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SUMMARY

There has been little evidence linking changes in spiking activity that occur prior to a spatially 

predictable target (i.e., prior to target selection) to behavioral outcomes, despite such preparatory 

changes being widely assumed to enhance the sensitivity of sensory processing. We 

simultaneously recorded from frontal and parietal nodes of the attention network, while macaques 

performed a spatial-cueing task. When anticipating a spatially predictable target, different patterns 

of coupling between spike timing and oscillatory phase in local field potentials—but not changes 

in spike rate—were predictive of different behavioral outcomes. These behaviorally relevant 

differences in local and between-region synchronization occurred among specific cell types that 

were defined based on their sensory and motor properties, providing insight into the mechanisms 

underlying enhanced sensory processing prior to target selection. We propose that these changes in 

neural synchronization reflect differential, anticipatory engagement of the network nodes and 

functional units that shape attention-related sampling.

eTOC BLURB

Fiebelkorn et al., use recordings in the macaque attention network to demonstrate the behavioral 

relevance of spiking activity that occurs in preparation for a spatially predictable target. Spike rate 

encodes the focus of attention, but subsequent behavioral outcomes depend on the temporal 

synchronization of local and between-region spiking activity.
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INTRODUCTION

Survival depends on successfully navigating a complex, dynamic environment, but the brain 

has limited processing resources for the sampling of environmental information (Desimone 

and Duncan, 1995; Kastner and Ungerleider, 2000). Selective attention comprises a set of 

neural mechanisms through which some aspects of the environment receive preferential 

processing relative to others. For example, selective attention can boost sensory processing 

at a behaviorally relevant location (Helmholtz, 1867; Posner, 1980). This spatially specific 

boost in sensory processing, termed spatial attention, is characterized by various changes in 

neural activity, either in response to a target or in anticipation of a target (Buschman and 

Kastner, 2015; Reynolds and Chelazzi, 2004). Here, we will specifically focus on neural 

activity that occurs in preparation for a spatially predictable target, in the absence of 

additional sensory stimulation (i.e., during a variable cue-target delay) and before target 

selection. Such attention-related, preparatory changes in neural activity occur across 

multiple levels of observation, from single neurons (Luck et al., 1997) to large-scale neural 

populations (Kastner et al., 1999).

Preparatory (or ‘pre-target’) changes in neural activity during the deployment of spatial 

attention are thought to enhance the sensitivity and efficiency of sensory processing (Kastner 

et al., 1999; Luck et al., 1997), subsequently leading to target selection and attention-related 

improvements in behavioral performance (Posner, 1980). Consistent with this common 

interpretation, pre-target neural signals at the population level that derive from summed 

synaptic potentials (i.e., local field potentials [LFPs] and LFP-like signals) are indeed 

predictive of behavioral performance (Busch and VanRullen, 2010; Fiebelkorn et al., 2018, 

2019; Gonzalez Andino et al., 2005; Hanslmayr et al., 2007; Rohenkohl et al., 2018; Thut et 

al., 2006). For example, enhanced visual-target detection at an attended location is 

associated with the synchronization and desynchronization of LFP and LFP-like signals 

within specific frequency bands (e.g., desynchronization within the alpha band [9–13 Hz] 

(Thut et al., 2006) and synchronization within the gamma band [35–55 Hz] (Fiebelkorn et 

al., 2018; Gonzalez Andino et al., 2005)).

In comparison, there is little evidence linking attention-related changes in pre-target spiking 

activity to behavioral outcomes. While previous studies have repeatedly demonstrated 

attention-related modulation of pre-target spike rates among neurons in visual cortex (Luck 

et al., 1997; Reynolds and Chelazzi, 2004), there is seemingly no relationship between such 

preparatory effects and attention-related improvements in behavioral performance (Galashan 

et al., 2013; Womelsdorf et al., 2006; Zenon and Krauzlis, 2012). For example, trials with 

higher pre-target spike rates among neurons representing the attended location are not 

predictive of better behavioral performance (e.g., faster response times) when targets 

subsequently occur at the attended location. These attention-related findings contrast with 

findings associated with other cognitive processes, such as working memory, where spike 

rates during a memory delay are predictive of behavioral outcomes (Constantinidis et al., 

2018).

Attention-related neural effects in visual cortex, such as elevated spike rates during a cue-

target delay (i.e., following a spatial cue but prior to target presentation), are generated by 
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feedback signals from a large-scale network of higher-order cortical and subcortical 

structures (i.e., the attention network) (Corbetta and Shulman, 2002; Kastner and 

Ungerleider, 2000; Moore and Armstrong, 2003). Attention-related improvements in 

behavioral performance might therefore also arise from this attention network. For example, 

microstimulation in the attention network (i.e., the frontal eye fields) leads to attention-like 

improvements in behavioral performance (Moore and Fallah, 2001). The specific neural 

mechanisms leading to these improvements in behavioral performance, however, remain 

poorly understood. Here, we investigated the link between behavioral outcomes and various 

aspects of pre-target spiking activity in two well-established cortical nodes of the macaque 

attention network: the frontal eye fields (FEF) (Fiebelkorn and Kastner, 2020; Squire et al., 

2013) and the lateral intraparietal area (LIP) (Bisley and Goldberg, 2010; Fiebelkorn and 

Kastner, 2020).

Classical views of cortical function attribute computation and information coding to spike 

rate (Averbeck et al., 2006; Shadlen and Newsome, 1998). Consistent with this viewpoint, an 

elevated pre-target spike rate in the attention network reflects the maintenance of spatial 

attention at a specific location (Fiebelkorn et al., 2018, 2019). That is, an elevated pre-target 

spike rate specifically occurs among neurons with RFs that overlap with the attended 

location, perhaps maintaining a representation of the to-be-attended location (Luck et al., 

1997). Here, we first examined whether differences in pre-target spike rates in FEF and LIP

—unlike pre-target spike rates in visual cortex (Galashan et al., 2013; Womelsdorf et al., 

2006; Zenon and Krauzlis, 2012)—are associated with differences in behavioral outcomes.

In addition to examining the magnitude of spiking activity (i.e., spike rate) during 

preparatory attentional deployment, we examined a potential link between the temporal 

pattern of pre-target spiking activity and behavioral performance. Specifically, we 

hypothesized that oscillatory patterns in spiking activity might reflect behaviorally relevant, 

preparatory changes in functional connectivity. FEF and LIP are positioned at a nexus of 

sensory and motor processes, directing both attention-related boosts in sensory processing 

and exploratory movements (e.g., saccadic eye movements) (Fiebelkorn and Kastner, 2019). 

Pre-target changes in functional connectivity (Bosman et al., 2012; Buschman and Miller, 

2007; Fiebelkorn et al., 2018, 2019; Gregoriou et al., 2009; Rohenkohl et al., 2018; 

Saalmann et al., 2007; Saalmann et al., 2012; Voloh et al., 2015) might therefore optimize 

behavior by priming the attention network in anticipation of a spatially predictable target, 

leading to enhanced sensory processing and more efficient sensorimotor integration when 

the target occurs.

RESULTS

Two monkeys performed a spatial-cueing task (Figure 1A), with a peripheral cue indicating 

the location where a visual target was most likely to occur (i.e., with 78% cue validity). 

Variants of the present task are typically used to investigate the interaction between spatial 

attention and object-based attention, but here we focus exclusively on spatial attention (Egly 

et al., 1994). While we observed significant behavioral effects in both RTs and hit rates 

(Figure 1B), we focused on the relationship between spiking activity and RTs for subsequent 

analyses, dividing trials into those resulting in faster or slower RTs. This measure of 
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behavioral performance thus provided an equal number of trials for each condition (i.e., 

faster RTs vs. slower RTs), allowing for unbiased between-condition comparisons (see 

STAR methods section). We further limited our analyses to spiking activity among visually 

responsive (i.e. visual and visual-movement) neurons, as previous studies have shown that 

elevated spiking activity in the attention network during a cue-target delay only occurs 

among neurons with visual-sensory responses, and not among neurons exhibiting solely 

motor responses (Fiebelkorn et al., 2019; Gregoriou et al., 2012; Thompson et al., 2005). All 

of the subsequent analyses focus on spiking activity during the variable cue-target delay, 

prior to target selection (i.e., pre-target spiking activity).

