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Abstract 

Patchouli (“Guanghuoxiang”) or scientifically known as Pogostemon cablin Benth, belonging to the family Lami-
aceae, has been used in traditional Chinse medicine (TCM) since the time of the Eastern Han dynasty. In TCM theory, 
patchouli can treat colds, nausea, fever, headache, and diarrhea. Various bioactive compounds have been identified 
in patchouli, including terpenoids, phytosterols, flavonoids, organic acids, lignins, glycosides, alcohols, pyrone, and 
aldehydes. Among the numerous compounds, patchouli alcohol, β-patchoulene, patchoulene epoxide, pogostone, 
and pachypodol are of great importance. The pharmacological impacts of these compounds include anti-peptic 
ulcer effect, antimicrobial effect, anti-oxidative effect, anti-inflammatory effect, effect on ischemia/reperfusion injury, 
analgesic effect, antitumor effect, antidiabetic effect, anti-hypertensive effect, immunoregulatory effect, and oth-
ers.For this review, we examined publications from the previous five years collected from PubMed, Web of Science, 
Springer, and the Chinese National Knowledge Infrastructure databases. This review summarizes the recent progress 
in phytochemistry, pharmacology, and mechanisms of action and provides a reference for future studies focused on 
clinical applications of this important plant extract.
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Introduction
Pogostemon cablin Benth., also known as patchouli, 
or “Guanghuoxiang” in traditional Chinese medicine 
(TCM), is a member of the Lamiaceae family of flower-
ing plants and has been used to treat colds, nausea, fever, 
headache, and diarrhea [1]. Guanghuoxiang is among the 
raw materials used in formulations of numerous famous 
Chinese patent medicines, including Huoxiang Zhengqi 
Koufuye (oral liquid) and Baoji Pian (tablets). Huoxiang 
Zhengqi Koufuye can be used to treat gastrointestinal 
diseases, while Baoji Pian is mainly used for common 

cold with summer-heat and dampness syndrome in TCM 
[2–4]. Previous research revealed that patchouli was 
composed of a variety of chemical substances, including 
monoterpenoids, triterpenoids, sesquiterpenoids, phy-
tosterols, flavonoids, organic acids, lignins, glycosides, 
alcohols, pyrone, and aldehydes [5]. Given its multicom-
ponent nature, patchouli has been found to promote 
numerous pharmacological activities, and has been 
shown to protect against inflammation [6], microorgan-
isms [7, 8], tumors [9], aging [10], and oxidation [11]. 
Moreover, patchouli and its extracts exert remarkable 
beneficial effects that promote the healthy functioning 
of organs and tissues. Among these findings, patchouli 
extracts have been shown to protect against gastrointes-
tinal infection with Helicobacter pylori [12] and ulcers 
[13]; they can also suppress adipogenesis and fat accumu-
lation in adipocytes [14], alleviate ischemia/reperfusion-
induced brain injury [15], and prevent atherosclerosis 
[16]. Based on previous review, it can be concluded that 
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patchouli alcohol (PA), β-patchoulene (β-PAE), patchou-
lene epoxide (PAO), pogostone, and pachypodol are the 
material basis for patchouli to exert therapeutic effects. 
As a significant ingredient in patchouli, PA has been most 
intensively studied in the pharmacological effects includ-
ing anti-inflammatory effect, anti-apoptotic effect, anti-
oxidative effect, anti-tumor effect, and others. Recently, 
some new pharmacological effects of PA have been 
explored, a research in 2019 has illustrated that PA could 
suppress adipogenesis and fat accumulation in adipo-
cytes to prevent obesity [17]. Another study in the same 
year demonstrated that PA could exert analgesic effect by 
regulating opioid receptors [18]. Furthermore, PA could 
exert an intensively vasorelaxant effect as a Ca2+ antago-
nist [19]. In addition to PA, pogostone has been reported 
to possess gastroprotective, anti-photoaging, and antimi-
crobial properties. Furthermore, a research in 2017 found 
that pogostone exerted the antitumor activity [20], and 
another study in 2019 revealed that pogostone could pro-
tect lung tissue via its role in regulating oxidative stress, 
which contributes to chronic obstructive pulmonary 
disease (COPD) [21]. Moreover, other bioactive ingredi-
ents such as β-PAE, PAO, and pachypodol have attracted 
much attention in recent years, and the researches on 
their pharmacological effects as well as mechanisms has 
been deepened gradually. The chemical structures of 
PA, β-PAE, PAO, pogostone, and pachypodol are shown 
in Fig. 1. This review will provide detailed review of the 
mode of action for the selected chemical on major phar-
macological activities.

To provide novel insights into the pharmacological 
mechanisms associated with patchouli, we conducted a 
search of the current literature using keywords including 
Pogostemon cablin Benth., patchouli, patchouli alcohol, 
patchouli oil, pogostone, patchoulene epoxide, beta-
patchoulene, and bioactive compounds. We summarized 

the recent findings (2015–2020) focused on the phyto-
chemistry, pharmacological activities and mechanisms 
of action of patchouli from studies published in Pub-
Med, Web of Science, Springer, and the Chinese National 
Knowledge Infrastructure database. Initial search 
resulted in 171 studies but upon sorting based on the 
three themes (phytochemistry, pharmacological activities 
and mechanisms of action), our search yielded 62 studies 
that are featured in this review. Additional publications 
from years prior to 2015 were also included as they pro-
vide both insights and critical explanations .

 Phytochemistry overview
P. cablin Benth. (patchouli) is an important aromatic 
plant that is native to southeast Asia and now cultivated 
widely in many tropical and subtropical regions, includ-
ing China, Indonesia, the Philippines, and Thailand [22]. 
At present, the analysis and research on the chemical 
composition of patchouli mainly focus on the volatile 
oil, which is also known as patchouli oil (PO). Various 
ingredients have been reported in PO, such as PA, pogos-
tone, α-guaiene, δ-guaiene, β-caryophyllene, trans-cary-
ophyllene, α-patchoulene, β-patchoulene, and β-elemene 
[23]. Sesquiterpenes account for a large proportion of 
PO, and the content of PA is the highest among all the 
ingredients [24]. PA, a tricyclic sesquiterpene, can be 
isolated from the whole herb, stems, and leaves of patch-
ouli by GC, GCMS, NMR, and other analytical methods 
[25, 26]. It possesses multiple bioactivities and is usu-
ally remarked as one of the indicators to distinguish the 
quality of PO. Besides, β-patchoulene and patchoulene 
epoxide are also the significant sesquiterpenes in PO, 
and the physicochemical properties as well as biological 
activities of these two substances have been reported in 
many researches [27–29]. Furthermore, pogostone is also 
abundant in patchouli, which is the effective ingredient 
of patchouli oil for insecticidal and antibacterial effects 
[30]. The detail information of some major and impor-
tant volatile chemical components of patchouli oil are 
presented in Table 1. In addition to volatile oil, patchouli 
also contains a variety of non-volatile components with 
significant biological activity. So far, more than 50 non-
volatile compounds have been discovered in patchouli 
and their chemical structures have been determined by 
various analytical methods [5]. These compounds can be 
roughly divided into terpenoids, flavonoids, glycosides, 
aldehydes, organic acids, and lignins according to their 
chemical structures. Some major and important com-
pounds such as pachypodol, retusine, ombuin, apigenin, 
β-Sitosterol, stigmasterol, isocrenatoside, tilianin, 3ʺ-O-
Methylcrenatoside, dibutyl phthalate, and tschimganical 
A have been reported in a number of researches [31, 32]. 
And among them, Pachypodol has attracted extensive 

Fig. 1  The chemical structures of PA, β-PAE, PAO, pogostone, and 
pachypodol
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attention due to its multiple biological activities [33, 34]. 
The information of the non-volatile compounds men-
tioned above are shown in Table 1.

