverse effects of these environmental chemicals are
important.

Ginseng has been used in traditional medicine for thousands of
years. Ginseng is divided into two species: Panax ginseng (Korean
ginseng) and Panax quinquefolius (American ginseng) [17]. The
word Panax means “all healing” and it comes from the traditional
belief that ginseng can cure all illnesses [18]. However, the two
ginseng species have different ginsenoside contents and some
compounds are unique to Korean ginseng, such as ginsenoside Rf
[19,20]. When Korean ginseng is steamed and dried, its ginsenoside
and polysaccharide components change [21]. The resulting product,
called Korean Red Ginseng (KRG), has obtained approval of the
Korean Food and Drug Administration and is reported to improve
immunity, relieve fatigue, improve the blood circulation, have
antioxidative effects, and improve the symptoms of menopause in
women [17]. With these activities, KRG is therapeutically effective
against various diseases [18,22]. Many studies have shown that KRG
targets oxidative stress by inhibiting ROS formation and blocking
inflammation, making it effective in various inflammatory diseases,
such as atherosclerosis, coronary artery dysfunction, cancer, and
neurodegenerative diseases [23—26]. We hypothesized that KRG
could protect against the inflammation-related phenomena caused
by BPA that we observed previously. In this study, we investigated
whether KRG prevents BPA-induced COX-2 expression and cellular
migration in A549 cells.

2. Materials and methods
2.1. Experimental design

We have previously found that COX-2 and cell migration are
increased by BPA in human lung adenocarcinoma A549 cells [15].
Therefore, we evaluated the protective effect of KRG against BPA-
induced COX-2 in A549 cells. First, to ensure that the increased
COX-2 by BPA is suppressed by KRG, two concentrations of KRG
were pretreated for 1 h and BPA was processed and incubated for 24
h to check COX-2 protein and mRNA expression. And the amount of
ROS generation was measured by FACs analysis to determine
whether KRG inhibits BPA-induced ROS. To determine whether
COX-2 and matrix metalloproteinase-9 (MMP-9) increased by BPA
increased dependent on ROS, we examined the protein and mRNA
expression of COX-2 and MMP-9 by treating with N-acetyl-L-
cysteine (NAC), a ROS inhibitor. In addition, the effect of KRG on
BPA-induced cellular migration was analyzed by using transwell
migration assay in A549 cells.

2.2. Materials (reagents and antibodies)

BPA, 2/,7'-dichlorofluorescin diacetate (DCF-DA), NAC, dimethyl
sulfoxide, thiazolyl blue tetrazolium bromide (MTT), celecoxib and
Anti-B-actin were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Roswell Park Memorial Institute 1640 Medium and TOM™
Transfection Optimized Medium were purchased from WelGENE
Inc. (Daegu, Korea). Trizol reagent, fetal calf serum, and antibiotic-
antimycotic were purchased from GIBCO Invitrogen (Grand Island,
NY, USA). Polyethylenimine was purchased from Polyscience
(Warrington, PA, USA). Enhanced chemiluminescence was obtained
from Amersham Pharmacia Biotech (Buckinghamshire, UK). Anti-
COX-2 was used from Cayman Chemical Co. (Ann Arbor, MI, USA).
Anti—nuclear factor-kappa B (NF-kB) p65 and lamin B were pur-
chased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Anti-
MMP-9 (Matrix Metalloproteinase-9) was used from Cell Signaling
Technology (Beverly, MA, USA).

2.3. Preparation of KRG

KRG was manufactured and kindly provided by the Korea
Ginseng Corporation (KGC, Daejeon, Korea) [27]. The analysis of
KRG was based on the reported method [28]. The phytochemical
characteristics of KRG with standard ginsenosides were confirmed
by high-performance liquid chromatography (HPLC) analysis (Rb1,
7.34 mg/g; Rb2, 2.54 mg/g; Rc, 3.41mg/g; Rd, 0.97 mg/g; Re, 1.64
mg/g; Rf, 1.26 mg/g; Rg1, 1.21 mg/g; Rg2 (s), 1.36 mg/g; Rg3(s), 2.21
mg/g; Rg3(r), 1.17mg/g and Rh1, 1.56 mg/g).

