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Abstract

Accumulating evidence has suggested that the pathological changes in amyotrophic lateral sclerosis (ALS) are not
only confined to the central nervous system but also occur in the peripheral circulating system. Here, we performed
a meta-analysis based on the PubMed, EMBASE, EBSCO, and CNKI databases, to find out biochemical indicators
associated with energy metabolism, iron homeostasis, and muscle injury that are altered in ALS patients and their
correlations with ALS phenotypes. Forty-six studies covering 17 biochemical indicators, representing 5454 ALS
patients and 7986 control subjects, were included in this meta-analysis. Four indicators, including fasting blood
glucose level (weighted mean difference [WMD] = 0.13, 95% CI [0.06–0.21], p = 0.001), serum ferritin level (WMD =
63.42, 95% CI [48.12–78.73], p < 0.001), transferrin saturation coefficient level (WMD = 2.79, 95% CI [1.52–4.05], p <
0.001), and creatine kinase level (WMD = 80.29, 95% CI [32.90–127.67], p < 0.001), were significantly higher in the
ALS patients, whereas the total iron-binding capacity (WMD = − 2.42, 95% CI [− 3.93, − 0.90], p = 0.002) was
significantly lower in ALS patients than in the control subjects. In contrast, the other 12 candidates did not show
significant differences between ALS patients and controls. Moreover, pooled hazard ratios (HR) showed significantly
reduced survival (HR = 1.38, 95% CI [1.02–1.88], p = 0.039) of ALS patients with elevated serum ferritin levels. These
findings suggest that abnormalities in energy metabolism and disruption of iron homeostasis are involved in the
pathogenesis of ALS. In addition, the serum ferritin level is negatively associated with the overall survival of ALS
patients.
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Background
Amyotrophic lateral sclerosis (ALS) is a relentlessly pro-
gressive paralytic disease characterized by degeneration
of upper and lower motor neurons, which occurs follow-
ing insidious focal weakness and spreads to most skeletal
muscles, including the diaphragm [1, 2]. To date, there
is no curative treatment for ALS and most patients die

within 5 years of disease onset due to respiratory paraly-
sis [3]. The ALS etiology is unfortunately poorly
understood.
A recent epidemiological study has shown that the

mean age for typical ALS disease onset is 61.8 ± 3.8
years [4], whereas the diagnosis of ALS has been re-
ported to be delayed for over 1 year due to the signifi-
cant overlap of clinical manifestations with other
conditions in the early stages of ALS [5]. Therefore, ex-
ploring robust biomarkers is essential for the diagnosis
of ALS. Biochemical indices in the blood or cerebro-
spinal fluid (CSF) are readily available compared to the
brain tissue; they are regarded as indicators, and may
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also be involved in the development of disease, thus hav-
ing been studied widely. Accumulating evidence has sug-
gested that some indicators associated with energy
homeostasis, including glucose [6–8], lipid [9–11] and
protein levels [12–14], are aberrant in ALS patients.
Moreover, abnormal iron metabolism [15–17] and cre-
atinine kinase [18–20] have been reported in ALS pa-
tients. However, these studies have not reached a
consensus; thus, a systematic meta-analysis is needed to
clarify the changes in biochemical indicators in ALS and
make a better prognosis.
In this review, we set out to go over the literature to

examine if the commonly reported clinical biochemical
indicators, which include total cholesterol (TC), low-
density lipoprotein (LDL), high-density lipoprotein
(HDL), triglyceride (TG), fasting blood glucose (FBG),
fasting insulin, glucose in CSF, total protein in CSF,
CSF/serum albumin quotient (Qalb), serum albumin,
serum total protein, ferritin, transferrin, iron, total iron-
binding capacity (TIBC), transferrin saturation coeffi-
cient (TSC), and creatine kinase (CK), are aberrant in
ALS patients, and analyze their associations with patient
survival.