Some novel ingredients of patchouli have been 
reported in studies from 2015 to 2020, and their chemical 
properties and pharmacological activities are included in 
Table 2. A Study in 2019 have described the identification 
and isolation of two new glycosidic epimers, cablinosides 
A and B, which were isolated from the leaves of P. cablin 
[35]. Their structures and associated absolute configu-
rations were elucidated by nuclear magnetic resonance 
(NMR) and quantum chemical circular dichroism (CD) 
calculations. Pharmacological research demonstrated 
that the epimer mixture (including both cablinosides A 
and B) moderately inhibited the activity of the enzyme 
α-glucosidase, and was not toxic to human liver HepG2 
cells. Similarly, four nor-β-patchoulene sesquiterpe-
noids were isolated from the essential oil of the leaves 
and stems of P. cablin; these include three new com-
pounds, namely 14-nor-β-patchoul-1(5)-ene-2,4-dione, 
2β-Methoxy-14-nor-β-patchoul-1(5)-ene-4-one, 14-nor-
β-patchoul-1(5),2-diene-4-one and one new natural 
product 14-nor-β-Patchoul-1(5)-ene-4-one [36]. Their 
structures were elucidated by detailed spectroscopic 

analyses with one-dimensional (1D)- and two-dimen-
sional (2D)-NMR techniques. Bioactivity testing revealed 
that 14-nor-β-patchoul-1(5),2-diene-4-one was slightly 
cytotoxic in assays that included both NCI-H1975 and 
HepG2 cells. Furthermore, another study have identi-
fied two novel hemiketal sesquiterpenoids that were 
isolated from the essential oil extracts from the aerial 
parts of patchouli [37]. The chemical structures of these 
novel compounds, pocahemiketals A and B, were deter-
mined by extensive spectroscopic analyses, electronic 
CD calculations, and single-crystal X-ray diffraction 
methods. Both pocahemiketals included a hemiketal α, a 
β-unsaturated-γ-lactone moiety, and a bicyclo[3.2.1]-car-
bon core; bioactivity assays revealed that Pocahemiketals 
B promoted significant vasorelaxant activity when tested 
against phenylephrine-induced contractions of a rat aorta 
ring at a half-maximal effective concentration (EC50) of 
16.32  µM. In addition, seven novel guaiane sesquiter-
penoids including Patchouliguaiol A-G and three previ-
ously characterized seco-guaianes were isolated from the 
volatile oil of patchouli; their structures were determined 
by spectroscopic analyses, a modified Mosher’s method, 
X-ray diffraction, and electronic CD data. Of these iso-
lates, Patchouliguaiol C exhibited significant vasore-
laxant activity (EC50 = 5.4  µM) when tested in assays of 
phenylephrine-induced contractions of rat aorta rings. 
Patchouliguaiol F was also characterized as a vasorelax-
ant with activity against phenylephrine- and KCl-induced 
contractions of rat aorta rings (EC50 of 1.6 and 24.2 µM, 
respectively). Notably, Patchouliguaiol C and Patch-
ouliguaiol F also exhibited antifungal activity against 
Candida albicans, with minimum inhibitory concentra-
tions (MICs) of 500 and 300 µM, respectively. In addition, 
Patchouliguaiol B, Patchouliguaiol G, 7-epi-chabrolidi-
one A, and 1,7-di-epi-chabrolidione A exhibited neuro-
protective effect in assays of glutamate-induced injuries 
targeting rat adrenal PC12 cells [38]. The chemical struc-
tures of the compounds mentioned above are presented 
in Fig. 2.

Generally, the chemical composition of medicinal 
materials is influenced by various factors, and geographic 
location is the most important one. In China, patchouli 
is mainly cultivated in Guangzhou city, Zhaoqing city, 
Zhanjiang city in Guangdong province, and some areas 
in Hainan province. According to its habitats, patchouli 
can be divided into P. cablin cv. Shipaiensis (also known 
as Paixiang), P. cablin cv. Gaoyaoensisensis (also known 
as Zhaoxiang), P. cablin cv. Zhangjiangensis (also known 
as Zhanxiang) and P. cablin cv. Hainanensis (also known 
as Nanxiang) [39], and traditional experience believes 
that Paixiang has the best quality. Previous studies illus-
trated that the difference in chemical composition of 
patchouli from diverse habitats was mainly characterized 

Table 1  The chemical information of  major components 
of patchouli

Chemical name Formula Type of compound Molecular 
weight (g/
mol)

 Volatile components

 Patchouli alcohol C15H26O Sesquiterpenes 222.37

 α, β-patchoulene C15H24 Sesquiterpene 204.36

 Patchoulene epoxide C15H24O Sesquiterpene 220.36

 α, β-Guaiene C15H24 Sesquiterpene 204.36

 β-Caryophyllene C15H24 Sesquiterpene 204.36

 Trans-Caryophyllene C15H24 Sesquiterpene 204.36

 β-Elemene C15H24 Sesquiterpene 204.36

 Pogostone C12H16O4 Pyrone 224.26

 Non-volatile components

 Pachypodol C18H16O7 Flavonoids 344.32

 Retusine C19H18O7 Flavonoids 358.35

 Ombuin C17H14O7 Flavonoids 330.29

 Apigenin C15H10O5 Flavonoids 270.24

 β-Sitosterol C29H50O Phytosterols 414.72

 Stigmasterol C29H48O Phytosterols 412.70

 Isocrenatoside C29H34O15 Glycosides 622.58

 Tilianin C22H22O10 Glycosides 446.41

 3ʺ-O-
Methylcrenatoside

C29H36O15 Glycosides 624.59

 Dibutyl phthalate C16H22O4 Organic Acids 278.35

 Tschimganical A C11H16O3 Others 196.25
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by the difference in the content of volatile oil. In 2006, 
31, 33 and 42 volatile components were detected from 
Paixiang, Zhaoxiang and Zhanxiang, respectively using 
GC-MS. The extraction rates of essential oils of them 
were 0.25%, 0.40% and 0.64% respectively. Remarkably, 

the content of pogostone seems to be more susceptible 
to cultivation regions than other volatile components 
in patchouli, which can be summarized as the high-
est content of pogostone in Zhaoxiang, and the lowest 
content of pogostone in Paixiang [40]. In addition, the 

Table 2  The chemical properties and pharmacological activities of novel compounds

Compound name Formula Plant part Analytical method Type of compound Bioactivity References

Cablinosides A C23H34O10 Leaves HR-ESI-MS; UV; IR; NMR; 
HPLC; CD

Glycosides α-glucosidase inhibitory 
activity (IC50 = 278.4 ± 2.8 
µM)

[35]

Cablinosides B C23H34O10 Leaves HR-ESI-MS; UV; IR; NMR; 
HPLC; CD

Glycosides [35]

14-nor-β-patchoul-
1(5)-ene-2,4-dione

C14H18O2 Leaves/Stems TLC; NMR; IR; HR-ESI-MS Sesquiterpenoids – [36]

2β-Methoxy-14-nor-β-
patchoul-1(5)-

ene-4-one

C15H22O2 Leaves/Stems TLC; NMR; IR; HR-ESI-MS Sesquiterpenoids – [36]

14-nor-β-patchoul-
1(5),2-diene-4-one

C14H18O Leaves/Stems TLC; NMR; IR; HR-ESI-MS Sesquiterpenoids Cytotoxic activities against 
NCIH1975 (IC50 = 49.9 
µM)

[36]

Cytotoxic activities against 
HePG-2 (IC50 = 56.0 µM)

14-nor-β-Patchoul-1(5)-
ene-4-one

C14H20O Leaves/Stems TLC; NMR; IR; HR-ESI-MS Sesquiterpenoids – [36]

Pocahemiketals A C15H20O4 Aerial parts HR-ESI-MS; IR; NMR; X-ray; 
ECD

Sesquiterpenoids – [37]

Pocahemiketals B C14H20O3 Aerial parts HR-ESI-MS; IR; NMR; X-ray; 
ECD

Sesquiterpenoids Vasorelaxant activity 
(EC50 = 16.32 µM)

