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Abstract

Background: Pilea is a genus of perennial herbs from the family Urticaceae, and some species are used as courtyard
ornamentals or for medicinal purposes. At present, there is no information about the plastid genome of Pilea, which
limits our understanding of this genus. Here, we report 4 plastid genomes of Pilea taxa (Pilea mollis, Pilea glauca ‘Greizy’,
Pilea peperomioides and Pilea serpyllacea ‘Globosa’) and performed comprehensive comparative analysis.

Results: The four plastid genomes all have a typical quartile structure. The lengths of the plastid genomes ranged from
150,398 bp to 152,327 bp, and each genome contained 113 unique genes, including 79 protein-coding genes, 4 rRNA
genes, and 30 tRNA genes. Comparative analysis showed a rather high level of sequence divergence in the four
genomes. Moreover, eight hypervariable regions were identified (petN-psbM, psbZ-trnG-GCC, tmT-UGU-trnL-UAA, accD-
psbl, ndhF-rpl32, rpl32-trml-UAG, ndhA-intron and ycf1), which are proposed for use as DNA barcode regions.
Phylogenetic relationships based on the plastid genomes of 23 species of 14 genera of Urticaceae resulted in the
placement of Pilea in the middle and lower part of the phylogenetic tree, with 100% bootstrap support within
Urticaceae.

Conclusion: Our results enrich the resources concerning plastid genomes. Comparative plastome analysis provides
insight into the interspecific diversity of the plastid genome of Pilea. The identified hypervariable regions could be used
for developing molecular markers applicable in various research areas.
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Background

Pilea species are perennial herbs from the family Urtica-
ceae and mainly distributed in tropical and subtropical
regions, and some species are distributed in warm tem-
perate regions. Pilea is a species-rich genus, which is the
largest one in the family Urticaceae, and a relatively
large genus among angiosperms [1]. The leaves of many
species in Pilea have color spots, which can be used for
garden cultivation and ornamental purposes. They are
often the main plant groups in shady and humid envi-
ronments of the garden landscape. On the other hand,
in traditional Chinese pharmacopeia, several species are
recorded as medicinal plants from which a variety of
pharmacologically active substances can be extracted
[2-4]. For example, P. peperomioides is recorded in “Dai
medicine” for anti-inflammatory and detoxifying activ-
ities and is also used for erysipelas and bone setting.
However, this group that has received little attention,
and there are also few reports about Pilea. Considering
that many medicinal plants are morphologically similar,
especially those of these species-rich genera, accurate
species identification based on molecular markers is par-
ticularly important for rational utilization of these medi-
cinal plants.

The genus Pilea is also a controversial group in trad-
itional taxonomy, and previous studies have suggested
that Sarcopilea also belongs to this genus [5]. In
addition, some new species have been reported in recent
years [6, 7]. It is difficult to revise this species-rich genus
with little attention from experts and scholars. More-
over, relatively little research has been reported on this
genus, especially in the field of molecular biology and
genomics. Though some researchers have used molecu-
lar methods to explore phylogenetic relationships within
the genus Pilea [1] and its phylogenetic position in the
family Urticaceae [5], the selected DNA fragments are
one-sided and partially complete, with low bootstrap
support values, which has certain limitations. It is there-
fore necessary for us to further study the phylogenetic
relationships of Pilea species in Urticaceae.

The chloroplast is a kind of organelle involved in
photosynthesis [8] and energy transformation in plants
and algae [9, 10]. The chloroplast genome (referred to as
the plastid genome or the plastome in the present text)
encodes many key proteins that play essential roles in
photosynthesis and other metabolic properties [11]. In
previous studies, several unique characteristics of the
plastome have been widely reported, such as its mono-
phyletic inheritance [12], conserved coding region se-
quences [13] and genome structure [14, 15]. These
reliable resources provide rich information for the study
of evolution, DNA barcoding, taxonomy and phylogeny
[16-18]. Although the plastid genome is highly con-
served, some interesting structural variations have been
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observed in some taxa, such as the rare expansion of IR
regions in Strobilanthes [15], the insertion of mitochon-
drial DNA in the plastome of Anacardium [19], and the
complete or partial loss of IR regions in some le-
gumes [16, 20, 21]. In a recent study, Wang et al. re-
ported plastid genomes from 13 of 58 genera in
Urticaceae, providing an abundance of plastid genome
resources for the study of this group of plants [22].
Unfortunately, there have been no reports on the
plastid genome of Pilea plants.