2.4. Cell culture conditions

Human adenocarcinoma A549 cells were maintained in Roswell
Park Memorial Institute 1640 Medium containing 10% FCS, 100
units/mL of penicillin, 100 ug/mL of streptomycin and 250 ng/mL of
Fungizone® (amphotericin B) mixed antibiotic-antimycotic. The
cells were cultured at 37°C in the humidified 5% CO, atmosphere.

2.5. Luciferase reporter assay

The NF-kB luciferase was constructed using the enhanced
luciferase reporter gene pELAM promotor. A549 cells were tran-
siently transfected with plasmid using polyethylenimine reagent
and Tom medium. Luciferase assay was performed according to a
previously reported method [29].

2.6. Reverse transcription polymerase chain reaction

Total RNA was extracted using the trizol reagent, and the first-
strand cDNA was synthesized according to a previously reported
method [30]. Quantitative real-time polymerase chain reaction was
performed with StepOnePlus Real-Time PCR System (Applied Bio-
systems, Foster City, CA, USA) using a AccuPower® GreenStar™
qPCR Pre Mix (Bioneer Corporation, Daejeon, Korea) according to
the manufacturer's instructions [31]. The primers used were MMP-
9: 5'-ACTTTGACAGCGACAAGAAGTG-3’, 5'-GGCACTGAGGAAT-
GATCTAAGC-3'. The primers of COX-2 and B-actin were described
previously [15]. The relative expression was calculated and stan-
dardized by the expression of f-actin taken from the same sample
using the comparative cycle threshold (Ct).

2.7. Western blot analysis

Protein isolation of whole cells and western blot analysis were
performed according to previously reported methods [32]. The
blots were incubated for overnight or 1 h with primary antibodies
(NF-kB-p65, Lamin B, MMP-9, COX-2, and B-actin) diluted to 1:1000
or 1:5000 in Tris Buffered Saline with Tween 20 (TBST). The blots
were washed and incubated with secondary antibody diluted to
1:5000 with skim milk for 1 h. The bands were detected the using
enhanced chemiluminescence. Quantity One analysis software
(Bio-Rad, Hercules, CA, USA) was used to quantify the strength of
the band.

2.8. Extraction of nuclear and cytoplasmic proteins

Cytoplasmic and nuclear proteins of A549 cells were detached
using the nuclear and cytoplasmic protein extraction kits (Abcam,
Cambridge, UK) according to the manufacturer's instructions.
Fractions were analyzed by sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS—PAGE) and western blot with specific
antibodies.
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2.9. Cell migration assays

As previously described, the migration assay was performed
using transwell inserts (Corning Inc., NY, USA) that have 6.5 mm
polycarbonate membranes with 8.0 um pores [27]. After 24 h of
incubation under BPA or KRG or celecoxib, the migrated cells were
fixed and stained with crystal violet.

2.10. MTT assays

A549 cells were seeded in a 96-well plate at a density of 5000
cells/well. Next day, A549 cells were treated with the BPA or KRG
into the culture media and incubated for 24 h. MTT assays were
performed as reported previously [33].

2.11. Measurement of reactive oxygen species production

The levels of intracellular ROS were measured with a FACSCa-
libur flow cytometer using the BD CellQuest Pro software (BD
Biosciences, San Jose, CA, USA) according to previously reported
methods [15]. Flow]Jo software (TreeStar, Inc., Ashland, OR, USA)
was used to analyze data.

2.12. Statistical analysis
Data were described as the means + standard deviation. We

compared each group using one-way analysis of variance and
Tukey's multiple-comparison posttest using GraphPad Prism

software (GraphPad Software Inc., La Jolla, CA, USA). Differences
between groups were considered significant at a P value of less than
0.05.

3. Results
3.1. KRG suppresses BPA-induced COX-2 expression

Inflammation is closely associated with cancer progression, and
release of inflammatory molecules is known to induce the cancer
progression and metastasis [34]. Among various inflammatory
mediators, COX-2 is a major factor in inflammation [35]. Previously,
we showed that BPA upregulates COX-2 expression in A549 cells
[15]. We also investigated whether KRG inhibited BPA-induced
COX-2 expression. KRG did not affect cell viability at concentrations
of 100—500 pg/mL under BPA treatment (Fig. 1A). Therefore, this
concentration was selected as the treatment condition in the
following experiment. KRG at a dose of 500 pg/mL efficiently
blocked BPA-induced COX-2 mRNA levels (Fig. 1B). KRG also
significantly suppressed BPA-induced COX-2 protein (Fig. 1C). These
results indicate that KRG exerts an inhibitory effect on COX-2
expression by BPA in A549 cells.