Methods
Literature search strategy and selection criteria
Systematic review and meta-analysis was performed ac-
cording to the Preferred Reporting Items for Systematic
Review and Meta-Analyses guidelines [21]. The PubMed,
EMBASE, EBSCO and CNKI databases were systematic-
ally searched until January 2020, using search terms of
“amyotrophic lateral sclerosis OR ALS OR Lou Gehrig’s
disease” AND “cholesterol OR triglycerides OR lipid” for
lipid metabolism, “fasting glucose OR blood glucose OR
blood sugar OR glycated hemoglobin A OR HbA1c OR
hyperglycemia OR hypoglycemia OR glycemic index” for
glycometabolism, “albumin OR prealbumin OR pre-
albumin OR globulin” for protein metabolism, “ferritin
OR transferrin OR iron” for iron metabolism, and “creat-
ine kinase OR CK” for muscle injury. All papers were
reviewed for titles and abstracts. References of the rele-
vant articles were also reviewed to identify eligible
articles.
The inclusion criteria for eligible articles were as fol-

lows: (1) written in English or Chinese; (2) providing
definite diagnostic criteria for ALS patients; (3) being a
case-control study or a cohort study; (4) the control
group included healthy controls or several other neuro-
logical disorders (ONDs); and (5) reporting quantitative
values of blood biochemical indicators in case-control
studies, hazard ratio (HR) with 95% confidence interval
(CI), or figures or tables of survival analyses. The exclu-
sion criteria were as follows: (1) studies in animals or
cell lines; (2) duplicate reports or different papers

sharing the same cohort; and (3) reviews, case reports,
editorials, and abstracts for conferences.

Data extraction
For each study included, the following items were ex-
tracted: publication year, author name, location of the
trial, sample size, age and sex of participants (ALSs and
controls), and case ascertainment. Furthermore, the
mean and standard deviation (SD) of levels of biochem-
ical indicators, and HR with 95% CI were also extracted.
Data presented in different units or other expression
forms were converted to conform to the requirements
[22, 23].

Statistical analysis
The mean and SD of biochemical indicator concentra-
tions were used to generate the effect size (ES) calcu-
lated as the weighted mean difference (WMD), to
compare the differences between ALS patients and con-
trols. To eliminate the bias from healthy/disease control
and demographics of the study populations, separate
analyses were carried out to examine the findings more
carefully. We used a pooled HR with 95% CI to evaluate
the association of blood biochemical indicators that
show significant difference between ALS patients and
controls, with survival time. For papers that provided
Kaplan-Meier survival analyses, we transformed the fig-
ure into a data sheet and used the log rank test to obtain
the HR and 95% CI [24]. The I2 statistic and Cochrane
Q test were used to analyze between-study heterogeneity
[25]. If I2 < 50% and p > 0.1 in the Q test, which means
no obvious heterogeneity, the fixed-effects model was
used to calculate the pooled estimate. Otherwise, the
random-effects model was used for data with substantial
heterogeneity. Subgroup analysis and meta-regression
were conducted to explore potential sources of hetero-
geneity. Publication bias was determined using the Egger
test, as described previously [26]. To evaluate the stabil-
ity, we also performed sensitivity analysis by omitting
each study in turn. All data were analyzed using STATA
(version 15.0) software. p < 0.05 was considered statisti-
cally significant.

Results
Characteristics of the included studies
As shown in Fig. 1, a systematic review of the literature
identified 2803 papers from online databases. After
screening titles and abstracts of these papers, 2482 pa-
pers were excluded, and 321 papers were further evalu-
ated via a full-text review. After excluding articles
without valid data, review articles, meta-analyses and
case reports, 46 original articles were finally selected for
the meta-analysis, which covered a total of 17 biochem-
ical indicators in the serum or CSF in 5454 ALS patients
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and 7986 controls [8, 13, 16–18, 27–67]. Table S1 shows
the characteristics of each study.