Pre-target spike rates are not associated with behavioral performance

Elevated spike rates in response to sensory stimulation (i.e., in response to a target) increase 

the signal-to-noise ratio, improving signal detection and speeding RTs (Galashan et al., 

2013; Womelsdorf et al., 2006). The functional role of elevated spike rates prior to target 

selection (i.e., in anticipation of a spatially predictable target and in absence of sensory 

input) is less clear, as is the relationship between pre-target spike rates and subsequent 

behavioral performance. Here, we investigated this relationship in two well-characterized 

nodes of the attention network in macaques: FEF (Fiebelkorn and Kastner, 2020; Squire et 

al., 2013) and LIP (Bisley and Goldberg, 2010; Fiebelkorn and Kastner, 2020). As a first 

step, we confirmed a significant increase in spike rates following the cue and prior to target 

presentation (i.e., during the cue-target delay), specifically when RFs overlapped the cued 

location relative to when RFs overlapped a non-cued location (Wilcoxon rank-sum test, p < 

0.001 for FEF and p < 0.001 for LIP; Figure 1C). We then split trials when RFs overlapped 

the cued location into two bins based on the median RT (Figure 1D) (Womelsdorf et al., 

2006). Figure 1 shows nearly identical mean spike rates (n = 82 for FEF and n = 74 for LIP) 

for trials that resulted in either faster or slower RTs (Wilcoxon rank-sum test, p = 0.996 for 

FEF and p = 0689 for LIP). See Supplemental Figure 1 for similar results when binning 

trials based on whether they resulted in either a hit or a miss, and Supplemental Figure 2 for 

similar results when binning trials based on the median spike rate and then calculating either 

RTs or hit rates for the higher and lower spike rate bins.

Figure 1D shows data that have been averaged across neurons, but not every visually 

responsive neuron in FEF and LIP demonstrated a significantly increased spike rate during 

the cue-target delay. The influence of pre-target spiking on behavioral performance might be 

limited to neurons with significant delay activity. Merrikhi et al. (2017), for example, 

previously reported that between-region connectivity (i.e., between FEF and visual cortex) 

disproportionately occurs among such neurons. We therefore examined a potential link 

between spike rate and behavioral performance (i.e., fast- and slow-RT trials) after first 

splitting trials based on whether they demonstrated a significantly increased spike rate 

during the cue-target delay. For FEF, 58/82 neurons demonstrated significant delay activity, 

while for LIP, 40/74 neurons demonstrated significant delay activity. Supplemental Figure 3, 

however, shows nearly identical spike rates for trials that resulted in either faster or slower 

RTs, regardless of whether the individual neurons demonstrated significant delay activity.
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We also calculated an attentional modulation index for each neuron (see STAR methods 

section). Figure 1E shows similar distributions for trials that resulted in either faster or 

slower RTs (Wilcoxon rank-sum test, p = 0.875 for FEF and p = 0.755 for LIP), with nearly 

identical median values in both FEF (i.e., 0.28 and 0.29 for fast- and slow-RT trials, 

respectively) and LIP (i.e., 0.10 and 0.10 for fast- and slow-RT trials, respectively). The 

present results therefore suggest that pre-target spike rates in FEF and LIP are not a good 

predictor of behavioral outcomes. Classifiers trained to decode fast- and slow-RT trials when 

a target occurred at the cued location similarly did not perform above chance during the cue-

target delay (Supplemental Figure 4). These findings are consistent with previous findings in 

visual cortex, which similarly found no apparent relationship between trial-to-trial 

differences in pre-target spike rates and behavioral outcomes (Galashan et al., 2013; 

Womelsdorf et al., 2006; Zenon and Krauzlis, 2012).

We further explored the relationship between pre-target spike rates and behavioral 

performance on both a smaller scale (i.e., cell-type specific spiking) and a larger scale (i.e., 

population spiking). First, we split visually responsive neurons into two functionally defined 

cell types: neurons that only responded to visual stimulation (i.e., visual neurons) and 

neurons that both responded to visual stimulation and demonstrated saccade-related activity 

(i.e., visual-movement neurons) (Fiebelkorn et al., 2018). Here, we tested whether the lack 

of an apparent relationship between pre-target spike rates and behavioral performance 

(Figure 1D, E) resulted from combining cell types that are functionally different. Splitting 

visually responsive neurons into visual and visual-movement neurons, however, similarly 

revealed no significant relationship between pre-target spike rates and RTs (Figure 2).

Next, we measured high-frequency band (HFB) activity in the LFPs (70–150 Hz) as a proxy 

for population spiking during each recording session (see STAR methods section) (Ray and 

Maunsell, 2011). Although there was no apparent relationship between spike rates and 

behavioral outcomes at the level of single neurons (Figures 1 and 2), such a relationship 

might emerge when measuring population spiking. Previous studies have linked lower-

frequency population measures in LFPs and LFP-like signals (e.g., EEG) to behavioral 

performance (Busch and VanRullen, 2010; Fiebelkorn et al., 2018, 2019; Gonzalez Andino 

et al., 2005; Hanslmayr et al., 2007; Rohenkohl et al., 2018; Thut et al., 2006), but the 

present results, based on HFB activity (Figure 3), mirrored those based on single-unit 

activity (Figures 1 and 2). That is, we detected significant attention-related differences (Fig. 

3A; Wilcoxon rank-sum test, p < 0.001 for FEF and p = 0.008 for LIP) but no differences 

based on whether trials at the cued location resulted in either faster or slower RTs (Fig. 3B; 

Wilcoxon rank-sum test, p = 0.533 for FEF and p = 0.909 for LIP). See Supplemental Figure 

2 for similar results when comparing trials that resulted in either a hit or a miss (Wilcoxon 

rank-sum test, p = 0.322 for FEF and p = 0.531 for LIP). These findings therefore provide 

further evidence that the lack of a relationship between pre-target spike rates and subsequent 

RTs (Figure 1D, E) is not an issue of the measurement scale (Cohen and Maunsell, 2010). In 

summary, we did not find evidence of a relationship between either (i) RTs and spike rates 

among functionally defined cell types (i.e., visual neurons and visual-movement neurons; 

Figure 2B) or (ii) RTs and the magnitude of population spiking (Figure 3C).
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Given the lack of evidence that spike rates prior to target selection influence behavioral 

performance thus far observed in our data, we examined potential links between other 

aspects of pre-target spiking activity and behavioral performance. We first used the Fano 

factor to examine whether spike-count variability influences RTs (Supplemental Figure 5). 

The Fano factor measures the consistency of spike counts across trials, with decreased 

response variability (i.e., more consistent spike counts) potentially improving the coding of 

sensory information in neural signals (Mitchell et al., 2009). We did not, however, find a 

significant difference in Fano factor between fast- and slow-RT trials when RFs overlapped 

the cued location (Wilcoxon rank-sum test, p = 0.959 for FEF and p = 0.766 for LIP; see 

also Chang et al. (2012)). Similar to pre-target spike rates, the present results indicate that 

pre-target spike-count variability (i.e., during the cue-target delay) is not associated with 

subsequent behavioral performance.

Oscillatory patterns in pre-target spiking activity are associated with behavioral 
performance

After examining pre-target spike rates and spike-count variability, we next examined 

whether spike timing influences RTs, focusing on the relationship between oscillatory 

synchronization in pre-target spiking activity and behavioral performance. Such 

synchronization reflects the temporal coordination of local and between-region neural 

activity (Buschman and Kastner, 2015), and synchronization at various frequencies has been 

repeatedly associated with specific functions (Bastos et al., 2015; Fiebelkorn and Kastner, 

2019; Fries, 2009; Jensen and Mazaheri, 2010). For example, increased synchronization in 

the gamma band (> 35 Hz) has been linked to enhanced sensory processing (Fries, 2009), 

while synchronization in the alpha band (9–14 Hz) has been linked to diminished sensory 

processing (Foxe and Snyder, 2011). Because the spiking of single neurons can be sparse on 

a given trial, oscillatory patterns in spiking activity are typically assessed by measuring 

whether spikes cluster at specific phases of oscillatory activity in the LFPs. This relationship 

between neuronal spikes and oscillatory phase in LFPs is referred to as spike-LFP phase 

coupling and is an indication of spike timing control.