3.2. KRG suppresses BPA-induced NF-«kB promoter activity and NF-
kB nuclear translocation

NF-kB is a transcriptional regulator of the expression of various
genes, including COX-2, which is involved in cell proliferation and
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Fig. 1. Effects of KRG on BPA-induced COX-2 expression. (A) A549 cells were preincubated with KRG for 1h and treated with BPA. After 24 h incubation, cell viability was
measured by MTT assay. (B) A549 cells were pretreated with KRG (500 pg/mL) for 1 h and treated with BPA for 24 h. The levels of COX-2 mRNA were determined by qRT-PCR. (C)
A549 cells were treated as described in (A). COX-2 and B-actin were evaluated by western blot analysis. ##p < 0.01, CON vs. BPA; *p < 0.05 and **p < 0.01, BPA vs. BPA + KRG.
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inflammatory responses [36]. Previously, we confirmed that BPA
upregulates NF-kB activity in A549 cells [15]. Next, we examined
whether the increase in NF-kB activity induced by BPA was reduced
by KRG treatment. KRG inhibited the BPA-induced NF-kB promoter
activity at concentrations of 100 and 500 pg/mL (Fig. 2A). The
activation of NF-kB is initiated by translocation of the NF-kB p65
subunit from the cytoplasm into the nucleus [37]. Nuclear p65 acts
as a transcription factor that causes the expression of inflammatory
genes, such as COX-2 [38]. Treatment with BPA (10 uM) increased
the nuclear expression of p65 protein. KRG (500 pg/mL) signifi-
cantly attenuated BPA-induced translocation of NF-kB p65 into the
nucleus (Fig. 2B). These results demonstrate that KRG blocked the
BPA-induced NF-kB promoter activity and NF-kB nucleus
translocation.

3.3. KRG inhibits BPA-induced cell migration

COX-2 is also strongly implicated in tumor progression by pro-
moting important cellular functions, including cell migration [39].
To determine whether KRG inhibited the BPA-induced migration of
A549 cells via COX-2, cell migration was investigated under the
presence of the COX-2 inhibitor celecoxib. Celecoxib and KRG
significantly suppressed the BPA-induced cell migration by
approximately 39% and by 51% compared with BPA treatment
(Fig. 3). Because celecoxib blocked cell migration induced by BPA, it
suggests that COX-2 plays an important role in the regulation of cell
migration by BPA. These results demonstrate that KRG suppresses
BPA-induced cell migration.

3.4. KRG inhibits BPA-induced ROS production

To wunderstand the upstream modulation of NF-«kB, we
confirmed whether KRG inhibited BPA-induced ROS production in
A549 cells by flow cytometry. ROS is involved in NF-kB activation
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and leads to increased cytokine expression [40]. Moreover, ROS
activates signaling pathways, such as in cancer development and
progression [41]. As shown Fig. 4, BPA markedly elevated the ROS
levels in A549 cells compared with the control, whereas the ROS
scavenger NAC almost completely blocked ROS production. Treat-
ment with KRG (500 pg/mL) effectively suppressed the levels of
BPA-induced ROS. These results indicate that KRG inhibited BPA-
induced ROS production.

3.5. KRG suppresses BPA-induced COX-2 and MMP-9

MMP-9 plays an important role in the migration and invasion of
various cancer cells [42]. In addition, BPA increases MMP-9
expression in A549 cells [43]. NF-kB is centrally involved in the
induction of MMP-9 expression by BPA [44,45]. To confirm whether
the suppression of BPA-induced MMP-9 and COX-2 by KRG is
associated with its ROS-scavenging activity, we confirmed the
expression of MMP-9 and COX-2 on treatment of KRG and NAC. The
BPA-induced COX-2 mRNA and protein levels were blocked by KRG
and NAC (Fig. 5A and B). KRG and NAC also inhibited the BPA-
induced MMP-9 mRNA and protein expression (Fig. 5C and D).
These results demonstrate that KRG blocks BPA-induced COX-2 and
MMP-9 via ROS signaling.