Quantitative synthesis
As shown in the forest plot (Fig. 2), fixed-effects meta-
analysis was performed to compare the FBG, TIBC, and
TSC between ALS patients and controls, whereas for
serum ferritin and CK, we applied a random-effects
model. The levels of FBG (WMD = 0.13, 95% CI [0.06–
0.21], p = 0.001), serum ferritin (WMD = 63.42, 95% CI
[48.12–78.73], p < 0.001), TSC (WMD = 2.79, 95% CI
[1.52–4.05], p < 0.001), and CK (WMD = 80.29, 95% CI
[32.90–127.67], p < 0.001) were significantly higher in
the ALS patients, whereas TIBC (WMD = − 2.42, 95%
CI [− 3.93, − 0.90], p = 0.002) was significantly lower in
the ALS patients, compared to the controls (Table 1). In
contrast, no significant difference was found in lipid me-
tabolism markers including TC, HDL-C, LDL-C, and
TG, fasting serum insulin, serum albumin, serum total
protein, serum transferrin, serum iron, CSF glucose, CSF
total protein and Qalb. Considering that some ONDs
per se are associated with peripheral biochemical
changes, we conducted a separate analysis based on the
control group to confirm our findings (Table 2). The
serum transferrin level was significantly lower in ALS
patients than in healthy controls (WMD = − 0.13, 95%
CI [− 0.17, − 0.08], p < 0.001) but not significantly differ-
ent from that in patients with ONDs (WMD = 0.81, 95%
CI [− 1.34, 2.96], p = 0.46) (Fig. 3a). Furthermore, by
performing a separate analysis based on ethnicity, we
found ethnographic heterogeneity on HDL-C between

patients with ALS and controls. HDL-C was lower in
ALS patients in Asia (WMD = − 3.06, 95% CI [− 5.99,
− 0.13], p = 0.041), but was significantly higher in the
USA (WMD = 13.87, 95% CI [6.93–20.82], p < 0.001)
and European studies (WMD = 3.11, 95% CI [0.20–
6.01], p = 0.036) (Fig. 3b). Separate analyses of other
indicators based on ethnicity are shown in Figure S1.

Investigation of heterogeneity
The heterogeneity analysis showed that the FBG, total
protein and glucose in CSF, TIBC, and TSC% did not
show heterogeneity among studies, while Qalb, serum
ferritin, and serum iron presented substantial between-
study heterogeneity, whereas evident heterogeneity
among studies was shown for TC, LDL-C, HDL-C, TG,
fasting insulin, serum albumin, serum total protein,
serum transferrin, and CK (Table 1).
We then explored if there were potential variables that

could explain the heterogeneity. As two indicators
(serum ferritin I2 = 67.6%, p = 0.001; CK I2 = 93.2%, p <
0.001) that were of statistical importance between ALS
patients and controls also showed evident heterogeneity
between studies as described above, they were further
subjected to a meta-regression and subgroup analysis.
Meta-regression analysis suggested that sex (male%)

and the mean age of ALS patients did not have a moder-
ate effect on the significant association between serum
ferritin levels and ALS patients. Nevertheless, meta-
regression of sample size showed a significant associ-
ation between sample size and WMD for studies analyz-
ing serum ferritin (I2_res = 39.79%, regression coefficient

Fig. 1 Flowchart of the literature search according to Preferred Reporting Items for Systematic Review and Meta-Analyses
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[SE] = − 0.10 [0.04], 95% CI [− 0.18, − 0.01], p = 0.03).
Meanwhile, sex (male%), mean age of ALS patients, and
disease duration did not affect the outcome of CK meta-
analysis. Similarly, meta-regression of the sample size

also showed a significant association between sample
size and WMD for studies analyzing CK (I2_res =
80.53%, regression coefficient [SE] = 0.17 [0.05], 95% CI
[0.05–0.28], p = 0.02).