Prior to computing spike-LFP phase coupling, we examined whether LFPs during the cue-

target delay included oscillatory peaks in the power spectra (Figure 4). We first used a fast 

Fourier transform (FFT) of the LFPs (from −500 to 0 ms relative to target presentation) to 

calculate oscillatory power. We then log-transformed the power measurements and used a 

linear fit to approximate and remove (i.e., subtract) the 1/f background activity (Haegens et 

al., 2014). Figure 4A confirms oscillatory peaks that are evident in the mean power spectra 

(i.e., averaged across recording sessions) when response fields overlapped the cued location. 

Figure 4B shows the isolated oscillatory components (i.e., the 1/f background activity 

subtracted from the power spectra), illustrating the consistency of these peaks across 

recording sessions. Both the highest peak (i.e., red circle) and the second highest peak (i.e., 

black circle) in the power spectra are labeled for each recording session. For FEF, the 

highest peaks are primarily clustered either from 3–5 Hz or from 24–35 Hz (i.e., within the 

theta and beta ranges), with some of the highest peaks occurring at 15 and 16 Hz (i.e., near 

the alpha range). For LIP, most of the highest peaks are clustered from 11–20 Hz (i.e., within 

the alpha range), with a few of the highest peaks occurring at 3 and 4 Hz (i.e., within the 
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theta range). Supplemental Figure 6 shows trial-level power spectra and the raw LFP time-

series from single recordings sessions. These examples illustrate the presence of oscillatory 

activity at the level of single trials.

We next measured the clustering of spikes relative to the phase of oscillatory activity in the 

LFPs (i.e., spike-LFP phase coupling). Figure 5A compares local spike-LFP phase coupling 

between trials when RFs overlapped either the cued or a non-cued location. Similar to 

previous studies (Buschman and Miller, 2007; Fiebelkorn et al., 2018), we found that the 

deployment of spatial attention was associated with both increased beta-band (26–36 Hz) 

synchronization in FEF and increased gamma-band (44–54 Hz) synchronization in LIP 

(permutation test, p < 0.05, corrected for multiple comparisons). Figure 5B compares local 

spike-LFP phase coupling between trials that resulted in either faster or slower RTs when 

RFs overlapped the cued location (i.e., under conditions of attentional deployment). Unlike 

the previous analyses, which focused on spike rates or spike-count variability (Figures 1–3, 

Supplemental Figures 1–5), different oscillatory patterns in spiking activity were associated 

with different behavioral outcomes. That is, fast-RT trials were characterized by 

significantly higher beta synchronization (i.e., 19–26 Hz) in FEF and significantly lower 

alpha synchronization (i.e., 9–15 Hz) in LIP (permutation test, p < 0.05, corrected for 

multiple comparisons). As shown in Figure 5A, attentional deployment at the cued location 

was associated with an increase in gamma synchronization in LIP; however, Figure 5B 

shows that there was no significant difference in gamma synchronization between fast- and 

slow-RT trials. Supplemental Figure 7 demonstrates similar results when measuring 

oscillatory patterns in the HFB signal (as a proxy for population spiking).

We further tested whether these behaviorally relevant, oscillatory patterns in pre-target 

spiking activity were more strongly associated with neurons demonstrating a significantly 

elevated spike rate during the cue-target delay. Supplemental Figure 8 shows evidence that 

the relationship between increased beta synchronization and faster RTs (at the cued location) 

in FEF is restricted to neurons with significant delay activity, while the relationship between 

decreased alpha synchronization and faster RTs in LIP is associated with both cell types 

(i.e., neurons either with or without significant delay activity).

To examine whether behaviorally relevant differences in oscillatory synchronization were 

associated with specific functions, we next measured local spike-LFP phase coupling 

separately for visual and visual-movement neurons. Figure 6 shows that both the increased 

beta synchronization in FEF and the decreased alpha synchronization in LIP—associated 

with fast-RT trials—occurred exclusively among visual-movement neurons (permutation 

test, p < 0.05, corrected for multiple comparisons).

We next examined between-region synchronization between cell-type specific spiking 

activity and oscillatory phase in the LFPs. The synchronization of spiking activity in one 

brain region and frequency-specific oscillatory phase in another brain region is often 

interpreted as evidence of network-level participation in a common function. Here, we 

examined whether such between-region functional connectivity differed between trials that 

resulted in either faster or slower RTs (when RFs overlapped the cued location). We again 

measured spike-LFP phase coupling separately for visual and visual-movement neurons 
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(Figure 7). Fast-RT trials were characterized by significantly higher synchronization 

between spikes in FEF and both theta- (3–7 Hz) and beta-band (19 and 22–27 Hz) activity in 

LIP (permutation test, p < 0.05, corrected for multiple comparisons), with theta 

synchronization occurring among visual neurons and beta synchronization occurring among 

visual-movement neurons (Figure 7A). We describe the potential functional significance of 

these cell-type specific effects in the Discussion section.

Unlike within-region gamma synchronization (Figure 5B), between-region gamma 

synchronization was associated with differences in behavioral performance (Figure 7B). 

That is, we previously noted that attentional deployment was associated with increased 

gamma synchronization locally in LIP; however, there was no difference in gamma 

synchronization between fast- and slow-RT trials (Figure 5B). In comparison, at the network 

level, fast-RT trials (relative to slow-RT trials) were characterized by significantly higher 

synchronization between spikes in LIP and gamma-band (38 and 47–55 Hz) activity in FEF 

(permutation test, p < 0.05, corrected for multiple comparisons), occurring exclusively 

among visual neurons (i.e., neurons with a visual-sensory response but no saccade-related 

activity). These results are therefore consistent with previous work linking gamma 

synchronization to attention-related boosts in visual-sensory processing (Gregoriou et al., 

2009; Womelsdorf et al., 2006).

Because differences in oscillatory power in LFPs might spuriously lead to differences in 

spike-LFP phase coupling (see STAR methods section), we also conducted a control 

analysis, equating oscillatory power between fast- and slow-RT trials. Those results, 

illustrated in Supplemental Figure 8, confirmed our findings, revealing significantly different 

oscillatory synchronization in cell-type specific spiking activity associated with either faster 

or slower RTs, at both the local and the network levels.

Links between oscillatory patterns in pre-target spiking activity and behavioral 
performance reflect alternating attentional states

The present results indicate that specific oscillatory patterns in pre-target spiking activity are 

associated with either faster or slower RTs. These oscillatory patterns are associated with 

specific, functionally defined cell types and occur across multiple frequency bands. We 

previously demonstrated that these same frequency bands define two rhythmically 

alternating attentional states associated with either better or worse visual-target detection at a 

spatially cued location (Fiebelkorn et al., 2018).

Whereas classic views assumed that spatial attention samples the visual environment 

continuously, recent research has instead provided evidence that spatial attention samples the 

visual environment in rhythmic cycles (Landau and Fries, 2012; Fiebelkorn et al., 2013; 

VanRullen et al., 2007). Such rhythmic sampling is associated with theta-band activity in the 

attention network (Fiebelkorn and Kastner, 2019; Fiebelkorn et al., 2018, 2019; Helfrich et 

al., 2018), with different theta phases in the LFPs linked to alternating periods of either 

better or worse behavioral performance. Theta-dependent periods associated with better 

visual-target detection at the cued location (i.e., during the ‘good’ theta phase) are 

characterized by increased beta- and gamma-band activity in FEF and LIP, while theta-

dependent periods associated with worse visual-target detection at the cued location (i.e., 
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during the ‘poor’ theta phase) are characterized by increased alpha-band activity in LIP 

(Fiebelkorn and Kastner, 2019; Fiebelkorn et al., 2018).