4. Discussion

This study demonstrated that KRG inhibits the BPA-induced
COX-2 expression and cell migration via the inhibition of ROS and
downregulation of NF-kB activation and MMP-9 expression in A549
human lung cancer cells. These results point to a new possible
therapeutic application for KRG to protect against inflammatory
disorders induced by EDCs. We and others have shown that BPA
induces COX-2 in cancer cell lines [15,46]. BPA induced COX-2
expression via the activation of mitogen-activated protein
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kinase and promoted the cellular migration of A549 and MDAMB-
231 cells [15,47]. BPA induces COX-2 expression in human mesen-
chymal stem cells derived from uterine myoma tissue, human
endometrial carcinoma cells [46,48]. In two epidemiological
studies conducted with repeated urine and serum samples from
700 Korean elderly people, the associations of BPA with six
inflammation markers (white blood cells, C-reactive protein,
interleukin-10, alanine aminotransferase, aspartate
transaminase and y-glutamyl transpeptidase levels) were evalu-
ated, and significant positive correlations between the levels of BPA
and six inflammation markers were found [15]. A Taiwanese cohort
study suggested that nonylphenol (NP) and BPA increase oxidative
stress and decrease antioxidant activity during pregnancy and
inflammation [49]. The generation of ROS increased with a decrease
in mitochondrial membrane potential in BPA-exposed lympho-
blastoid cell lines of children with autism [50]. Accumulating
in vitro and in vivo studies strongly support the prooxidant role of
BPA [51]. Induction of ROS and inflammation by BPA leads to acti-
vation of the mitogen-activated protein kinase, PI3K/AKT, and NF-
kB pathways, inducing mitochondrial dysfunction and promoting
changes in several cell signaling pathways, partly via nuclear or
membrane ER signaling mechanisms [52—54]

Various studies have searched for protective and preventive
natural products that are effective against EDC-induced

pathological conditions [55,56]. Oleuropein- and hydroxytyrosol-
rich extracts from olive leaves attenuated the liver injury and
lipid accumulation induced by BPA in male rats via hypolipidemic
and hepatoprotective effects by enhancing the antioxidative de-
fense system and regulating inflammation [57]. Selenium and
nanoselenium protected against the reproductive toxicity induced
by BPA via improved antioxidant activity [58]. Data from 88,962
adults collected as part of the National Health Interview Survey to
assess trends in the use of complementary health approaches found
that ginseng was the ninth most commonly used nonvitamin,
nonmineral dietary supplement in a question asking about usage in
the previous 30 days after fish oil, glucosamine, probiotics, mela-
tonin, coenzyme g-10, Echinacea, garlic supplements, and cran-
berry [59]. The many studies of the antioxidant activity of KRG
induced by various oxidative stresses motivated our study, and our
results show that KRG is effective against the increases in intra-
cellular ROS and COX-2 induced by BPA. Only a few antioxidant
studies have been conducted in humans, so clinical data on the
beneficial effects of KRG on exposure to EDCs will be useful for
extending the application of KRG.

MMP-9 plays a critical role in the progression of cancer, and the
overexpression of MMP-9 is mostly related to the migration and
invasion of various cancer cells [60]. In addition, MMP-9 is involved
in the pathophysiology of cancer progression and inflammation-
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related diseases [61,62]. Recent research studies have supported
that MMP-9 inhibitors have significant protective effects for tumor
promotion by partially blocking the expression of proinflammatory
enzymes, such as COX-2 [63]. Exposure of BPA induces cell migra-
tion and MMP-9 expression in several cancer cells [43,64]. Thus,
targeting MMP-9 inhibition is another strategy for cancer preven-
tion and treatment [65]. To identify the molecular mechanisms that
determine the antimetastatic and antiinflammatory effect of KRG, a
key question in this study asked whether KRG downregulates BPA-
induced COX-2 and MMP-9 expression in A549 cells.

In summary, these above data demonstrated that KRG inhibits
BPA-induced MMP-9 and COX-2 by inhibiting ROS in A549 cells.
Therefore, our results suggest that KRG could be used as a potential
therapeutic agent for inflammatory disorders by BPA in lung cancer
cells.
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