Fig. 2 Forest plot showing the quantitative synthesis of fasting blood glucose (a), serum ferritin (b), creatine kinase (c), transferrin saturation
coefficient (d) and total iron binding capacity (e) in amyotrophic lateral sclerosis patients and controls. Values and the corresponding 95%
confidence intervals of individual studies are indicated by short solid lines. The weighted mean difference (WMD) and 95% confidence intervals
are indicated by diamonds
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For serum ferritin, subgroup analysis based on sex (n =
6 studies) revealed no heterogeneity among studies either
in males (Q = 5.57, I2 = 10.3%, p = 0.35) or in females (Q
= 6.38, I2 = 21.6%, p = 0.271) (Fig. 4a), and ferritin was sig-
nificantly elevated in both male (WMD = 59.60, 95% CI
[44.36–74.83], p < 0.001) and female (WMD = 48.39, 95%
CI [37.21–59.58], p < 0.001) ALS patients compared with
that in sex-matched controls. In addition, after stratifying
studies into the large sample group (sample size greater
than average) and the small sample group (sample size less
than the average), the heterogeneity was reduced to I2 <
50% (large sample group: Q = 13.25, I2 = 47.2%, p = 0.07;
small sample group: Q = 11.37, I2 = 47.2%, p = 0.08). Both
the large (n = 8, WMD = 53.85, 95% CI [45.07–62.64], p
< 0.001) and small sample groups (n = 7, WMD = 59.59,
95% CI [51.51–67.68], p < 0.001) showed increased levels
of serum ferritin in ALS patients. Compared with controls,

there were significantly higher CK levels in male (n = 3,
WMD = 101.36, 95% CI [7.79–194.93], p = 0.03) and fe-
male (n = 2, WMD = 66.97, 95% CI [40.51–93.42], p <
0.001) ALS patients. However, the between-study hetero-
geneity was increased in the male group (Q = 63.38, I2 =
95.3%, p < 0.001), and decreased in the female group (n =
2, Q = 1.32, I2 = 24.3%, p = 0.251) (Fig. 4b).

Potential publication bias assessment and sensitivity
analysis
Sensitivity analysis demonstrated that the pooled WMDs
of FBG, ferritin, TIBS, TBC%, and CK were stable, which
indicated that the results were not affected by any single
study. Furthermore, Egger’s test showed that there was
no risk of publication bias among studies analyzing FBG,
ferritin, TIBS, TBC%, and CK indicators in ALS
(Table 1).

Table 2 Separate analyses based on control group for comparing biochemical indicator levels in blood and CSF