Based on previous findings that higher LFP frequencies (i.e., alpha-, beta-, and gamma-band 

activity) in the attention network are temporally organized by theta-band activity (Fiebelkorn 

and Kastner, 2019; Fiebelkorn et al., 2018, 2019; Helfrich et al., 2018), we hypothesized that 

behaviorally relevant oscillatory synchronization in spiking activity should be similarly tied 

to the phase of theta-band activity. Figure 8 (A, B) shows spike-LFP phase coupling in FEF 

and LIP as a function of time, isolating the frequency bands where we detected statistically 

significant differences between fast- and slow-RT trials (Figure 5B). These results indicate 

that (i) pre-target beta (19–26 Hz) synchronization in FEF was generally stronger (i.e., at 

different pre-target time points) on fast-RT trials (Figure 8A) and (ii) that pre-target alpha 

(9–15 Hz) synchronization in LIP was generally stronger on slow-RT trials (Figure 8B). A 

closer look, however, further suggests that the strength of spike-LFP phase coupling waxed 

and waned during the cue-target delay, seemingly at a theta rhythm (3–8 Hz). We therefore 

tested whether spike-LFP phase coupling at these higher frequencies (i.e., beta and alpha) 

was linked to the phase of theta-band activity (Figure 8C, D). Here, we calculated spike-LFP 

phase coupling (i.e., at beta and alpha) as a function of theta phase. We then fit the resulting 

functions (i.e., spike-LFP phase coupling as a function of theta phase) with a one-cycle sine 

wave, using the amplitude of that sine wave to measure the strength of the relationship 

between theta phase and spike-LFP phase coupling at higher frequencies (see STAR 

methods section) (Fiebelkorn et al., 2019). While the relationship between theta phase and 

alpha synchronization in LIP was not statistically significant (permutation test, p = 0.13, 

corrected for multiple comparisons), there was a statistically significant relationship between 

theta phase and beta synchronization in FEF (permutation test, p < 0.05, corrected for 

multiple comparisons). The results in FEF are therefore consistent with theta-dependent, 

alternating attentional states associated with either faster or slower RTs: with faster RTs 

tending to occur when a low-contrast visual-target is presented during the theta-dependent 

attentional state characterized by higher beta synchronization in FEF, and slower RTs 

tending to occur when a low-contrast visual-target is presented during the attentional state 

associated with lower beta synchronization in FEF.

DISCUSSION

We investigated the link between spiking activity in higher-order nodes of the attention 

network (i.e., FEF and LIP) and behavioral outcomes during a spatial-cueing task. We 

specifically examined the behavioral relevance of spiking activity that occurs during 

preparatory attentional deployment (i.e., during a cue-target delay). Whereas numerous 

studies have described attention-related changes in target responses to behavioral 

performance (Buschman and Kastner, 2015), there has previously been little evidence 

linking behavioral performance to attention-related changes in spiking activity that occur 

prior to target selection. Spike rate during this time period encodes the focus of spatial 

attention, with a higher spike rate occurring when RFs overlap the cued location (Figure 1). 

Consistent with previous recordings in visual cortex (Galashan et al., 2013; Womelsdorf et 

al., 2006; Zenon and Krauzlis, 2012), however, pre-target spike rates in FEF and LIP were 

not associated with subsequent behavioral performance (Figures 1–3). (See Schafer and 
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Moore (2011) for additional evidence in FEF). In comparison, pre-target differences in 

spike-LFP phase coupling (i.e., the timing of spiking activity relative to oscillatory phase in 

LPFs) were both indicative of the focus of spatial attention (i.e., spikes were coupled to 

different frequencies depending on the focus of attention; Figure 5) and associated with 

subsequent behavioral performance (Figures 5–7).

Spike rate has long been considered a critical component of information encoding in the 

brain (Ferster and Spruston, 1995; Shadlen and Newsome, 1998), and in contrast to the 

present findings, previous studies have demonstrated that spike rate is associated with 

behavioral outcomes during other cognitive processes, such as visual-working memory 

(Constantinidis et al., 2018). For example, a higher spike rate during a memory delay is 

associated with correct trials, while a lower spike rate is associated with error trials 

(Funahashi et al., 1989; Fuster, 1973). The behavioral relevance of pre-target spike rate 

therefore seems to depend on the cognitive processes engaged by the task at hand (e.g., 

spatial attention or working memory).

Unlike attention-related changes in pre-target spike rates, the present results demonstrate 

that local and between-region patterns of pre-target spike-LFP phase coupling are predictive 

of behavioral outcomes. Spike-LFP phase coupling is an indication of spike-timing control 

and represents a possible mechanism for temporally organizing neural activity to optimize 

(i) local computations and (ii) the transfer of information between brain regions (Fiebelkorn 

and Kastner, 2019; Lisman and Idiart, 1995; Shahidi et al., 2019; Siegel et al., 2009; Voloh 

et al., 2019). That is, (i) the timing of spiking activity relative to oscillatory phase in LFPs 

(i.e., spike-LFP phase coupling) can encode information (Kayser et al., 2009; Lisman, 2005; 

O’Keefe and Recce, 1993; Optican and Richmond, 1987), and (ii) the temporal 

synchronization of presynaptic neurons can maximize their influence on postsynaptic 

neurons by allowing for the summation of postsynaptic potentials (Azouz and Gray, 2003; 

Fries, 2015; Singer and Gray, 1995; Womelsdorf et al., 2007; Zandvakili and Kohn, 2015). 

Zandvakili and Kohn (2015), for example, reported that spiking activity in the input layers of 

visual area 2 (i.e., V2) was preceded by a transient increase in coordinated activity in visual 

area 1 (i.e., V1). Precise spike-timing control might be particularly important for such 

between-region interactions, where multiple presynaptic neurons target a single postsynaptic 

neuron. Between-region spike-LFP phase coupling measures the consistency of spike timing 

in one brain region relative to oscillatory phase in the LFPs (i.e., the frequency-specific 

synchronization of postsynaptic potentials) of a second brain region, and these between-

region interactions are often interpreted as evidence of participation in a common function 

(i.e., as functional connectivity).

FEF and LIP are positioned at a nexus of the sensory and motor systems, directing both 

covert (i.e., in the absence of eye movements) and overt (i.e., with eye movements) aspects 

of environmental sampling (Fiebelkorn and Kastner, 2019, 2020). Here, we propose that the 

synchronization of pre-target spiking activity at specific oscillatory frequencies in LFPs 

reflects the engagement of the sensory and motor functions that shape attention-related 

sampling (Fiebelkorn and Kastner, 2019) and the recruitment of the network nodes that 

contribute to those functions (Fiebelkorn and Kastner, 2020). For example, increased beta-

band activity among visual-movement neurons in FEF has previously been associated with 
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the suppression of attentional shifts (Fiebelkorn et al., 2018; Gregoriou et al., 2012). 

Consistent with these previous observations, we observed behaviorally relevant beta 

synchronization at both the local and the network levels exclusively among visual-movement 

neurons (Figures 6 and 7). That is, higher beta synchronization among visual-movement 

neurons (rather than visual neurons) was associated with faster RTs. Increased beta 

synchronization in FEF prior to target presentation (Figure 5) might therefore reflect a 

suppression of attentional shifts that co-occurs with greater attentional focus at the cued 

location.

In comparison, we observed behaviorally relevant gamma synchronization, occurring at the 

network level (i.e., between LIP and FEF), exclusively among visual neurons (Figure 7). 

Increased gamma synchronization has been repeatedly linked to enhanced processing in 

feedforward sensory channels (Bastos et al., 2015; Fries, 2015; Womelsdorf et al., 2006). 

Greater gamma synchronization during the cue-target delay might therefore reflect an 

opening of feedforward sensory channels that facilitates the subsequent propagation of 

target-related information. Womelsdorf et al. (2006) previously linked local pre-target 

gamma synchronization (40–70 Hz) in visual cortex (area V4) with faster RTs. Here, we 

observed a local attention-related increase in pre-target gamma synchronization, occurring in 

LIP (Figure 5A). However, unlike gamma synchronization in visual cortex (Womelsdorf et 

al., 2006), this local gamma synchronization in LIP was not associated with differences in 

RTs (Figure 5B). Faster RTs were instead only associated with increased gamma 

synchronization between frontal (spikes) and parietal (LFPs) nodes of the attention network 

(Figure 7B), highlighting the importance of network-level interactions in determining 

behavioral outcomes.

In addition to between-region gamma synchronization, faster RTs were associated with 

between-region theta synchronization that was also exclusively linked to visual neurons in 

FEF (Figure 7A). Previous research has demonstrated that spatial attention samples the 

visual environment in theta-rhythmic cycles (4–6 Hz) (Fiebelkorn et al., 2018, 2019; 

Fiebelkorn et al., 2013a; Helfrich et al., 2018; Landau and Fries, 2012; Landau et al., 2015). 