Here, we sequenced, assembled and analyzed the plas-
tid genomes of four Pilea species, including a rare
succulent plant of this genus (P. serpyllacea). As orna-
mental or medicinal plants, these species have great dif-
ferences in morphology (especially their leaves) and are
representative of the genus. Our main tasks were as fol-
lows: (1) we sequenced and assembled the plastome of
four Pilea plant species; (2) we analyzed the structural
characteristics and sequence divergence of the plastomes
in Pilea; (3) we identified simple sequence repeats (SSRs)
loci and repeat sequences for further studies on popula-
tion genetic structure; (4) we inferred the phylogenetic
relationships of Pilea in Urticaceae based on the
complete plastome sequence; and (5) we identified the
hypervariable regions that could be used as DNA bar-
codes for identification of members of this genus.

Results

General features of the plastid genome

Using Illumina HiSeq sequencing platforms, 5.38-5.89
Gb of clean data from each Pilea species were obtained,
with the number of clean reads ranging from 17,935,118
to 19,627,967 (Additional File 1: Table S1). The plas-
tome was assembled based on these data. The 4 plas-
tomes of Pilea are characterized by a typical circular
DNA molecule with a length ranging from 150,398 to
152,327 bp. They all have a conservative quartile struc-
ture composed of a large single copy (LSC) region (82,
063 to 83,292 bp), a small single copy (SSC) region (17,
487 to 18,363 bp) and a pair of inverted repeat (IR) re-
gions (25,180 to 25,356 bp) (Table 1). The lengths of the
plastomes are conserved in this genus. GC content ana-
lysis showed that the overall GC contents ranged from
36.35 to 36.69% in the 4 plastomes. Note that the GC
contents in the IR regions (42.56-42.73%) are signifi-
cantly higher than those in the LSC (33.87-34.36%) and
SSC regions (30.01-30.81%). The raw sequencing data
and the four genome sequences have been deposited
into the NCBI database (accession numbers:
PRINA675740 and MT726015 to MT726018).

Genome annotation
The plastid genomes of the four Pilea species all com-
prise 113 unique genes, including 79 protein-coding
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Table 1 Basic features of the 4 plastid genomes from Pilea
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Species P. glauca P. mollis P. peperomioides P. serpyllacea
Accession number MT726015 MT726018 MT726016 MT726017
Length (bp) Total 151,210 150,587 152,327 150,398
LSC 82,662 82,063 83,292 82,551
SSC 17,836 17,864 18,363 17,487
IR 25,356 25,330 25,336 25,180
GC content (%) Total 36.69 36.72 3635 3641
LSC 34.31 34.36 33.87 33.96
IR 4264 4265 4273 4256
SSC 30.81 30.76 3001 30.23
Gene numbers Total 133 133 133 133
Protein-coding gene 88 88 88 88
tRNA gene 37 37 37 37
rRNA gene 8 8 8 8

genes, 4 rRNA genes and 30 tRNA genes (Additional
File 1: Table S2). The gene order and gene numbers of
these four species are highly similar, showing conserved
genomic structures. Figure 1 shows the schematic dia-
gram of the plastome of Pilea. Introns play a significant
role in selective gene splicing [23]. Among the 79
protein-coding genes annotated, nine unique genes
(rps16, rpoCl, atpF, petB, petD, rpll6, rpl2, ndhB, ndhA)
contained one intron, and two unique genes (ycf3, clpP)
contained two introns. Moreover, six unique tRNA
genes (truK-UUU, rnG-UCC, truL-UAA, trnV-UAC,
trul-GAU, trnA-UGC) contain one intron. There are
seven protein-coding genes, four rRNA genes, and seven
tRNA genes completely duplicated in the IR regions, so
they exist as two copies. The rpsl2 gene is a trans-
spliced gene, and the 5" end is located in the LSC region.
However, the 3" ends are found in the IRa and IRb re-
gions. These results are similar to those in other species
in Urticaceae [22].