Biochemical
indicator

vs HC vs ONDsa

No. of
studies

No. of ALS/
controls

WMD Lower
95%CI

High
95% CI

p
value

No. of
studies

No. of ALS/
controls

WMD Lower
95%CI

High
95% CI

p
value

Total
cholesterol

16 2762/4479 3.98 −3.48 11.44 0.30 1 39/66 10.87 −1.22 22.96 0.08

LDL-C 13 2677/4347 0.46 −6.56 7.47 0.90 0 NA NA NA NA NA

HDL-C 14 2707/4376 1.67 −0.89 4.24 0.20 0 NA NA NA NA NA

TG 11 2366/2261 0.11 −9.15 9.37 0.98 0 NA NA NA NA NA

Fasting blood
glucose

8 220/204 0.13 0.05 0.21 0.001 1 81/37 0.20 −0.23 0.63 0.37

Fasting insulin 6 94/88 −6.79 −29.27 15.70 0.55 0 NA NA NA NA NA

CSF glucose 1 20/20 −0.05 −0.37 0.27 0.76 2 112/71 0.06 −0.10 0.21 0.45

CSF total
proteinb

0 NA NA NA NA NA 5 312/153 −1.45 −5.13 2.24 0.44

Qalb 1 14/20 2.00 −2.94 6.94 0.43 5 508/180 0.46 −0.55 1.47 0.37

Serum albumin 3 630/611 −1.52 −5.53 2.48 0.46 0 NA NA NA NA NA

Serum total
protein

3 705/690 −0.44 −1.03 0.14 0.14 0 NA NA NA NA NA

Serum ferritin 9 1638/1217 63.43 48.12 78.73 <
0.001

2 572/255 58.72 29.23 88.21 <
0.001

Serum
transferrinc

6 974/659 −0.13 −0.17 −0.08 <
0.001a

2 184/83 0.81 −1.34 2.96 0.46

Serum iron 6 974/659 0.34 −0.68 1.37 0.51 1 72/38 −0.49 −2.70 1.71 0.66

TIBC 3 236/304 −2.42 −3.93 −0.90 0.002 1 72/38 −1.74 −5.39 1.91 0.35

TSC % 3 858/486 2.79 1.52 4.05 <
0.001

0 NA NA NA NA NA

Creatine kinase 5 229/1843 80.29 32.90 127.67 0.001 0 NA NA NA NA NA

Abbreviations: ALS amyotrophic lateral sclerosis, CI confidence interval, CSF cerebrospinal fluid, HC healthy control, HDL-C high-density lipoprotein cholesterol, LDL-
C low-density lipoprotein cholesterol, NA not available, OND other neurological disease, Qalb CSF/serum albumin quotient, TG triglyceride, TIBC total iron-binding
capacity, TSC% transferrin saturation coefficient, WMD weighted mean difference
a: ONDs are other neurological diseases excluding ALS-related disease. Note: only one study compared ALS with lower motor neuron disease on total protein in
CSF [Süssmuth. S. 2010]
b: Süssmuth. S et al. compared total protein in CSF and Qalb between ALS patients and lower motor neuron disease but the results did not have statistical
significance (CSF total protein: WMD = −6.90, 95% CI [− 36.23–22.43], p = 0.65; Qalb: WMD = 2.00, 95% CI [−2.94–6.94], p = 0.47)
c: By performing a separate analysis based on control group, serum transferrin showed a significant decrease in ALS patients compared with healthy controls
other than ONDs
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Association analysis
Among the studies included in the meta-analysis, five
studies underwent a survival analysis of serum ferritin
levels and four studies underwent a survival analysis of
CK levels in ALS patients. Given that their conclusions
were not consistent, we then conducted a meta-analysis
of the association of high vs. low levels of ferritin and
CK with the overall survival of ALS patients. The associ-
ations between serum ferritin or CK levels and survival
are shown in the forest plot (Fig. 5). The random-effects

model was used because there was substantial hetero-
geneity among the studies related to ferritin (Q[df=5] =
16.56, I2 = 69.8%, p = 0.005). The pooled HR suggested
significantly reduced survival (HR = 1.38, 95% CI [1.02–
1.88], p= 0.04) of ALS patients with elevated serum fer-
ritin levels, whereas CK levels did not affect the survival
of patients with ALS (HR = 1.00, 95% CI [0.67–1.49], p=
0.99). No publication bias was identified in the Egger test
(serum ferritin: Egger intercept = 1.35, p > 0.34; CK:
Egger intercept = − 0.036, p > 0.87). The characteristics

Fig. 3 Forest plot showing separate analysis of serum transferrin based on control type (a) and high-density lipoprotein cholesterol based on
ethnicity (b). Values and the corresponding 95% confidence intervals of individual studies are indicated by short solid lines. The weighted mean
difference (WMD) and 95% confidence intervals are indicated by diamonds

Fig. 4 Forest plot showing subgroup analysis of serum ferritin (a) and creatine kinase (b) based on sex. M: male group, F: female group, Total:
combined male and female patients. Values and the corresponding 95% confidence intervals of individual studies are indicated by short solid
lines. The weighted mean difference (WMD) and 95% confidence intervals are indicated by diamonds

Cheng et al. Translational Neurodegeneration            (2021) 10:3 Page 7 of 12



and summary statistics of studies included in the meta-
analysis of survival are provided in Tables S2−S3.
The number of studies which showed precise bio-

chemical values and survival analysis on FBG (n = 1),
TSC (n = 0), and TIBC (n = 0) was not sufficient for
meta-analysis; therefore, we did not perform meta-
analysis on the associations of the three indicators with
patient survival.