This theta-rhythmic sampling is characterized by alternating periods of either enhanced or 

diminished perceptual sensitivity (Fiebelkorn et al., 2018; Fiebelkorn et al., 2013a; Landau 

and Fries, 2012; VanRullen et al., 2007), with fluctuations in perceptual sensitivity being 

associated with fluctuations in spatiotemporal patterns of functional connectivity across the 

attention network (Fiebelkorn et al., 2018, 2019). For example, we previously demonstrated 

that theta-dependent periods of enhanced perceptual sensitivity (i.e., the “good” theta phase) 

at a cued location are associated with increased beta-band activity in LFPs (Fiebelkorn et al., 

2018). The present findings demonstrate that faster RTs—during the same spatial-cueing 

task (Figure 1A)—are also associated with increased beta synchronization in pre-target spike 

times (Figures 5 and 7), with beta synchronization being similarly modulated by the phase of 

theta-band activity (Figure 8). We have previously proposed that theta rhythms in the 

attention network are organizing neural activity into alternating attentional states: an 

attentional state associated with sensory functions of the attention network (or sampling) and 

an attentional state associated with motor functions of the attention network (or shifting) 

(Fiebelkorn and Kastner, 2019). The present findings provide evidence that spatiotemporal 
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patterns in spiking activity also change in a theta-dependent manner, reflecting these 

alternating attentional states (see Fiebelkorn et al. (2019) for further evidence).

It is important to note that the specific cell types and oscillatory patterns that are linked to 

behavioral outcomes might depend on the behavioral measure. We described cell-type 

specific patterns of functional connectivity associated with faster or slower RTs. Attention-

related changes in perceptual sensitivity, however, might rely on different patterns of 

functional connectivity across frontal and parietal regions, associated with different 

functional cell types (e.g. visual neurons rather than visual-movement neurons). It is further 

important to note that functional connectivity might not only be predictive of behavioral 

performance at the cued location, but also at the non-cued location (i.e., outside the focus of 

spatial attention). For the present experiment, there were few trials when both the target 

occurred at the non-cued location and the non-cued location was within a neuronal receptive 

field. We therefore were unable to test for a relationship between spiking activity and 

behavioral performance at the non-cued location. Here, we would predict, for example, that 

there might be greater spike-LFP phase coupling in the alpha band during trials that resulted 

in slower RTs, consistent with previous evidence that alpha-band activity is associated with 

the suppression of sensory processing at unattended locations (Foxe and Snyder, 2011).

We measured oscillatory patterns in the spiking of single neurons by examining the timing 

of spikes relative to oscillatory phase in LFPs (i.e., spike-LFP phase coupling). Neural 

oscillations are attributable to various underlying mechanisms. For example, oscillations can 

emerge from simple circuit properties, such as interactions between excitatory and inhibitory 

neurons (Buzsaki and Wang, 2012). The specific frequencies of those interactions are linked 

to different time constants and conduction delays (Jensen et al., 2005; Kopell et al., 2000; 

Lee et al., 2013). The excitation, inhibition, or disinhibition of a specific cell type within 

such a circuit might either induce an oscillation or switch an existing oscillation to another 

frequency (Jensen et al., 2005; Lee et al., 2013). These neural oscillations can be difficult to 

detect in the spiking activity of individual neurons, which do not necessarily spike during 

every cycle of the oscillation (Buzsaki and Wang, 2012). However, neural oscillations can be 

easily detected in population-level signals, such as LFPs: a low-frequency component of the 

recorded neural signal that is primarily comprised of post-synaptic potentials (summed 

across a population of neurons). Neural oscillations measured in LFPs have been 

conceptualized as alternating high- and low-excitability states (Schroeder and Lakatos, 

2009). Consistent with this interpretation, oscillatory patterns in the spiking activity of single 

neurons can be measured indirectly by examining whether spikes are clustering at specific 

phases of oscillations in the LFPs (e.g., during high-excitability states). This is the approach 

that we used to examine the behavioral relevance of oscillatory patterns in pre-target spiking 

activity (see Figures 5–7). There is an ongoing debate about the extent to which oscillatory 

synchronization in spiking activity leads to oscillatory synchronization in LFPs or vice 

versa. Whereas some have argued that LFPs reflect the ‘exhaust fumes’ of spiking activity, 

others have argued that modulations in LFPs can causally influence and entrain spiking 

activity (Anastassiou and Koch, 2015; Han et al., 2018). Regardless of the directionality of 

this relationship between spiking activity and LFPs, the present data—measuring spike-LFP 

phase coupling—demonstrate that oscillatory patterns in pre-target spiking activity are 

behaviorally relevant, at both the local and the network levels (Figures 5–7). In comparison, 

Fiebelkorn and Kastner Page 12

Neuron. Author manuscript; available in PMC 2022 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pre-target spike rates in LIP and FEF do not seem to predict behavioral performance at either 

the level of individual neurons (Figures 1 and 2) or at the level of neural populations (Figure 

3).

Previous studies have examined the relationship between pre-target spiking activity and 

behavioral performance by focusing on correlations either between pairs of neurons or 

among small populations of neurons (Cohen and Maunsell, 2009, 2010; Shahidi et al., 

2019). Those studies have often relied on measures that correlate trial-by-trial fluctuations in 

neuronal responses (e.g., spike-count or ‘noise’ correlations), examining overall spike counts 

(or rates) during the time period of interest (e.g., a cue-target delay) (Cohen and Kohn, 

2011). Such approaches, however, are blind to behaviorally relevant temporal dynamics, 

which change on a moment-to-moment timescale (Fiebelkorn and Kastner, 2020). In 

contrast, Ben Hadj Hassen et al. (2019) recently used multi-unit activity to demonstrate that 

noise correlations in frontal cortex rhythmically fluctuate over time, with periods of lower 

noise correlations associated with a higher response probability. These findings, like the 

present findings, are consistent with an emerging view of attention-related sampling as a 

highly dynamic, fundamentally rhythmic process (Fiebelkorn and Kastner, 2020). The 

present findings further indicate that the link between population-level measures of 

attention-related neural signals and behavioral outcomes stems, at least in part, from the 

temporal, cell-type specific synchronization of local and between-region spiking activity.

Spiking activity that occurs in response to an attended target (i.e., during target selection) is 

predictive of behavioral outcomes (Buschman and Kastner, 2015). The present results show 

that changes in spiking activity that occur in preparation for a spatially predictable target are 

also predictive of behavioral outcomes. While it has been widely assumed that attention-

related, preparatory changes in spiking activity (e.g. following a spatial cue and prior to 

target selection) improve the sensitivity and efficiency of sensory processing, there has been 

little evidence that such preparatory changes are linked to subsequent behavioral 

performance. The present results specifically reveal that different oscillatory patterns in pre-

target spike times are linked to either faster or slower RTs. While attention-related changes 

in pre-target spike rates encode information about the focus of spatial attention, behavioral 

performance seems to depend more on the temporal synchronization of both local and 

between-region spiking activity. The present findings thus provide insight into the specific 

mechanisms that enhance the sensitivity and efficiency of sensory processing in preparation 

for a spatially predictable target. The sensory and motor functions that shape attention-

related sampling are associated with specific spatiotemporal patterns of spiking activity 

among specific cell types (Fiebelkorn et al., 2018; Gregoriou et al., 2012). We propose that 

the spatiotemporal patterns of pre-target spiking activity that occur during trials that result in 

faster RTs, reflect the recruitment of network nodes and functional units (e.g., functionally 

defined cell types) associated with the enhancement of sensory processing and the 

suppression of attentional shifts.
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STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources should be directed to the 

Lead Contact, Ian C. Fiebelkorn (iancf@princeton.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—Freely available software and algorithms used for analysis 

are listed in the resource table. All custom scripts and data contained in this manuscript are 

available upon request from the Lead Contact, Ian C. Fiebelkorn (iancf@princeton.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The present study used two male Macaca fascicularis monkeys (6–9 years old). The 

Princeton University Animal Care and Use Committee approved all procedures, which 

conformed to the National Institutes of Health guidelines for the humane care and use of 

laboratory animals.