Repeat analysis
SSRs, also referred to as microsatellite sequences, pro-
vide a large amount of genetic information [24—26]. Be-
cause of its high genetic polymorphism, SSRs are often
used for the development of molecular markers and play
an important role in the identification of species [27,
28]. In this study, we detected 68, 75, 71, and 80 SSRs in
the 4 analyzed species (Fig. 2a, Additional File 1: Table
S3). Most SSRs are mononucleotide homopolymers, par-
ticularly A/T, which accounts for 70.75% of the total.
Hexanucleotide repeats are detected only in P. mollis.
These SSRs showed high polymorphism, suggesting
great potential in the identification of Pilea species.

In the plastid genomes of Pilea species, we detected
four types of interspersed repeats. Most of them are

forward repeats and palindromic repeats (Fig. 2b). By
contrast, there are only two reverse repeats and one
complementary repeat. The only complementary repeats
were found in P. peperomioides. The detailed sequences
showed in Additional File 1: Table S4. Moreover, the
length of these short interspersed repeats mainly ranged
from 30 to 34 bp. We note one forward repeat with a
length of 102 bp (detected in P. serpyllacea).

Contraction and expansion analysis of IR regions
The contraction and expansion of IR regions are consid-
ered to be an important reason for the length diversity
in plastid genomes [29]. In addition, with the expansion/
contraction of the IR regions, genes near the border have
an opportunity to access IR or SC regions [30]. We re-
trieved the published plastomes of six species from Urti-
caceae and compared them with those of the four Pilea
species. We found several genes spanning or near the
boundary of the IR and SC regions. They include mainly
rps19, rpl22, rpl2, ycfl, ndhF and trnH (Fig. 3). Notably,
an abnormal expansion of IR regions was observed in
Gonostegia hirta. The IR regions are more than 30,000
bp in G. hirta, and more genes can access the IR regions
(e.g., rpl36 and rps19). However, the length of IR regions
in the other nine species is approximately 25,000 bp, and
the rps19 gene spans the LSC/IRb boundary, except in
Droguetia iners and Hesperocnide tenella; the rps19 gene
in the former is in the LSC region, while that in latter is
completely in the IR region. In addition, the trnH gene
completely accesses IR regions in H. tenella, obtaining
two copies. It can be seen that the genomic structure,
gene order and numbers of some species in Urticaceae
have changed obviously.

Furthermore, the ycfl gene crosses the SSC/IRa
boundary, most of which is located in the SSC region.
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The length of the ycfl gene in the four Pilea species var-
ies widely, indicating the possibility of sequence differ-
ences. Surprisingly, we annotated two copies of ycfl in
the four Pilea plants; they cross the IRb/SSC boundary
and are not annotated in other species. Sequence align-
ment found that the two copies of ycfl exist in other
taxa, indicating that the previous annotation is imper-
fect, although one of the two copies is a fragment of ycf1
and is generally considered to be a pseudogene. Interest-
ingly, a small fraction of the ndhF gene (less than 100
bp) crosses the IRb/SSC regions, which means that the
first copy of yc¢fl has an overlap with ndhF in Pilea
species. The overlapping areas are 108 bp in length.

Genomic divergence

To evaluate the genomic divergence, sequence identity
analysis based on mVISTA [31] was performed among
the 4 Pilea species, with the reference being the

plastome of P. peperomioides. We observed varying de-
grees of sequence divergence, especially in the LSC and
SSC regions. In contrast, the IR regions were more con-
served. Most of these highly variable regions were ob-
served in conserved noncoding sequences (CNS) (Fig. 4).
However, the regions with the greatest sequence diver-
gence were found in protein-coding regions, in which
the gene ycfl is present. The coding regions of ycfl in
the four Pilea species showed significant differences, and
the similarity was even less than 50% for some frag-
ments. Overall, the analyzed genomic sequences showed
rather high levels of sequence divergence throughout the
genus Pilea.