Discussion
In this meta-analysis study, we compared 17 biochemical
indicators between 5454 ALS patients and 7986 control
subjects from 46 original studies, and found evidence of
significantly higher FBG, ferritin, TSC and CK, and sig-
nificantly lower TIBC in ALS patients than in controls.
Only FBG presented a small ES (0 < ES < 1), while the
other four indicators showed results associated with a
large ES (ES > 1). In addition, within the five ALS-linked
indicators, we found that the elevated serum ferritin
levels were associated with reduced survival in patients
with ALS. Sensitivity analysis indicated that the findings
on FBG, ferritin, TIBC, TSC and CK in the ALS patients
would not be affected by any single study included, sug-
gesting the robustness of these results.
The difference in these clinical biochemical indicators

between ALS patients and controls suggests that ALS is
a multi-systemic disease with motor neuron degener-
ation, rather than a restricted central nervous system
disorder [68]. Among the five ALS-associated indicators
identified in the meta-analysis, three are related to iron
metabolism. In addition, the serum transferrin level was

significantly lower in ALS patients than in healthy con-
trols, suggesting that the disruption of iron homeostasis
is involved in the pathophysiological process of ALS
[69]. Ferritin as a marker of body iron storage plays a
role in iron sequestration where it functions as a ferroxi-
dase, converting Fe2+ to Fe3+ as iron is internalized and
sequestered in the ferritin mineral core [70, 71]. As fer-
ritin can prevent iron from generating reactive oxygen
species, it is considered to have an anti-oxidative cellular
function [72, 73]. Under chronic inflammatory condi-
tions, the ferritin levels are increased and TIBC, which is
a measure of total serum transferrin (apotransferrin,
monotransferrin, and diferric transferrin), could be de-
creased [74]. Therefore, the disruption of iron homeosta-
sis might be the result of immune system activation [75],
which is considered as one of the pathogeneses of ALS.
TSC is often elevated in patients with HFE-linked
hemochromatosis, while the H63D HFE gene poly-
morphism is considered as a risk factor for ALS [55, 76,
77]. Moreover, some imaging studies [78, 79] have sug-
gested that ALS patients may be affected by iron over-
load. Our meta-analysis showed a negative association
between serum ferritin levels and survival in ALS pa-
tients. Previous studies [80–82] have shown that the
conservative iron chelation therapy may potentially serve
as a treatment option to reduce iron accumulation and
improve prognosis in ALS patients. Furthermore, our
meta-analysis of survival data suggested the predictive
role of serum ferritin in disease prognosis; thus, the fer-
ritin level could be used as a tool to stratify patients in
clinical trials. However, it remains to clarify whether the

Fig. 5 Forest plot showing associations of serum ferritin (a) and creatine kinase (b) levels with the overall survival in ALS patients. Pooled hazard
ratios (HR) suggest significantly reduced survival in ALS patients with elevated serum ferritin, whereas creatine kinase levels did not play a
significant role in the survival of ALS patients. Ratios and the corresponding 95% confidence intervals of studies are indicated by short solid lines.
The averaged ratios and 95% confidence intervals are indicated by diamonds
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disruption of iron homeostasis is a cause or a conse-
quence of ALS development, why ALS patients have in-
creased iron body storage and how it relates to
decreased survival. Further studies are needed to address
these questions. The difference between the current
meta-analysis and the previous one [83] was that we
conducted a more comprehensive literature search that
included more studies, with some inconsistent results,
and that we analyzed the association between ALS pa-
tients and survival time and found a negative correlation
between ferritin level and the overall survival.
Regarding the elevation of CK levels in ALS patients,

Ito found that the serum CK was elevated not only in
the early stages of ALS but also before its onset,
achieved a maximum level around onset, and then de-
clined after onset [18]. The pathophysiological mecha-
nisms underlying this phenomenon might be the muscle
cramp or active muscle denervation leading to the eleva-
tion of serum CK [84]. In addition, a study has reported
denervation-induced membrane instability in muscle tis-
sue and leakage of CK into the blood [85]. Hence, it is
reasonable to suggest that the elevation of serum CK in
ALS is caused by membrane instability or the destruc-
tion of muscle tissue due to the denervation and hyper-
excitability of motor neurons [18]. Regarding the
increase in FBG, there might be impaired control of fast-
ing glucose levels and dysfunction of the glucose-insulin
axis in patients with ALS. Considering the absence of
beta cell dysfunction, fasting insulin levels and HbA1c
did not significantly differ between ALS patients and
controls, suggesting no evidence of insulin resistance
[86], which is not consistent with our previous original
study [6]. The potential mechanism underlying the ele-
vation of FBG may be the chronic oxidative stress result-
ing from higher energy expenditure than intake in
patients with ALS [68]. That is to say, some ALS pa-
tients with bulbar paralysis leading to dysphagia and an
increase in resting energy expenditure [87–89] develop
hypometabolism due to the denervation-linked muscle
wasting. Long-term hypometabolism can activate
chronic oxidative stress [90]. Therefore, the elevation of
FBG levels is related to the oxidative stress, which also
participates in the development of ALS. However, as de-
scribed in our previous study [6], the FBG test is an ex-
cellent test for the “in the moment” glucose level, which,
however, provides limited information on the trend of
glucose level change over time. This is a limitation of
our meta-analysis as there was not enough data on
HbA1c or postprandial blood glucose hours after eating
a meal, preventing us from evaluating changes in glucose
level over time in ALS patients compared with that in
controls. Regarding the interesting finding of ethno-
graphic heterogeneity of HDL-C difference between ALS
patients and controls, we suppose that the patient