METHODS DETAILS

Behavioral Task—We trained two monkeys to perform a spatial-cueing paradigm. This 

behavioral task is a variant of the Egly-Driver task (Figure 1A) (Egly et al., 1994). Monkeys 

self-initiated each trial by pressing and holding down a lever. Following the lever press, a 

fixation cross (0.5°) appeared at the center of the monitor (eye-monitor distance = 57 cm) 

and remained there throughout the duration of each trial. After 500–1200 ms, two bar-

shaped objects (22° × 4.4°) appeared either oriented horizontally, above and below central 

fixation, or oriented vertically, to the right and the left of central fixation. The horizontal and 

vertical orientations were equally likely to occur and the closest edge of each bar was 

positioned 6.6° from central fixation. After 500–1200 ms, a spatial cue (100 ms) occurred at 

an end of one of the bar-shaped objects, indicating the location where a subsequent, low-

contrast (2.5–4%) visual target was most likely to occur. On the 78% of trials, following a 

variable cue-target delay of 300–1600 ms, the visual-target (100 ms) occurred at the cued 

location. On 12% of trials the visual-target instead occurred at either one of two non-cued 

locations, which were equidistant from the cued location (i.e., either the non-cued location 

positioned on the same object, or the non-cued location positioned on the second object). If 

the monkey detected the target, it received a juice reward for releasing the lever within a 

window of 150–650 ms. During the remaining trials (10%), no visual-target occurred (i.e., 

catch trials), and the animals instead received a juice reward for holding down the lever until 

the screen cleared.

We monitored eye position using an infrared eye tracker (either an Eye-trac 6 at 240 Hz 

from Applied Science Laboratories or an EyeLink 1000 Plus at 1000 Hz from SR Research), 

and trials were aborted if eye position deviated by more than one degree from central 

fixation (i.e., if the monkey broke fixation). Visual stimuli appeared on a 21-inch CRT 

monitor set at a refresh rate of 100 Hz, and we verified stimulus timing using a customized 

photodiode system.
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Electrophysiology—We performed all surgical procedures using general anesthesia with 

isoflurane (induction 2– 5%, maintenance 0.5– 2.5%) and under strictly aseptic conditions. 

Two customized plastic recording chambers were affixed to head implants for each animal, 

using titanium skull screws and bone cement. Small craniotomies (4.5 mm diameter) inside 

these chambers provided access to either frontal or parietal regions. The craniotomies were 

fit with conical plastic-guide tubes filled with bone wax (Pigarev et al., 2009), which held 

glass-coated platinum-iridium electrodes (impedance: 5 MΩ) in place between recording 

sessions. Each recording session spanned a few hours, with up to seven sessions per week. 

After recordings in the left hemisphere, we moved the recording chambers to the right 

hemisphere for additional recordings.

During recordings, the animal’s head was stabilized with four thin rods that slid into hollows 

in the side of the implant. Electrodes were independently lowered with microdrives (NAN 

Instruments) coupled to an adapter system that allowed different approach angles for each 

ROI. Electrode signals (40,000 Hz sample rate for spikes; 1,000 Hz sample rate for LFPs) 

were amplified and filtered (150–8,000 Hz for spikes; 0.7–300 Hz for LFPs) using a Plexon 

preamplifier with a high input impedance headstage and Multichannel Acquisition Processor 

(MAP) controlled by RASPUTIN software.

During recordings, we sorted spikes online to isolate neurons, and then resorted for offline 

analyses using Plexon Offline Sorter software. The present analyses only used neurons with 

a visual-sensory response (i.e., visual neurons) or both a visual-sensory response and 

saccade-related activity (i.e., visual-movement neurons). Previous research has established 

that elevated spike rates during a cue-target delay (i.e., during attentional deployment) are 

limited to these cell types (Fiebelkorn et al., 2018; Gregoriou et al., 2012; Thompson et al., 

2005) (i.e., neurons that demonstrate a visual-sensory response). The present task did not 

require that the animals make a saccade to the target; rather the animals indicated the 

occurrence of the target by releasing a lever. We therefore determined whether neurons 

demonstrated saccade-related activity based on their responses during trials when the 

animals made an error by moving their eyes away from fixation before the end of a trial. The 

results of this analysis are illustrated in the supplemental materials of a previous publication 

(Fiebelkorn et al., 2018). For within-region analyses, we present data from 82 neurons in 

FEF and 74 neurons in LIP. For between-region analyses, which required that both brain 

regions had their strongest responses to stimuli within the same visual-quadrant (i.e., aligned 

RFs and/or multi-unit RFs), we present data from 61 neurons in FEF and 46 neurons in LIP.

Acquisition of Structural Images for Electrode Positioning—The monkeys were 

sedated with ketamine (1–10mg/kg i.m.) and xylazine (1–2 mg/kg i.m.), and provided with 

atropine (0.04 mg/kg i.m.). Sedation was maintained with tiletamine/zolazepam (1–5mg/kg 

i.m.). The animals were then placed in an MR-compatible stereotaxic frame (1530M; David 

Kopf Instruments, Tujunga CA) and vital signs were monitored with wireless ECG and 

respiration sensors (Siemens AG, Berlin), and a fiber optic temperature probe (FOTS100; 

Biopac Systems Inc, Goleta CA). Body temperature was maintained with blankets and a 

warm water re-circulating pump (TP600; Stryker Corp, Kalamazoo MI).
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Structural MRI data were collected for the whole brain on a Siemens 3T MAGNETOM 

Skyra using a Siemens 11-cm loop coil placed above the head. T2-weighted images were 

acquired with a 3-dimensional turbo spin echo with variable flip-angle echo trains (3D T2-

SPACE) sequence (voxel size: 0.5mm, slice orientation: sagittal, slice thickness: 0.5mm, 

field of view (FoV): 128mm, FoV phase: 79.7%, repetition time (TR): 3390ms, echo time 

(TE): 386ms, base resolution: 256, acquisition time (TA): 17min 51sec). These images were 

used both to select coordinates for chamber placements and to position electrodes for 

recordings. Platinum-iridium electrodes create a clearly identifiable, susceptibility-induced 

signal void along the length of the electrodes in structural MRI images. This “shadow” has a 

width of approximately one voxel (0.5 mm3 on either side of the electrode), which allows for 

visualizing electrode placements.

Prior to recordings, electrodes were positioned just above our ROIs. The electrodes were 

then held in situ by customized guide tubes and lowered into cortex over the course of 

typically one week of recordings. Additional structural MRI data were then acquired prior to 

replacing the electrodes. Before and after images were used, as well as daily microdrive 

measurements, to reconstruct electrode tracks.

To further localize electrode penetrations, the D99 digital template atlas was aligned to each 

individual animal’s MRI volume, using a combination of FSL and AFNI software tools 

(Cox, 1996; Jenkinson et al., 2012; Reveley et al., 2017). The D99 atlas is based on and 

aligned to MRI and histological data from the Saleem and Logothetis (2007) atlas, and 

allows identification of labeled areas within the native 3D MRI volume of an individual 

animal. Briefly, the brains were first extracted from the MRI volumes using the FSL brain 

extraction tool (BET) (Smith, 2002). Next, to improve alignment accuracy, the contrast of 

the MRI volumes was inverted to resemble the image contrast of the T1-weighted atlas MRI 

volume. The pipeline provided by Reveley et al. (2017) was then implemented to align the 

atlas to each monkey’s MRI volume. This pipeline included a sequence of affine and 

nonlinear registration steps to first align the individual animal’s MRI volume to the atlas, 

then inverting the transformations to warp the atlas to the animal’s original native space. 

Once aligned, the atlas’ anatomical subdivisions were visually overlaid upon the individual 

monkey’s MRI volume to assist in the electrode localizations. For all recordings presented 

here, the electrodes were positioned in atlas-defined FEF and LIP.

QUANTIFICATION AND STATISTICAL ANALYSIS

See Supplementary Figure 14 in ref (Fiebelkorn et al., 2018) and Supplemental Figure 8 in 

ref (Fiebelkorn et al., 2019) for demonstrations of common behavioral and 

electrophysiological effects across the two monkeys. For the present study, as with these 

previous studies, we combined data from the two animals for all analyses presented in the 

main text.

