Table 1.
Algorithm | Classifier | Package | Tuning Parameters |
---|---|---|---|
Logistic regression | LogisticRegression | from sklearn.linear_model import LogisticRegression | Penalty = “l2,” tol = 0.0001, C = 1, intercept_scaling = 1, max_iter = 100 |
DecisionTree | DecisionTreeClassifier | from sklearn.tree import DecisionTreeClassifier | splitter = “best,” max_depth = 2, min_samples_split = 20, min_samples_leaf = 5, min_weight_fraction_leaf = 0.1 |
forest | RandomForestClassifier | from sklearn.ensemble import RandomForestClassifier | n_estimators = 10, max_depth = 3, min_samples_split = 70, min_samples_leaf = 6, random_state = 41 |
GradientBoosting | GradientBoostinglassifier | from sklearn.ensemble import GradientBoostinglassifier | learning_rate = 0.06, n_estimators = 50, max_depth = 2, random_state = 41 |
gbm | lgb.LGBMClassifier | lightgbm 2.2.0 | learning_rate = 0.1, n_estimators = 30, max_depth = 3 |
Note: gbm:(Light Gradient Boosting Machine).