[37]

Patchouliguaiol A C15H24O2 Aerial parts HR-ESI-MS; IR; NMR; ECD; 
X-ray

Sesquiterpenoids – [38]

Patchouliguaiol B C15H26O2 Aerial parts HR-ESI-MS; IR; NMR; ECD; 
X-ray

Sesquiterpenoids Neuroprotective effect 
(50µM)

[38]

Patchouliguaiol C C15H24O2 Aerial parts HR-ESI-MS; IR; NMR; ECD; 
X-ray

Sesquiterpenoids Vasorelaxant activity 
against PHE-induced con-
traction (EC50 = 5.4 µM)

[38]

Antifungal activity against 
Candida albicans 
(MIC = 500 µM)

Patchouliguaiol D C15H22O Aerial parts HR-ESI-MS; IR; NMR; ECD; 
X-ray

Sesquiterpenoids – [38]

Patchouliguaiol E C15H20O Aerial parts HR-ESI-MS; IR; NMR; ECD; 
X-ray

Sesquiterpenoids – [38]

Patchouliguaiol F C15H24O2 Aerial parts HR-ESI-MS; IR; NMR; ECD; 
X-ray

Sesquiterpenoids Vasorelaxant activity 
against PHE- induced 
contraction (EC50 = 1.6 
µM)

[38]

Vasorelaxant activity 
against KCl- induced con-
traction (EC50 = 24.2 µM)

Antifungal activity against 
Candida albicans 
(MIC = 300 µM)

Patchouliguaiol G C15H24O2 Aerial parts HR-ESI-MS; IR; NMR; ECD; 
X-ray

Sesquiterpenoids Neuroprotective effect 
(50µM)

[38]

7-epi-chabrolidione A C15H24O2 Aerial parts NMR Seco-guaianes Neuroprotective effect 
(50µM)

[38]

1,7-di-epi-chabrolidione A C15H24O2 Aerial parts NMR Seco-guaianes Neuroprotective effect 
(50µM)

[38]
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fingerprint of different solvent extraction sites of patch-
ouli from Huangcun (Guangzhou City, Guangdong 
Province), Gaoyao (Zhaoqing City, Guangdong Prov-
ince), Wuchuan (Zhanjiang City, Guangdong Province) 
and Wanning (Hainan Province) were compared and 

analyzed in 2011. The studies demonstrated that the sim-
ilarity value of each extraction part of the water extract 
of Zhaoxiang and Paixiang was higher than 0.9, while 
the water extract of patchouli from Wuchuan, Wan-
ning and Huangcun showed a large difference, which 

Fig. 2  The chemical structures of new compounds in patchouli
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was consistent with the traditional experience for clas-
sifying patchouli by habitats. Moreover, the comparison 
of the fingerprints showed that the more polar compo-
nents were less sensitive to cultivation regions [41]. In 
2014, the content of PA and pogostone in patchouli from 
Leizhou County (Guangdong Province), Xuwen County 
(Guangdong Province), Yangchun County (Guangdong 
Province), Fumian County (Guangxi Province), and Wan-
ning County (Hainan Province ) were determined and 
compared by GC. Based on the content of PA and pogos-
tone, the results indicated that the quality of patchouli 
from Fumian was the best, followed by Yangchun, and 
the worst was Leizhou and Wanning [42]. It’s worth not-
ing that the soil composition, climatic conditions and 
growth management of different cultivation regions 
may affect the properties and quality of the medicinal 
materials. Therefore, the quality control of patchouli 
and the research of medicinal resources are particularly 
important.

Pharmacological activities
Anti‑peptic ulcer effect
Ulcers are detected primarily in the stomach and the 
proximal duodenum [43]; these lesions are the result of 
a multifactorial gastrointestinal disorder that has been 
associated with substantial morbidity and mortality, and 
affects many people worldwide [44]. Both endogenous 
and exogenous stimulation can contribute to the patho-
genesis of this disease [45], most notably the chronic use 
of nonsteroidal anti-inflammatory drugs [46]. Moreover, 
pro-inflammatory cytokines, including tumor necrosis 
factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1 
beta (IL-1β), as well as pro-apoptotic factors, are among 
the critical endogenous mediators that induce or aggra-
vate GUs [47]. Pogostone, a characterized component 
of patchouli oil (PO), has been confirmed as effective 
against the oxidative stress associated with GUs [48]. 
Recent results have shown that pogostone can protect 
the gastrointestinal mucosa from indomethacin-asso-
ciated GUs by its capacity to activate superoxide dis-
mutase (SOD), glutathione (GSH), and catalase (CAT), 
and reduce the concentration of malondialdehyde (MDA) 
in rat models of disease. Levels of prostaglandin E2 
(PGE2) and the protein and relative mRNA expression of 
cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-
2) were all remarkably elevated in pogostone pretreated 
rats. The administration of pogostone also resulted in 
increased levels of heat-shock protein 70 and Bcl-2 pro-
tein, together with the diminished expression of Bax pro-
tein in ulcerated tissue [49]; these results indicated that 
pogostone was capable of suppressing cellular apoptosis 
as part of its gastroprotective mechanism. PAO, another 
component that has been isolated from PO, exhibits 

similar pharmacological effects; pretreatment with PAO 
significantly limited the extent of ethanol-induced GUs 
in rats. The administration of PAO resulted in increased 
levels of GSH, SOD, and CAT activities, together with the 
suppression of MDA in gastric tissues. Furthermore, PAO 
exhibited anti-inflammatory activity as it coordinated the 
production of both pro- and anti-inflammatory cytokines 
by its capacity to regulate the expression of several NF-κB 
pathway-related proteins. Moreover, immunohistochem-
istry revealed that the mechanism underlying PAO-medi-
ated anti-apoptosis was largely related to its capacity to 
inhibit the expression of caspase-3, Fas, and FasL in the 
stomach tissue [50]. In addition to PAO, β-PAE mediates 
a prominent gastroprotective effect. A prominent metab-
olite of PA, β-PAE was significantly better than its parent 
compound at reducing the size of GUs in rats. Addition-
ally, the administration of β-PAE resulted in dramatic 
reductions in the levels of MDA, TNF-α, IL-1β, and IL-6 
in the serum, as well as the local expression of Fas, FasL, 
and caspase-3; the activities of SOD, GSH, and CAT were 
all increased concomitantly. The impact of β-PAE on 
GUs involved its interactions with both the NF-κB and 
ERK1/2 signaling pathways [51].