Spike Rate—For all analyses, we used a combination of customized Matlab functions and 

the Fieldtrip toolbox (Oostenveld et al., 2011) (http://www.ru.nl/neuroimaging/fieldtrip). To 

estimate changes in spike rate over time, we convolved spikes from each trial with a 

Gaussian filter (σ = 10 ms) and averaged the resulting functions. To identify visual-sensory 

Fiebelkorn and Kastner Page 16

Neuron. Author manuscript; available in PMC 2022 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ru.nl/neuroimaging/fieldtrip


neurons, we determined whether there was a statistically significant increase in spike rate in 

response to the cue (i.e., within 250 ms after cue or target presentation) by using a non-

parametric randomization procedure. One response value was randomly selected from the 

pre-cue period (−350–0 ms) of each trial, averaging those values across trials. This 

procedure was repeated 5000 times to generate a reference distribution (for the baseline 

spike rate). The p-value for a non-parametric test is the proportion of values in the reference 

distribution that exceeds the test statistic (i.e., the observed value from collected data). For 

all statistical comparisons, unless otherwise specified, we adopted an alpha criterion of 0.05, 

and used the Holm’s sequential Bonferroni correction to control for multiple comparisons. 

To determine whether a neuron demonstrated significant spiking during the cue-target delay, 

we randomly sampled the spike rate at a time point within a post-sensory response window 

from each trial (250–500 ms after cue) and compared the average across trials for each of 

5000 iterations with randomly sampled values within the pre-cue period from each trial.

To create population PSTHs, we normalized the spike rate for each neuron by its maximum 

response during trials, and then grand-averaged the normalized spike rates across neurons. 

To test whether between-condition comparisons were statistically significant, we averaged 

the response for each neuron over a 500-ms window preceding the target and then used a 

Wilcoxon rank-sum test. We first used this approach to measure whether spike rate was 

significantly elevated following the spatial cue and prior to the presentation of the visual 

target (i.e., during the cue-target delay), comparing spike rate on trials when receptive fields 

overlapped the cued location relative spike rate on trials when receptive fields overlapped the 

non-cued location (Figure 1C). We then focused on exploring a potential link between spike 

rate and response times (RTs), exclusively when receptive fields overlapped the cued 

location (i.e., under conditions of attentional deployment). That is, we split trials into fast- 

and slow-RT trials (or hits and misses)—based on the median RT—and measured the 

difference in spike rate between these trial types, first combining all visual-sensory neurons 

(Figure 1D), then separately examining visual and visual-movement cell types (Figure 2). 

See ref (Fiebelkorn et al., 2018) for the procedure we used to further bin visual-sensory 

neurons into visual and visual-movement neurons. We also examined potential differences in 

spike rate for fast- and slow-RT trials by calculating a modulation index for each neuron, 

subtracting the averaged spike rate on slow-RT trials from the averaged spike rate on fast-RT 

trials, then dividing by the summed spike rates for each trial type (Figure 1E). We again used 

a Wilcoxon rank-sum test to determine whether the distribution of values (i.e., the 

modulation index for each neuron) differed between fast- and slow-RT trials.

We used classifiers with cross validation to quantify the amount of information about the 

behavioral outcome (fast- vs. slow-RT trial) in the neurons recorded from either FEF or LIP 

(Supplemental Figure 4). These analyses combined all neurons with at least 30 trials when 

the animal correctly identified a target and both (i) the target was presented at the cued 

location and (ii) the receptive field overlapped the cued location. On each of 1000 iterations, 

we sampled 15 trials from each behavioral outcome (fast- or slow-RT trials) and from each 

neuron, combining the target-locked spike rates from those trials into a pseudo-population 

that was compiled across neurons (i.e., most neurons were not from the same recording 

session). Pseudo-trials across neurons had matching behavioral outcomes. For each time 

point, a logistic regression classifier (as implemented by fitclinear.m in MATLAB) was 
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trained to predict the behavioral outcome (fast- or slow-RT trial) using pseudo-population 

data. We averaged cross-validated classification accuracy (i.e., the proportion of correctly 

classified trials) across 10 folds. To test whether the observed classification accuracy was 

significantly better than chance, we randomly assigned trials as either fast- or slow-RT trials 

and re-ran the classifier algorithm (1000 iterations). We then compared the observed 

classification accuracy with the distribution of values resulting from the repeated 

randomization of the behavioral outcome.

In addition to examining whether spike rates were different between fast- and slow-RT trials 

(Figure 1) and between hits and misses (Supplemental Figure 1), we first binned session-

level trials based on the median spike rate and then calculated either RTs or hit rate 

separately for the lower and higher spiking bins (Supplemental Figure 2). While the present 

task included catch trials to monitor false alarm rates, it was not possible to determine when 

or where (i.e., at the cued or the non-cued location) the animals believed they had seen the 

low-contrast visual target. This precluded us from calculating d’ as a measure of perceptual 

sensitivity and from examining differences in response bias. It should be noted, however, 

that there was an overall low number of false alarms, with false alarms occurring on less 

than 10% of all catch trials for each of the animals.

High-frequency Band Activity—To examine a potential link between population 

spiking and response times, we extracted high-frequency band (HFB) activity from the local 

field potentials (LFP). Previous research has established that HFB activity is correlated with 

neuronal firing (Ray and Maunsell, 2011). To isolate HFB activity, we band-pass filtered the 

raw LFP signal in 8 non-overlapping 10-Hz wide bins from 70–150 Hz. We then calculated 

amplitude time courses by applying a Hilbert transform to the band-pass filtered data and 

taking the absolute value. Prior to combining the 10-Hz wide bins, each of the 8 traces was 

separately baseline corrected by means of a z-score relative to the pre-cue period (i.e., −200–

0 ms) (Helfrich et al., 2018). This and similar approaches account for the 1/f signal drop off 

as frequency increases, ensuring that HFB activity (70–150 Hz) is not biased toward lower 

frequencies (Golan et al., 2016; Helfrich et al., 2018; Norman et al., 2017).

After isolating HFB activity, we first compared trials when the response fields (the LFP-

equivalent of receptive fields) overlapped either the cued or the non-cued location. As with 

the analysis of single-unit activity (i.e., spike rates), we specifically compared HFB activity 

over a 500-ms window preceding the target using a Wilcoxon rank-sum test to determine 

statistical significance (Figure 3A). We compared HFB activity on fast-RT trials relative to 

slow-RT trials, exclusively examining trials when the response fields overlapped with the 

cued location (i.e., under conditions of attentional deployment (Figure 3B).

Spike-LFP phase coupling—We used the phase-locking value (PLV) to measure spike-

LFP phase coupling. That is, we measured whether spikes were clustering at specific phases 

of oscillatory activity in LFP, both within a region (i.e., local spike-LFP phase coupling) and 

between regions (i.e., network-level spike-LFP phase coupling). For each spike time during 

the cue-target delay (i.e., in a 500-ms window preceding the target), we measured the phase 

of oscillatory activity in the LFPs across multiple frequencies from 3–55 Hz. To get phase 

estimates, we convolved the LFP signal with complex wavelets centered on each spike time. 
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We then took the angle of the complex results and measured the consistency of these phase 

estimates across spike times by calculating PLVs (Lachaux et al., 1999). We first compared 

PLVs during trials when the receptive fields and response fields overlapped the cued location 

to PLVs during trials when the receptive fields and response fields overlapped the non-cued 

location (i.e., attended vs. unattended; Figure 4A). We then compared PLVs for fast-RT trials 

to PLVs for slow-RT trials, where there was an equal number of trials and near equal number 

of spikes (Figure 1D) (Vinck et al., 2010), exclusively when the response fields and 

receptive fields overlapped the cued location (Figure 4–6). As with our analysis of spike 

rates, we also examined spike-LFP phase coupling separately for visual and visual-

movement neurons (Figures 5,6). To visualize spike-LFP phase coupling as a function of 

time (i.e., at different time points relative to target presentation), we used spikes in 100-ms 

windows (e.g., from −500 to −400 ms prior to the target), shifting the 100-ms window in 20-

ms steps (Figure 7A).

To test for statistically significant between-condition differences in spike-LFP phase 

coupling, we (i) shuffled (1500 times) phase measurements between conditions (attended vs. 

unattended trials or fast-RT vs. slow-RT trials), and then (ii) recalculated the difference in 

PLV between the randomized conditions. We then compared the resulting reference 

distributions with the observed difference in PLV values. For all statistical comparisons, 

unless otherwise specified, we adopted an alpha criterion of 0.05, and used the Holm’s 

sequential Bonferroni correction to control for multiple comparisons.