To quantify the levels of DNA polymorphism, the 4
genomes were aligned and analyzed by using DnaSP v6.0
[32]. We detected 8 hypervariable regions, with Pi values
exceeding 0.06 (Fig. 5), petN-psbM (Pi = 0.06067); psbZ-
trnG-GCC (Pi=0.07067); trnT-UGU-trnL-UAA (Pi=
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0.06433); accD-psbl (Pi=0.06003); ndhF-rpl32 (Pi=
0.06100); rpi32-trulL.-UAG (Pi=0.06800); ndhA-intron
(Pi=0.06533), and most regions of the gene ycfl (Pi
values ranging from 0.07367 to 0.17067). The Pi values
are listed in parentheses. Notably, most regions of the
plastome sequences had Pi values greater than 0.02 (ex-
cept for IR regions), exhibiting abundant polymorphism
of the plastid genome in Pilea.

Nucleotide variations in protein-coding genes

The protein-coding regions are highly conserved in plas-
tid genomes [33]. We analyzed the protein-coding se-
quences of 79 identified unique orthologous genes in 4
Pilea taxa. Surprisingly, these protein-coding genes also
showed high levels of variation (Fig. 6a, Additional File
1: Table S5). Of the 79 shared genes, 63 had a mutation
rate of more than 2%, and 30 had a mutation rate of
more than 4%. The gene with the highest mutation rates
was ycfl (16.62%), followed by matK (10.54%), ccsA

(8.74%) and rpsl5 (8.42%). Only two genes (psb] and
psbL) showed extreme conservation without any variable
sites. Moreover, we observed a total of 11 genes (ycfl,
ndh¥, rpsl9, accD, rpoC2, rpsl6, rpoA, rpl20, ndhD,
rpoC1 and ycf2) with InDels in nucleotide sequences by
using DnaSP v6.0 [32]. Among these, ycfl had 35 InDels,
followed by ycf2 (9), accD (4) and rpoC2 (3). Considering
that the protein-coding regions are highly conserved,
protein-coding sequences with high nucleotide mutation
rates are usually infrequent in the same genus, and these
results showed interspecific diversity within the plastid
genome of Pilea.

In this study, synonymous (dS) and nonsynonymous
(dN) substitution rates, along with dN/dS, were esti-
mated for the 79 shared genes in parallel by using PAML
v4.9 [34]. Among the 79 genes, ycfl, matK, ccsA and
rpsl5 had relatively high dN values, and rps16, rpl32,
ndhF and psa] had relatively high dS values (Fig. 6b,
Additional file 1: Table S6). Most genes exhibited
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considerably low dN/dS values (less than 0.6), implying
that most of the protein-coding genes were under puri-
fying selection during evolution. However, the dN/dS ra-
tio of three genes (rpl36, clpP and accD) was between
0.6 and 1.0. Moreover, the dN/dS ratio was greater than
1.0 for petL, rps12, ycfl and ycf2, indicating that they
were under positive selection during evolution. These re-
sults clearly indicated that the plastid genes in the differ-
ent species of Pilea may have been subjected to different
selection pressures.

Phylogenetic analysis

In this study, we constructed maximum likelihood (ML)
trees by using the complete plastome sequences as data
sets (detailed materials are shown in Additional File 1:
Table S7). The phylogenetic tree has high bootstrap sup-
port in all nodes, showing the reliability of the phylogeny
recovered (Fig. 7).

Our phylogenetic tree displayed two clades clearly and
then further diversified into four subclades with 100%
bootstrap support (ML). These four subclades corres-
pond to four subfamilies: Boehmerioideae, Cecropioi-
deae, Lecanthoideae and Urticoideae. This is consistent
with the traditional classification [5]. All 4 Pilea species
clustered together (all nodes have BS =100 for the ML
method) and formed a monophyletic group that is a
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sister group to Elatostema. They all belong to the sub-
family Lecanthoideae.

Discussion

Conserved genome structure and gene content

In our study, we reported four plastid genomes of Pilea
taxa for the first time. Our assembly results showed that
the lengths of the 4 plastid genomes ranged from 150,
398 bp to 152,327 bp and that they have a typical tetrad
structure. In terms of structure, these results are similar
to those of most Urticaceae plants [35, 36]. In this study,
the longest and shortest plastid genomes in Urticaceae
were 159,085bp (Gonostegia hirta) and 146,842 bp
(Hesperocnide tenella), respectively. This suggests that
the plastid genomes of Urticaceae may have undergone
different evolutionary processes. Among our four Pilea
taxa, the longest genome sequence was that of P. pepero-
mioides (152,327 bp) and the shortest was that of P. ser-
pyllacea (150,398 bp), and we did not detect gene gain
or loss, suggesting that the plastomes are still relatively
conserved in Pilea.