Inflammatory bowel disease (IBD) includes both ulcer-
ative colitis (UC) and Crohn’s disease; both conditions 
are chronic and relapsing diseases of the gastrointestinal 
tract [52]. IBD includes severe gastrointestinal symptoms 
associated with the ulceration of the mucosa and sub-
mucosa of the colon and the rectum [53]; this disease is 
quite prevalent and affects a large number of individuals 
each year [54]. Previous research has revealed roles that 
both TNF-α and interleukins contribute to the pathogen-
esis of IBD [55]. The administration of PO reversed the 
colonic damage and reduced the disease activity indica-
tors, including levels of colonic myeloperoxidase (MPO) 
in the 2,4,6-trinitrobenzenesulfonic acid-induced model 
of ulcerative colitis in rats [56]. Likewise, the administra-
tion of PA resulted in suppressed levels of colonic MPO 
as well as pro-inflammatory cytokines (i.e., TNF-α, IL-1β, 
and IL-6). The administration of PA also resulted in the 
suppression of several anti-inflammatory cytokines, 
including IL-4 and IL-10. UC-associated cellular pathol-
ogy is dominated by the actions of activated Th2 cells, 
which mainly produce IL-4; likewise, IL-10 provides 
negative feedback during inflammation, as observed in 
studies featuring dextran sodium sulfate (DSS)-treated 
mice. The administration of PA also induces the expres-
sion of mRNA encoding mucin-1 and mucin-2 as well 
as the expression of the tight junction proteins that 
maintain the integrity of the intestinal epithelial barrier 
in mouse models of acute colitis. PA can also modulate 
the expression of apoptosis-related Bax and Bcl-2 pro-
teins and thereby limit the pathology associated with 
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DSS-induced signaling leading to cell death; PA can also 
downregulate the expression of the necrosis-associated 
protein, receptor-interacting protein kinase 3 [57]. Other 
studies [58] revealed that the PA-mediated activation of 
cytochrome P450 3A4 (CYP3A4) via a pregnane X recep-
tor (PXR)-dependent mechanism resulted in attenuated 
inflammation via downstream signaling, which ultimately 
served to inhibit NF-κB activation and nuclear translo-
cation; importantly, this study identified PA as a critical 
exogenous agonist of PXR. In vivo experiments revealed 
that PA prevented DDS-induced inflammation in mice 
by regulating PXR–NF-κB signaling. Taken together, 
these studies suggest that patchouli may have a profound 
impact on the pathogenesis of IBD mainly by its capacity 
to alleviate inflammation and modulate cellular apopto-
sis. Moreover, the identification of PA as a PXR agonist 
and a mediator of PXR–NF-κB signaling has provided 
insights into novel therapies that might be used to treat 
colitis. The pharmacological activities of patchouli with 
respect to peptic ulcer disease are included in Table 3.

Antimicrobial effect
Effect targeting H. pylori
H. pylori is a Gram-negative bacterial species that colo-
nizes the gut of ~ 50% of the human population world-
wide [59]; H. pylori has been associated with various 
gastrointestinal diseases including gastritis, peptic ulcers, 
and gastric cancer [60]. Previous research identified bac-
terial virulence factors that promote the pathogenesis of 
H. pylori-associated disease. Among the mechanisms that 
have been discovered, H. pylori produces urease, which 

hydrolyzes urea in peripheral circulation; this yields 
bicarbonate and ammonia that can counteract the acidic 
environment in the stomach [61]. However, H. pylori 
also releases pro-inflammatory toxins, such as vacuolat-
ing cytotoxin A (Vac A) and cytotoxin-associated gene A 
(Cag A); these toxins promote the release of pro-inflam-
matory cytokines that ultimately damage the epithelial 
cells in the gastric mucosa [62]. In addition, H. pylori can 
survive and persist within macrophages, as urease pro-
duction serves to modulate the phagosome pH and the 
formation of megasomes [63]. PA is a critical pharmaco-
logical agent isolated from patchouli that exhibits antimi-
crobial activity against H. pylori both in vitro and in vivo. 
PA has selective antibacterial activity against H. pylori; it 
has no impact on the survival and proliferation of normal 
gastrointestinal bacteria and does not promote bacterial 
resistance. The administration of PA limits the adhesion 
and motility of H. pylori, and inhibits the expression of 
critical bacterial genes together with host inflammatory 
mediators [64]. PA has been shown to inhibit the activ-
ity of urease protein in both acidic and neutral condi-
tions by blocking both protein maturation [65] and the 
pathway that facilitates the translocation of Ni2+, which 
eventually decrease the acid resistance of this bacterial 
strain [66]. PA at 25 and 50 µM can inhibit intracellular 
H. pylori-associated urease activity by downregulating 
the expression of genes encoding ureB, ureE, ureI, and 
nixA; this reduces the UreB protein level and thus facili-
tates macrophage-mediated antimicrobial activity [67]. 
PA also promotes direct cytoprotective effects and limits 
the damage to epithelial cells associated with persistent 

Table 3  Pharmacological activities of patchouli on peptic ulcer

Arrow up denotes activation; arrow down denotes suppression

Chemical name Animals & pathological model Efficient doses & administration 
route

Mechanisms References

 Pogostone SD Rats; Indomethacin-induced 
gastric ulcer

10, 20 and 40 mg/kg, oral administra-
tion

SOD↑, GSH↑, CAT↑, PGE2↑, COX-1↑, 
COX-2↑, HSP-70↑, Bcl-2↑, MDA↓, 
Bax↓

[48, 49]

 PAO SD Rats; Ethanol-induced gastric ulcer 10, 20 and 40 mg/kg, oral administra-
tion

GSH↑, SOD↑, CAT↑, IL-10↑, MDA↓, 
caspase-3↓, Fas↓, Fasl ↓, TNF-α↓, 
IL-1β↓

[50]

 β-PAE SD Rats, Ethanol-induced gastric 
injury

10, 20 and 40 mg/kg, oral administra-
tion

SOD↑, GSH↑, CAT ↑
MDA↓, TNF-α↓, IL-1β↓, IL-6↓, Fas↓, 

FasL↓, caspase-3 ↓

[51]

 PO SD Rats; 2,4,6-trinitrobenzenesulfonic 
acid-induced IBD

270 mg/kg, rectal instillation MPO↓ [56]

 PA BalB/C mice; dextran sulfate sodium-
induced colitis

10, 20 and 40 mg/kg, oral administra-
tion

MPO↓, TNF-α↓, IFN-γ↓, IL-1β↓, 
IL-6↓, IL-4↓, IL-10↓, ZO-1, ZO-2↑, 
claudin-1↑, occludin↑, mucin-1↑, 
mucin-2↑, Bax↓, Bcl-2↑, RIP3↓, 
MLKL↓, IDO-1↓, TPH-1↓,

[57]

C57BL/6 mice; dextran sulphate 
sodium-induced colitis

6.25, 12.5 and 25 mg/kg, oral admin-
istration

CYP3A4↑, PXR ↑ NF-κB↓, IL-1β↓, IL-6↓, 
IL-10↓, TNF-α ↓

[48]
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H. pylori infection. Recent studies [68] revealed that PA 
could also reverse the cytotoxicity for gastric epithelial 
cells (GES-1) that results from an overabundance of H. 
pylori-associated urease. Specifically, the administra-
tion of PA effectively attenuated GES-1 apoptosis by 
actions that support the integrity of the mitochondrial 
membrane potential, which attenuate oxidative stress 
by decreasing the contents of intracellular reactive oxy-
gen species (ROS) and MDA, and which promote the 
synthesis and activation of both SOD and CAT. As such, 
PA serves as an anti-inflammatory agent by eliminating 
H. pylori and inhibiting the expression of bacterial viru-
lence factors and also by its actions that modulate signal-
ing via the NF-κB and NLRP3 inflammasome activation 
pathways [69]. PA can also reduce H. pylori-mediated 
neutrophil recruitment and activation by inhibiting the 
production of pro-inflammatory cytokines, by its actions 
that target p22 and p47-phox, as well by modulating the 
expression of the H. pylori neutrophil activation-related 
gene [70]. Furthermore, PA can eradicate H. pylori and 
limit oxidative stress by blocking bacterial escape from 

the intracellular lysosome compartment [71]. The phar-
macological mechanisms used by PA to target H. pylori-
induced GU are shown in Fig.  3. Taken together, these 
results suggest that patchouli extracts may be useful for 
the treatment of GU activities by their capacity to inhibit 
oxidative damage, reverse inflammation, induce apopto-
sis-associated signaling pathways, and eliminate the H. 
pylori pathogen.

