Skip to main content
. 2020 Oct 29;27(1):1073274820968900. doi: 10.1177/1073274820968900

Table 1.

Functions, Packages, and Tuning Parameters in the Anaconda Software Used for Each Machine Learning Algorithm.

Algorithm Classifier Package Tuning Parameters
Logistic regression LogisticRegression from sklearn.linear_model import LogisticRegression Penalty = “l2,” tol = 0.0001, C = 1, intercept_scaling = 1, max_iter = 100
DecisionTree DecisionTreeClassifier from sklearn.tree import DecisionTreeClassifier splitter = “best,” max_depth = 2, min_samples_split = 20, min_samples_leaf = 5, min_weight_fraction_leaf = 0.1
forest RandomForestClassifier from sklearn.ensemble import RandomForestClassifier n_estimators = 10, max_depth = 3, min_samples_split = 70, min_samples_leaf = 6, random_state = 41
GradientBoosting GradientBoostinglassifier from sklearn.ensemble import GradientBoostinglassifier learning_rate = 0.06, n_estimators = 50, max_depth = 2, random_state = 41
gbm lgb.LGBMClassifier lightgbm 2.2.0 learning_rate = 0.1, n_estimators = 30, max_depth = 3

Note: gbm:(Light Gradient Boosting Machine).