ethnicity may have an effect on the ALS phenotype. To
our knowledge, this is the first report of the
phenomenon of HDL-C. More research is needed to
confirm this result.
Heterogeneity analysis using the I2 statistic and

Cochrane Q test showed that the between-study hetero-
geneity of the 17 biochemical indicators varied from zero
to high. Among the five indicators identified as associ-
ated with ALS, only serum ferritin and CK showed
medium to high heterogeneity among studies. Therefore,
we performed meta-regression analysis and subgroup
analysis of these two indicators to explore confounders
of the between-study heterogeneity. Meta-regression
analysis suggested that the outcomes of both serum fer-
ritin and CK might be influenced by the sample size, but
not by other potential factors including sex (male%) and
mean age of ALS patients. Due to the lack of complete
data on disease duration in studies involving serum fer-
ritin, we only conducted the meta-regression analysis on
disease duration for CK, and found no influence of dis-
ease duration on the result. Therefore, the sample size of
each study investigating serum ferritin and CK is one of
the sources of heterogeneity, as partially confirmed by
subgroup analysis of serum ferritin stratified by sample
size. Subgroup analysis of serum ferritin stratified by sex
not only reduced the heterogeneity between studies but
also consistently revealed a significant association of fer-
ritin with ALS, suggesting that sex was the second con-
founder of heterogeneity. Interestingly, Sun et al. [31]
also found different distribution of serum ferritin in
male and female patients with multiple system atrophy.
For CK, despite the evident association in subgroup ana-
lysis based on sex, the between-study heterogeneity in
male patients remained high, while the heterogeneity in
female patients decreased significantly, suggesting that
sex might be a confounder of between-study heterogen-
eity for CK.
There were some limitations in this study. First, some

studies included in this analysis did not provide informa-
tion on disease duration or disease status, which pre-
vented us from performing a subgroup analysis of
whether the differences in these indicators were associ-
ated with disease duration or severity. Second, we did
not find indicators linked with energy metabolism in the
CSF between patients with ALS and control subjects.
Due to the hypothesis that CSF is a window to the brain,
more biochemical indicators in the CSF should be inves-
tigated in further studies. Third, we did not perform
meta-analysis on the associations of FBG, TSC and TIBC
with survival due to the limited number of studies. Last,
none of the biomarkers discussed in this meta-analysis
are specific to ALS, and thus do not have potential use
as diagnostic markers. Therefore, the indicators identi-
fied in our study should be confirmed in the future.
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In conclusion, the findings of our meta-analysis re-
vealed elevated FBG, ferritin, TSC, and CK levels and
decreased TIBC in patients with ALS. In addition, the
serum ferritin level was negatively associated with the
overall survival of patients with ALS. These results pro-
vide further evidence that abnormalities in energy me-
tabolism, disruption of iron homeostasis caused by
oxidative stress, and abnormal immune activation par-
ticipate in the pathophysiological process of ALS. Fur-
ther studies are required to address whether these
abnormalities are causes or consequences of ALS devel-
opment and how they influence ALS. More studies are
needed to translate the treatment potential of conserva-
tive iron chelation to benefit ALS patients.
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