Other antimicrobial effect
Earlier studies identified numerous antimicrobial activi-
ties associated with the use of patchouli [7]; among the 
microorganisms identified in these studies, patchouli 
promotes resistance against Staphylococcus aureus, 
Vibrio harveyi, and Moraxella catarrhalis. Aqueous 
extracts of patchouli effectively inhibit biofilm formation 
associated with multidrug-resistant V. harveyi by induc-
ing the upregulation of the biofilm-related bacterial genes 
luxR and flaB, and by downregulating the expression of 
luxS, hfq, and ompW with an MIC of 31.25 mg/mL [72]. 
In addition, PO has antimicrobial activities against both 

Fig. 3  The pharmacological mechanisms of PA on H. pylori-induced gastric ulcer
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Gram-positive and Gram-negative microorganisms, with 
an MIC of 25  mg/mL against isolates of Streptococcus 
mutans, and 12.5  mg/mL against both Shigella flexneri 
and S. aureus in studies carried out in  vitro [73]. Like-
wise, the patchouli constituent, pogostone, exhibited sig-
nificant antibacterial effect on S. aureus in experiments 
carried out in vitro with an MIC of 4 µg/mL. Pogostone 
may exert its antibacterial effect by interacting with S. 
aureus cell membrane proteins and its capacity to alter 
cell membrane permeability [74]. Acute otitis media, one 
of the most common diseases in early infancy and child-
hood [75], is a common bacterial complication of viral 
upper respiratory tract infection [76]. In  vitro experi-
ments revealed that PO was active against both S. aureus 
and M. catarrhalis with MICs of 0.21 and 0.026 mg/mL, 
respectively. The administration of PO promotes the res-
olution of S. aureus and M. catarrhalis infections in the 
middle ear and reduces the extent of inflammatory cell 
infiltration at the middle ear mucosa [77].

Anti‑oxidative effect
Oxidative stress refers to increased levels of intracel-
lular ROS that result in damage to lipids, proteins, and 
DNA [78]; this is the negative effect associated with the 
production of free radicals in vivo [79]. Oxidative stress 
can result from numerous external and endogenous fac-
tors [80], including alcohol, drugs, and environmental 
pollutants; these factors eventually promote premature 
aging and the negative sequelae of severe diseases [81]. 
NF-E2-related factor-2 (Nrf2) is a transcription factor 
that activates antioxidant response elements to regu-
late the expression of a variety of cytoprotective genes, 
including detoxifying, antioxidant, and antiapoptotic 
proteins [82]. Previous studies revealed that PO exhib-
its significant antioxidant potential, by actions that pro-
mote the elimination of superoxide anion free radicals 
and hydroxyl free radicals, and that inhibit lipid peroxi-
dation [83]. In addition to the nonvolatile constituents of 
P. cablin, the administration of pachypodol can attenuate 
ROS production and thereby protect hepatocytes from 
oxidative cell death induced by tert-butyl-hydroperox-
ide. The underlying mechanism of this effect relates to 
the amplification of the endogenous antioxidant defense 
system via the ERK1/2-dependent activation of Nrf2 
[34]. Alcohol intake can also promote oxidative dam-
age to the liver, as it increases the activity of cytochrome 
P450 2E1 (CYP2E1) and leads to the generation of large 
quantities of ROS; this ultimately destroys the oxidation/
reduction balance maintained by GSH/GSSG [84, 85]. 
Ethanol-induced acute liver injury, typically caused by 
excessive alcohol consumption, has been associated with 
several serious liver disorders including alcoholic fatty 
liver, hepatitis, hepatic fibrosis, steatosis, and cirrhosis 

[86]. Hepatic steatosis has been widely recognized as an 
early and reversible consequence of excessive alcohol 
consumption [87]; pretreatment with PO results in the 
increased concentration of the hepatic antioxidant, GSH, 
and a concomitant increase in the GSH/GSSG ratio, 
as well as the activation of anti-oxidative enzymes glu-
tathione reductase (GR) and SOD. These responses serve 
to suppress the accumulation of ROS and decrease the 
expression of protein and mRNA encoding CYP2E1. The 
administration of PO could also prevent fatty degenera-
tion by its capacity to accelerate adipose metabolism [88]. 
Similar to what is observed in response to biochemical 
oxidative stress, heat shock-induced oxidative stress may 
promote damage to and apoptosis of intestinal epithe-
lial-6 cells (IEC-6) [89]. Pretreatment with PA circum-
vents the damage to the cellular morphology and results 
in a decrease in the MDA content that accumulated sec-
ondary to heat shock. High doses of PA also resulted in 
significant increases in the expression of Nrf2 and HO-1. 
Taken together, these results demonstrated that PA was 
capable of mitigating cell damage and alleviating the oxi-
dative stress responses of IEC-6 cells by the activation of 
the Nrf2-Keap1 pathway [90].

Aging of the skin, induced by both intrinsic and extrin-
sic factors, is associated with a gradual loss of structural 
integrity and physiological function [91]. Skin photoag-
ing is related to the increased activity of matrix metal-
loproteinases (MMPs) that were induced in response to 
the production of ROS [92]. MMP-mediated alterations 
in the extracellular matrix typically lead to skin wrin-
kling, which is a prominent feature of premature aging 
[93]. The administration of pogostone alleviates both the 
macroscopic and histopathological lesions observed in 
UV-damaged skin in mouse model systems; it promoted 
the activities of the antioxidant enzymes, including CAT, 
SOD, and GSH-PX, downregulated MDA levels, and 
inhibited aberrant expression of MMP-1 and MMP-3 
[94]. In addition, PO had a substantial therapeutic 
impact on photoaged rat skin by its capacity to regulate 
p38MAPK/ERK and the associated apoptotic signaling 
pathway. Recent studies [95] revealed that the admin-
istration of PO prevented aberrant increases in MDA, 
p38MAPK, Ras, Raf, mitogen-activated protein kinase 
(MEK), ERK1/2, Bax, Caspase9, c-Fos, and c-Jun, as well 
as the aberrant decreases in Bcl2, SOD, GSH-PX, and 
CAT. As such, we conclude that patchouli-mediated anti-
photoaging activities may be associated with its anti-oxi-
dative, anti-inflammatory, and antiapoptotic properties.

Anti‑inflammatory effect
Inflammation is characterized by redness, swell-
ing, heat, and pain at one or more affected locations; 
this process represents a primary protective response 
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against invading pathogens [96]. These responses are 
mediated by circulating pro-inflammatory mediators, 
including IL-6, IL-1β, TNF-α, nitric oxide (NO), and 
PGE2, among others [97]. As such, agents capable of 
regulating inflammation by the synthesis and release 
of pro-inflammatory mediators are great significance 
as a means to control this response. Lipopolysaccha-
ride (LPS) is a major component of Gram-negative 
bacteria that mediates inflammation initiated by mac-
rophage responses [98]. β-PAE exhibits significant anti-
inflammatory effect on LPS-stimulated RAW 264.7 
macrophages by its capacity to maintain the balance 
between pro- and anti-inflammatory cytokine pro-
duction [99]. Pretreatment with β-PAE results in sig-
nificantly diminished levels of TNF-α, IL-6, and IL-1β 
biosynthesis, accompanied by an increased expression 
of IL-10. β-PAE also suppressed inducible nitric-oxide 
synthase (iNOS) and COX-2 signaling pathways, result-
ing in decreased levels of NO and PGE2. NF-κB sign-
aling is central to the development and progression of 
acute inflammation; its activation and translocation 
is required to promote the transcription of many pro-
inflammatory mediators. NF-κB is a hetero-tetramer 
comprised of two proteins known as p65 and p50. In 
the latent state, NF-κB is sequestered in the cytosol in 
association with its inhibitor, IκB (inhibitor of NF-κB); 
the induction of an inflammatory response destroys 
this balance, which results in proteasomal degradation 
and the nuclear translocation of NF-κB [100]. β-PAE 
inhibits the translocation of NF-κB from the cytoplasm 
to the nucleus and stabilizes the cytoplasmic nuclear 
factor-κBα (IκBα) complex [101]. The actions of β-PAE 