Between-condition differences in power can lead to spurious differences in spike-LFP phase 

coupling. We therefore conducted a control analysis that equated power between fast- and 

slow-RT trials (Supplemental Figure 5). We used the ft_stratify function from the FieldTrip 

toolbox (Donders Institute for Brain, Cognition, and Behaviour), which also equates sample 

sizes. Stratification involves subsampling the original dataset to equate power, meaning that 

the results vary somewhat on each run. We therefore ran 1500 iterations of the stratification 

procedure at each coupling frequency (from 3–55 Hz, in 1-Hz steps). Finally, based on 

previous evidence that higher-frequency activity in the attention network is temporally 

organized by theta-band activity (Fiebelkorn and Kastner, 2019), we tested whether spike-

LFP phase coupling at behaviorally relevant frequencies was modulated by theta phase. 

Specifically, we examined whether beta-band (19–26 Hz) coupling in FEF was modulated 

by theta phase and whether alpha-band (9–15 Hz) coupling in LIP was modulated by theta 

phase. For each spike in the pre-target period, we measured the phase of both higher-

frequency activity and theta-band activity. Next we calculated a PLV for the higher 

frequency band (e.g., the beta band) using a subset of trials spanning a 180° theta-phase 

window. We then shifted the theta-phase window by 10° and recalculated a PLV for the 

higher frequency band, based on the new subset of trials. We repeated this procedure until 

we generated a PLV by theta phase function, spanning all phases. Hypothesizing a signature 

shape, with a peak in higher-frequency PLV separated from a trough by approximately 180°, 

we reduced these functions to a single value for each frequency. Specifically, we applied the 

fast Fourier transform (FFT) to each function (i.e., at each frequency, from 3–60 Hz) and 

kept the second component, which represents a one-cycle sine wave (matching the 

hypothesized shape of our PLV by theta phase functions). The amplitude of this one-cycle, 

sinusoidal component—determined both by how closely the function approximated a one-
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cycle sine wave and by the effect size—was used to measure the strength of the relationship 

between theta phase and spike-LFP phase coupling at higher frequencies (Fiebelkorn et al., 

2018; Fiebelkorn et al., 2013b). To determine statistical significance, we randomly shuffled 

(1500 times) the theta phase measurements and followed the same procedure to generate a 

reference distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Pre-target coupling between spikes and oscillatory phase in LFPs predicts 

behavior.

• Behaviorally relevant local and network coupling occurs among specific cell 

types.

• In comparison to spike timing, pre-target spike rate does not predict behavior.

• Behavior depends on preparatory engagement of network nodes and 

functional units.
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Figure 1. Pre-target differences in spike rates are not associated with differences in response 
times.
We recorded from the frontal eye fields (FEF) and the lateral intraparietal (LIP) region while 

monkeys completed (A) a spatial-cueing task. The animals demonstrated (B) both a higher 

hit rate (HR) and faster response times (RTs) when low-contrast targets occurred at the cued 

location relative to a non-cued location. (C) Pre-target spike rates (i.e., during the cue-target 

delay), averaged across neurons, were higher when receptive fields (RFs) overlapped the 

cued location; however, (D) we observed no differences in pre-target spike rates, averaged 

across neurons, between fast- and slow-RT trials (i.e., when RFs overlapped the cued 

location). (E) We also observed no differences in the median attentional modulation index 

(AMI) between fast- and slow-RT trials. The shaded area around each line represents the 

standard error of the mean. See also Figures S1–S4.
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Figure 2. Pre-target differences in spike rates among functionally defined cell types are not 
associated with differences in response times.
We binned neurons in FEF and LIP into visual and visual-movement cell types, with the 

former only responding to visual stimulation and the latter both responding to visual 

stimulation and demonstrating saccade-related activity. Regardless of cell type and brain 

region, there we observed no differences in pre-target spike rates, averaged across neurons, 

between trials that resulted in either faster (orange lines) or slower (black lines) response 

times (i.e., when RFs overlapped the cued location). The shaded area around each line 

represents the standard error of the mean.
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Figure 3. Differences in pre-target population spiking are not associated with differences in 
response times.
(A) While we observed significantly greater high frequency band (HFB) activity—a proxy 

for population spiking—during the cue-target delay when response fields (i.e., the LFP 

equivalent of receptive fields) overlapped the cued location (red lines) relative to when 

response fields overlapped the non-cued location (blue lines), (B) we observed no 

differences between trials that resulted in either faster (orange lines) or slower (black lines) 

response times (RTs). That is, we observed significant attention-related increases in HFB 

activity but no differences associated with behavioral performance (fast-RT versus slow-RT 
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trials). The shaded area around each line represents the standard error of the mean. See also 

Figure S1.
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Figure 4. Oscillatory peaks in the power spectra of the local field potentials during the cue-target 
delay.
(A) The solid orange line represents the mean power spectra, averaged across sessions, when 

the response fields overlapped with the cued location. The shaded areas around the power 

spectra represent the standard error of the mean. (B) Shows the isolated oscillatory 

components for each recording session (solid orange lines). That is, we subtracted a linear fit 

from the log-transformed power spectra to remove the 1/f background activity. The black 

line represents the mean across recording sessions. The red and black circles indicate the 
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highest and second highest peaks, respectively, in the power spectra from each recording 

session. See also Figure S6.
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Figure 5. Faster response times are characterized by specific oscillatory patterns in pre-target 
spiking activity, locally in FEF and LIP.
(A) We observed significant local differences in the frequencies associated with clustering 

between spikes and oscillatory phase in LFPs (i.e., spike-LFP phase coupling), depending on 

whether receptive fields and response fields overlapped either a cued (red lines) or a non-

cued (blue lines) location. (B) We also observed significant differences between trials that 

resulted in either faster (orange lines) or slower (black lines) response times (i.e., when 

receptive fields and response fields overlapped the cued location). The p-values for between-
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condition comparisons are represented below each panel. The shaded area around each line 

represents the standard error of the mean. See also Figure S8.
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Figure 6. Faster response times are characterized by cell-type specific oscillatory patterns in pre-
target spiking activity, locally in FEF and LIP.
In both (A) FEF and (B) LIP, significant differences in local spike-LFP phase coupling 

between fast- (orange lines) and slow-RT (black lines) trials occurred exclusively among 

visual-movement neurons (i.e., neurons with both visual-sensory responses and saccade-

related activity). The p-values for between-condition comparisons are represented below 

each panel. The shaded area around each line represents the standard error of the mean. See 

also Figure S9.
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Figure 7. Faster response times are characterized by network-level oscillatory patterns in pre-
target spiking activity.
(A) Fast-RT trials (orange lines) are associated with (i) greater theta synchronization 

between visual neurons in FEF and LFPs in LIP and (ii) greater beta synchronization 

between visual-movement neurons in FEF and LFPs in LIP (relative to slow-RT trials, black 

lines). (B) Fast-RT trials are also associated with greater gamma synchronization between 

visual neurons in LIP and LFPs in FEF. The p-values for between-condition comparisons are 

represented below each panel. The shaded area around each line represents the standard 

error of the mean. See also Figure S9.
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Figure 8. Functional connectivity is highly dynamic during attentional deployment.
Although (A) beta synchronization in FEF is generally higher on fast-RT trials (orange lines) 

and (B) alpha synchronization in LIP is generally higher on slow-RT trials (black lines); 

however, the difference between fast- and slow-RT trials (orange and black lines) reveals a 

pattern consistent with previous studies linking theta-band activity in the attention network 

to fluctuations in behavioral performance. (C) In FEF, the phase of theta-band activity (at 

4Hz) significantly modulated spike-LFP phase coupling in the beta band. In LIP, the 

relationship between the phase of theta-band activity and spike-LFP phase coupling in the 

alpha band was not statistically significant.
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KEY RESOURCE TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Cynomolgus monkeys Cynomolgus monkeys Cynomolgus monkeys

Software and Algorithms

Presentation Neurobehavioral Systems Inc. https://www.neurobs.com

Offline Sorter (OFS) Plexon https://plexon.com

FSL (Jenkinson et al., 2012) https://fsl.fmrib.ox.ac.uk/fsldownloads_registration

AFNI (Cox, 1996) https://afni.nimh.nih.gov/download

MATLAB R2016a MathWorks Inc. RRID: SCR_001622

FieldTrip 20160517 (Oostenveld et al., 2011) http://www.fieldtriptoolbox.org/
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