also promote a decrease in the levels of both MDA and 
MPO activity in association with edema, and suppress 
the activation of pro-inflammatory cytokines including 
TNF-α, IL-6, IL-1β, PGE2, and NO in a dose-depend-
ent manner in mouse models. Given its high degree 
of structural similarity to β-PAE, it was not surprising 
to find that aged preparations enriched in PAO also 
exhibit anti-inflammatory effect. The administration of 
PAO resulted in decreased levels of IL-1β, IL-6, TNF-
α, PGE2, and NO, and concomitant increased levels of 
IL-4 and IL-10. PAO also promoted the downregulation 
of both protein and mRNA encoding COX-2 and iNOS, 
and limited the activation of NF-κB signaling pathways 
by its capacity to inhibit the translocation of p50 and 
p65 from the cytosol to the nucleus [102]. Interestingly, 
recent studies revealed that PAO was superior to β-PAE 
with respect to their capacities to limit inflammation. 
As the oxidative product of β-PAE, PAO exerted potent 
anti-inflammatory activities in  vivo, which included 
the decreased expression of both protein and mRNA 
encoding TNF-α, IL-12, IL-1β, and monocyte chemo-
tactic protein-1 (MCP-1). In addition, the anti-inflam-
matory effect of PAO were superior to those of β-PAE 
in experiments that examined production of NO and 
PGE2 via their corresponding iNOS and COX-2 sign-
aling pathways [103]. The anti-inflammatory effect of 
PO were also examined; this agent served to limit leu-
kocyte recruitment by its capacity to interfere with the 
production and activation of NO and pro-inflamma-
tory cytokines [104]. The pharmacological activities of 
patchouli with respect to anti-inflammatory responses 
are presented in Table 4.

Table 4  Pharmacological activities of patchouli in anti-inflammation

Note: Arrow up denotes activation; arrow down denotes suppression

Chemical name Animals/cells and Pathological 
model

Type Efficient doses 
and administration route

Results References

β-PAE LPS-stimulatedRAW264.7 mac-
rophages

In vitro 10, 20, 40 μmol/L TNF-α↓, IL-6↓, IL-1β↓, IL-10↑, 
iNOS↓, COX-2↓, NO↓, PGE2↓

[99]

Kun Ming (KM) mice; Xylene-
induced ear edema, Acetic 
acid-induced vascular perme-
ability, Carrageenan-induced 
paw edema

In vivo 10, 20, 40 mg/kgoral administration MDA↓, MPO↓, TNF-α↓, IL-1β↓, 
PGE2↓, IL-6↓, NO↓, iNOS↓, COX-
2↓, p65 (nuclear)↓

[100]

PAO KM mice; Xylene-induced ear 
edema, Acetic acid-induced vas-
cular permeability, Carrageenan-
induced paw edema

In vivo 10, 20, 40 mg/kg oral administra-
tion

TNF-α↓, IL-1β↓, IL-6↓, PGE2↓, NO↓, 
IL-4↑, IL-10↑, COX-2↓, iNOS↓, 
p-IKKβ and IκBα↓

[102]

LPS-stimulated RAW264.7 mac-
rophages

In vitro 10, 20, 40 μmol/L TNF-α↓, IL-12↓, IL-1β↓, MCP-1↓, 
PGE2↓, NO↓, iNOS↓, COX-2↓

[103]

PO Swiss mice; Zymosan-induced 
peritonitis

In vivo 100, 200, 300 mg/kg oral admin-
istration

Leukocyte recruitment↓, NO↓, 
leukocyte number↓

[104]

fMLP-induced neutrophils In vitro 1, 3, 10, 30, 60, 90 mg/ml Neutrophil migration↓
3, 10 mg/ml Phagocytic activity of neutrophils↑
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Effect on ischemia/reperfusion (I/R) injury
I/R injury is associated with several serious clinical mani-
festations, including acute heart failure, gastrointestinal 
dysfunction, myocardial hibernation, cerebral dysfunc-
tion, systemic inflammatory response syndrome, and 
multiple organ dysfunction [105]; the last condition is 
associated with an extraordinarily high mortality rate 
and requires timely treatment to protect the brain from 
injury [106]. Inflammation is a critical feature of cerebral 
I/R injury. The specifics associated with the inflammatory 
response determine the extent and nature of the brain 
damage that may ensue; these factors are connected with 
several signaling pathways, including the MAPK and 
the Toll-like receptor 4 (TLR4)/NF-κB signaling path-
ways, among others. Therefore, it is critical to suppress 
the inflammatory response associated with I/R. Toward 
this end, the results of several studies revealed that the 
administration of PA could reduce infarct volume and 
alleviate the ensuing blood–brain barrier dysfunction 
in a model of obese mice with cerebral I/R injury. Lev-
els of protein and mRNA encoding TNF-α and IL-1β 
were diminished in response to the administration of 
PA, together with diminished phosphorylation of JNK 
and p38; these results demonstrate that PA can provide 
protection against cerebral I/R injury by its capacity to 
inhibit inflammatory responses [15]. Interestingly, cell 
apoptosis and oxidative stress also contributed to the 
development and progression of I/R injury. In addition to 
its capacity to alleviate inflammation by inhibiting TLR4/
NF-κB signaling, pretreatment with β-PAE also results 
in a significant suppression of cellular apoptosis in I/R 
injury in rats, largely by decreasing the Bax/Bcl-2 expres-
sion ratio and limiting the induction of caspase-3 activ-
ity. Elevated levels of glutathione peroxidase (GSH-PX) 
and SOD were detected, while superoxide generation and 
MDA levels were reduced [107].

Analgesic effect
Pain is initiated by the activation of various nocicep-
tors via specific stimulus modalities. Pain is a common 
symptom of many diseases and has an outsized impact 
on normal life and physiological homeostasis. Patch-
ouli directly inhibited the impact of acetic acid-induced 
writhing (pain) in mice; these results implied that patch-
ouli exhibits an analgesic effect in vivo [108]. COX-2, an 
inflammatory cyclooxygenase, is induced in response 
to pro-inflammatory cytokines at sites of inflammation; 
this enzyme is often upregulated in response to inflam-
mation and in association with neoplastic disease [109]. 
The administration of PA upregulated COX-2 mRNA and 
protein expression both in  vivo and in  vitro. The anti-
nociceptive impact of PA involves the mu-opioid recep-
tor (MOR) [18]. Opioids are highly effective analgesics; 

opioid systems are critical with respect to pain regula-
tion, pain-associated behavior, and pain relief [110]. MOR 
upregulation has a direct impact on intracellular calcium 
concentrations by the activation of calcium channels; as 
such, the calcium ion concentration can be utilized as a 
marker to study the role of PA vis-à-vis the function of 
MOR [111]. Recent studies suggest that PA could simul-
taneously upregulate MOR expression in the mouse 
brain and decrease intracellular calcium levels; this was 
not observed in response to the administration of aspirin. 
As such, the role of patchouli with respect to its capacity 
to modulate the activation of both COX-2 and MOR may 
provide a significant basis for further studies of PA as a 
new form of analgesic.

Antitumor effect
Several recent studies provided results that elucidated 
patchouli-mediated antitumor activity; the underlying 
mechanisms have been revealed to some extent. Recent 
results revealed that an aqueous extract of patchouli 
could overcome the resistance of endometrial cancer 
cells to paclitaxel and could likewise promote growth 
inhibition [112]. PA also exhibited antitumor effect when 
targeting cells of the human lung cancer A549 line both 
in vitro and in vivo by activating both caspase 9 and cas-
pase 3 and modulating mitochondria-mediated apop-
tosis; the underlying molecular mechanism involves 
inhibited phosphorylation of EGFR and the phosphoryla-
tion of targets within the JNK signaling pathway [113]. 
The administration of PA can also inhibit the prolifera-
tion of human leukemia MV4-11 cells and thereby induce 
their apoptosis; the mechanisms underlying this response 
may be related to a decrease in NF-κB and phospho-
pyruvate kinase M2 (p-PKM2), and the increase of Cas-
pase-3 protein expression [114]. Pogostone is another 
antitumor constituent of patchouli; recent studies [20] 
revealed that pogostone could inhibit the prolifera-
tion and the colony formation of gallbladder carcinoma 
SGC-996 cells by its capacity to promote the expression 
of caspase-9, caspase-3, and poly-ADP-ribose polymer-
ase-1 (PARP-1), to increase the Bax/Bcl-2 ratio, and to 
decrease the expression of cyclin D1, cyclin A, and cyclin 
B. Taken together, these findings suggest that the antitu-
mor effect of pogostone may be related to the regulation 
of apoptosis- and cell cycle-regulated proteins.

Antidiabetic effect
Obesity is highly correlated with incidence of type 2 dia-
betes and a primary risk factor for various metabolic dis-
eases. It is a factor contributing to the condition known 
as metabolic syndrome; this condition is exacerbated by 
environmental factors, including a fat-enriched diet, a 
sedentary lifestyle, and potentially by aging [115]. The 
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administration of PA resulted in a net decrease in body 
weight of high-fat diet (HFD)-induced obese mice; PA 
suppressed adipogenesis and fat accumulation in adi-
pocytes by increasing the expression and activation of 
beta-catenin [116]. The chronic intake of a HFD has 
also been associated with numerous other diseases, 
including NAFLD. NAFLD is a major cause of liver dis-
ease that affects ~ 30% of the US population [117], and 
is currently the most common chronic liver disorder 
worldwide [118]. Recent studies [14] have explored the 
protective effects of PA when used to treat HFD-induced 
hepatic steatosis in rats; these studies demonstrated that 
PA was effective in ameliorating hepatic steatosis result-
ing from a HFD. PA mediated this effect by suppressing 
endoplasmic reticulum stress signals and by regulating 
the uptake, assembly, and secretion of very low-density 
lipoproteins. Among the underlying mechanisms consid-
ered, the administration of PA is also associated with the 
regulation of the very low-density lipoprotein receptor, 
apolipoprotein B100, as well as microsomal triglyceride-
transfer protein expression.

Anti‑hypertensive effect
Hypertension is a chronic and critical factor that pro-
motes disability and can lead to premature death [119]. 
More than one billion individuals worldwide carry a diag-
nosis of hypertension; this condition is associated with 
~ 9.4  million deaths each year [120]. Agents capable of 
reducing systemic blood pressure can significantly reduce 
the risk of events associated with major cardiovascu-
lar disease, including stroke and coronary heart disease, 
among others [121]. As such, it is particularly important 
to maintain blood pressure within a normal range. PA 
promotes significant vasorelaxant effect as a result of its 
role as a Ca2+ antagonist in an endothelium-independent 
pathway. The underlying mechanisms include the block-
ade of extracellular Ca2+ influx via the membrane of vas-
cular smooth muscle cells and the release of intracellular 
Ca2+ through IP3R- and RYR-mediated Ca2+ channels in 
the sarcolemma [19]. Pocahemiketal B isolated from the 
essential oil generated from the aerial parts of P. cablin 
exhibited significant vasorelaxant activity against phe-
nylephrine-induced contractions of rat aorta rings, with 
an EC50 of 16.32 µM [37].

Immunoregulatory effect
The immune system plays a vital role in maintaining the 
integrity of an organism; the immune system mediates 
both resistance to pathogens and defense against cancer 
[122]. Previous research revealed that PA has a positive 
effect on the immune system, and can promote immu-
nomodulatory actions by activating the mononuclear 
phagocytic system and by suppressing overactive cellular 

immune responses [123]. There are also recent reports 
of PO-mediated immunomodulatory activities; these are 
associated mainly with its capacity to promote the syn-
thesis and release of secretory immunoglobulin A (SIgA). 
SIgA is a first-line immune defense of the surface of the 
intestinal mucosa; SIgA antibodies promote mucosal 
immunity, which includes host defense against food anti-
gens, bacteria, viruses, and toxins [124]. The administra-
tion of PO promotes te repair of the intestinal epithelial 
ultrastructure, reduces intestinal permeability, and pro-
tects the intestinal mucosal mechanical barrier in a rat 
model of post-infectious IBS; the underlying mechanisms 
include promoting increased levels of SIgA while inhibit-
ing the expression of ICAM-1 [125].

Effect on intestinal microecology
The appropriate balance of the gut microbiota (GM) is 
of great importance for human health. The GM extract 
nutrients and energy [126], protect us from enteropath-
ogens [127] and cancer [128], and may even influence 
brain function and behavior [129]. Irregularities of the 
GM, a state known as dysbiosis, may be a predisposing 
factor associated with IBD [130, 131], obesity [132, 133], 
and neoplastic disease [134]. The results of several stud-
ies have suggested that PO and its derivatives, including 
pogostone, PA, and β-PAE, serve to support the function 
of the gut epithelial barrier, to facilitate the polarization 
of M1 to M2 macrophage phenotypes, to increase the 
diversity of the GM, and to suppress the pro-inflamma-
tory cytokines in mouse model systems. Taken together, 
these results suggest that the pharmacological activities 
of PA, pogostone, and β-PAE contribute to the dynamic 
interactions between the host and the GM [135].

Antidiarrheal effect
Irritable bowel syndrome (IBS) is a common functional 
bowel disorder; diarrhea-predominant IBS (IBS-D) is a 
major subtype of this disease [136]. At least one study has 
demonstrated that PA exhibits a concentration-depend-
ent inhibitory effect on spontaneous contractions of the 
colonic longitudinal smooth muscle, with an EC50 of 
41.9 µM [137]. PA also promoted the inhibition of IBS-D 
as modeled in the rat colon by actions associated with 
cholinergic, nitrergic, and K+ channel pathways. These 
results demonstrated that PA might be the active ele-
ment underlying the antidiarrheal activity of patchouli, 
although the pharmacological targets of these effects 
remain unknown.

Other effects
Secretory otitis media (SOM) includes inflammation 
of the mucosa of the middle ear, and is characterized 
by tympanic effusion, ear tightness, and hearing loss; 
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these responses are typically associated with bacterial 
infection and can eventually lead to auditory tube dys-
function [138]. Recent studies revealed that pogostone 
could reverse the hearing loss typically associated with 
SOM in experiments performed in a guinea pig model; 
the administration of pogostone alleviated the thicken-
ing of the mucous membrane and neutrophil infiltra-
tion by its capacity to inhibit the expression of TNF-α 
and intercellular cell adhesion molecule (ICAM)-1 in the 
mucous membranes of the ear [139]. In addition, lung 
inflammation has been associated with several serious 
respiratory diseases, including acute respiratory distress 
syndrome and COPD, among others. The administra-
tion of PA serves to protect against LPS-induced acute 
lung injury in mice by the suppression of TNF-α, IL-1β, 
and IL-6 synthesis and release, as well as by its capacity 
to inhibit the phosphorylation of IκB-α and p65 NF-κB. 
The overall mechanism underlying the PA-mediated inhi-
bition of the inflammatory response could be attributed 
to the inhibition of the NF-kB signaling pathway [140]. 
Moreover, pogostone could exert protective effect with 
respect to lung injury associated with COPD, also in a 
mouse model; pogosone suppressed the expression of 
inflammatory-related proteins (p-IκBα and p-NF-κBp65) 
and promoted a significant increase in Nrf-2 and HO-1. 
Overall, these results suggested that the pogostone-medi-
ated inhibition of the NF-κB signaling pathway could 
be the central mechanism underlying the protection of 
pulmonary tissue [21]. Inflammatory cytokines, includ-
ing iNOS, TNF-α, and the interleukins, all promote the 
pathogenesis of atherosclerosis. Atherosclerosis is a 
chronic disease of the arterial wall [141]; the disorder is 
characterized by lipid deposition and the formation of 
foam cells in the vessel intima. Recent studies have illus-
trated that the administration of PA resulted in a signifi-
cant attenuation of atherosclerotic plaques both in the 
aorta and at the aortic root; PA also resulted in the elimi-
nation of macrophages from the cell contents of lesions 
in atherosclerosis-prone apolipoprotein E knockout 
(ApoE KO) mice. Moreover, PA inhibited the expression 
of aortic-associated macrophage inflammatory cytokines, 
such as IL-1β, iNOS, MCP-1, IL-6, and chemokine 
(C-X-C motif ) ligand 11 in mouse model systems; these 
results demonstrated that PA could promote the attenua-
tion of atherosclerosis, possibly by inhibiting macrophage 
infiltration and its inflammatory responses [16].

Toxicity
Given the widespread interest in and application of TCM 
throughout the world, reports of adverse reactions and 
adverse events have been increasing; this has generated 
significant concern regarding the toxicities associated 
with TCM and TCM-associated medicinal preparations. 

Previous experiments carried out in mice revealed that 
PA was associated with comparatively low toxicity; the 
lethal dose (LD50) of PA was determined to be 4.7  g/kg 
when administered via intragastric administration and 
3.1  g/kg in response to intraperitoneal injections [142]. 
Recently, PO and its major components (PA and pogos-
tone) exerted significant toxicity with respect to the 
development of zebrafish embryos; among the findings, 
these agents were associated with an increased incidence 
of notochord malformation as well as cardiac and yolk 
edema in zebrafish larvae, with the toxicity of pogos-
tone > PA > PO. The 50% lethal concentrations (LC50s) of 
PA and pogostone were 50.3 and 12.9 mg/L, respectively, 
determined at 24  h after administration; the LC50s of 
PO, PA, and pogostone were 21.2, 12.9, and 11.8  mg/L, 
respectively, at 96 h after administration [143]. Although 
patchouli has been used for > 2000  years in China, our 
current understanding of systemic toxicity and safety 
remain inadequate; these points require much additional 
study and careful evaluation.

Conclusion and future research
In recent time, herbs and extractions from TCM, as 
well as derivatives, are gaining acceptance as potentially 
promising complementary and alternative medicines for 
various diseases treatment [144–146]. The plant fam-
ily Labiatae (Lamiaceae) is famous for its outstanding 
medicinal and aromatic herbs, which is a rich source of 
essential oils for the food, pharmaceutical and cosmetic 
industry [147]. In addition to patchouli, several other 
herbs such as Agastache rugosa, Elsholtzia ciliata (Thuab) 
Hyland., Leonurus japonicas Houtt., and Perilla frute-
scens (L.) Britt. also possess kinds of bioactivities and 
can be used to treat diseases. Among the diverse herbs 
in the Labiatae family, Agastache rugosa (A. rugosa), a 
medicinal plant of Labiatae genus’s Agastache rugosa 
(Fisch. et Mey.) O. Ktze., has a lot of characteristics that 
are similar to patchouli. A. rugosa, commonly known as 
“Tuhuoxiang” or “Chuanhuoxiang” in China, is native to 
Sichuan Province, Jiangsu Province, and Zhejiang Prov-
ince. As an edible plant, it is used as a herbal medicine 
to treat nausea, vomiting and dispel damp in TCM [148]. 
A. rugosa was reported to have prominent pharmaco-
logical activities, such as anti-gastritis effect [149], anti-
photoaging effect [150], anti-melanogenesis effect [151], 
anti-microbial effect [152], anti-tumor effect [153], anti-
oxidant effect [154], and anti-atherogenic effect [155]. 
Although most of its pharmacological effects are similar 
to that of patchouli, its main chemical components are 
quite different. In 2013, a total of 88 chromatographic 
peaks were separated from the volatile oil of A. rugosa, 
and 45 compounds were identified. Among these com-
pounds, isopulegone, pulegone, as well as isomenthone 
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account for a large proportion, while PA and pogostone 
are the major components of patchouli [156]. In addition, 
the microscopic identification of A. rugosa and patch-
ouli also showed some differences. For instance, two cells 
formed the head of glandular hairy in the leaves of patch-
ouli, while only one formed the head of glandular hairy in 
the leaves of A. rugosa. Moreover, the nonglandular hair 
was mainly constituted by one to three cells in patchouli, 
while one to four cells constituted the nonglandular hair 
in A. rugosa [157].

P. cablin Benth., commonly known as patchouli, is an 
important medicinal herb with huge market potential 
in the fragrance industry; it is also the main ingredi-
ent in numerous Chinese patent medicines. Compre-
hensive experimental research studies performed in 
the past five years have complemented the pharmaco-
logical activities and mechanisms of action of patch-
ouli, including anti-peptic ulcer effect, antimicrobial 
effect, anti-oxidative effect, anti-inflammatory effect, 
I/R injury protection, analgesic effect, antitumor effect, 

antidiabetic effect, anti-hypertensive effect, immu-
noregulatory effect, effect on intestinal microecology, 
antidiarrheal effect and others. Results from multiple 
studies demonstrated that patchouli and its deriva-
tives can promote protective effects on the stomach, 
intestines, liver, and even the middle ear. The phar-
macological activities of patchouli noted above are 
featured in Fig.  4. With the development of research, 
the monomeric components in patchouli such as PA, 
β-patchoulene, patchoulene epoxide, pogostone, as 
well as pachypodol have been explored to some extent, 
and the pharmacological mechanisms study of PA is 
the most profound. The molecular and cellular targets 
of PA mentioned in this review are portrayed in Fig. 5. 
From these studies, we can conclude that the thera-
peutic actions of PA are related to its capacity to sup-
press inflammation, alleviate oxidative stress, regulate 
apoptosis, relieve ER stress, increase VLDL metabo-
lism, and others. Further investigations focusing on 
the molecular mechanisms indicated that multiple 

Fig. 4  The pharmacological activities of patchouli
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signalling pathways are involved in the treatment pro-
cess. The PA-mediated relief of peptic ulcer is associ-
ated with the activation of PXR signalling pathway, the 
inhibition of the NF-κB pathway, the preservation of 
intestinal barrier integrity, the suppression of trypto-
phan catabolism, and the inhibition of cell death sign-
aling [57, 58]. The modulations of the these pathways 
result in the decrease of pro-inflammatory cytokines, 
the downregulation of the necroptosis related RIP3 and 
MLKL proteins, the downregulation of the IDO-1 and 
TPH-1 protein, the downregulation of pro-apoptotic 
protein Bax, and increase of the anti-apoptotic pro-
tein Bcl-2. In addition, the PA-mediated treatment of 
diabetes is related to the inhibition of the PERK, IRE1, 
ATF6, and Wnt/β-catenin pathways, which eventually 

results in the downregulation of PERK, IRE1, and 
ATF6, the inhibition of VLDLR, the increase of apoB 
100, the enhancement of MTP, the increased expres-
sion of smad7, and the stabilization of β-catenin [14, 
17]. Moreover, by activating the ERK signaling pathway 
and inhibiting the MAPKs pathway, PA plays a impor-
tant role in the treatment of I/R injury [15]. Further-
more, other pathways such as the EGFR pathways, JNK 
pathways, Nrf2-keap1 pathways, as well as Cholinergic 
channel, Nitrergic channel, K+ channel, and Ca2+ chan-
nel also participate in the therapeutic actions of PA 
[16, 18, 19, 90, 113]. The novel pharmacological effects 
associated with PA, for instance, its role in preventing 
obesity and promoting analgesia, have attracted signifi-
cant attention in recent years, although the underlying 

Fig. 5  The molecular and cellular targets of PA
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mechanisms remain unclear. Likewise, more researches 
are needed to elucidate the molecular mechanism 
of action and protein targets of other ingredients in 
patchouli.

In addition, our current understanding of the criti-
cal safety factors of patchouli is somewhat inadequate; 
additional preclinical studies that feature both acute and 
long-term toxicities associated with patchouli should be 
carried out in the near future. Pharmacological studies of 
patchouli and its derivative compounds have been per-
formed primarily in vitro and in vivo using small animal 
models. As such, clinical studies in humans are urgently 
needed to confirm these pharmacological findings and 
to promote the development of TCM preparations for 
extended use worldwide.
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