Moreover, we detected SSRs and repeat sequences in
the four plastid genomes. Of the 294 total SSRs, 215 are
mononucleotide repeats, accounting for the majority of
all SSRs (73.13%). These mononucleotide repeats are
mainly A/T repeats, and they have a significant impact
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Fig. 7 Phylogenetic relationships of species from Urticaceae inferred using the maximum likelihood (ML) method. The phylogenetic tree was
constructed using the complete plastome sequences among the 25 plastid genomes. The number at the bottom of the scale, 0.01, means that
the length of the branch represents the replacement frequency of bases at each site of the genome at 0.01. The bootstrap values were calculated
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on the overall G/C content of the genomes [37, 38].
These SSR sequences are often composed of simple re-
peating units such as polyadenine (Poly-A) or polythy-
mine (Poly-T) repeats. With length polymorphisms in
different species, they are often used as molecular
markers. These abundant SSR loci in plastomes have
been applied in species identification [16, 39]. Inter-
spersed repeats are thought to be essential for promot-
ing plastome rearrangements [40, 41]. We note that
there is one forward repeat with a length of 102 bp in P.
serpyllacea, and this is effective for increasing the length
of the plastome. Whether these repeats caused the re-
arrangement of the plastomes of Pilea species is an in-
teresting question.

Variation in IR regions is a common phenomenon in
angiosperms. Compared with the overall absence of one
IR region [42-44], the expansion/contraction of IR re-
gions is more common in angiosperms [45, 46]. By com-
parative analysis, we found that G. hirta has significantly
expanded IR regions, which also led to an increase in
the overall length of the plastome. In our tested four
Pilea species, the length of the IR regions ranged from
25,180 bp to 25,356 bp, showing no significant difference.
As far as the boundary regions of IR/SC are concerned,
the position of genes near the boundary in the four Pilea
species is similar to that in most angiosperms. This indi-
cates that the Pilea species did not experience significant
expansion/contraction in the IR regions. However, we
observed that the overlap of the ycfl and SSC regions
(4634 bp) in P. peperomioides was longer than that in
the other three species (4203 bp-4314 bp), and the over-
lap with IRa was similar (803 bp—843 bp). This suggests
that there is a significant difference in ycfl gene se-
quences. In addition, the first copy of ycfl overlaps with
ndhF in Pilea taxa, and this result is also observed in
Arabidopsis; the overlaps are approximately 30 bp [47].
Whether these overlaps affect the transcription or trans-
lation of these proteins is also an interesting subject.

Sequence divergence reveals the interspecific diversity of
plastid genomes in Pilea

In our comparative plastid genomics analysis, we first
compared the whole plastid genomes based on mVISTA.
Specifically, we also calculated the percentage of variable
sites and estimated the ratios of dN/dS among 79 ortho-
logous protein-coding genes. Like in most angiosperms,
the noncoding regions of plastomes in Pilea showed
higher polymorphism than did the coding regions. Sur-
prisingly, we also found rather high levels of sequence
differences in the coding regions of Pilea taxa. Of the 79
orthologous genes identified, 63 had a mutation rate of
more than 2%, and 30 had a mutation rate of more than
4%. This is rare in other genera because usually only the
ycfl gene has a high mutation rate [48]. The mutation
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rate of the ycfl gene in the four Pilea species is an aston-
ishing 16.62%. Additionally, a total of 35 InDels were de-
tected, including a large fragment insertion in P.
peperomioides (177 bp, data not shown). These InDels
caused an increase in the length of the ycfl gene in P.
peperomioides. In addition, unusually high nucleotide
mutation rates were also observed in matK, ccsA and
other genes.

In general, dN changes are subject to bidirectional ef-
fects of varied mutation rates and selective constraints.
A ratio of dN/dS greater than 1 is thought to be a sign
that the gene has experienced selection pressure. In our
study, the dN/dS ratios indicate that four genes (petL,
rps12, ycfl and ycf2) may have undergone positive selec-
tion in Pilea. The rapid evolution of protein-coding
genes is closely related to the adaptive evolution of spe-
cies [49, 50], indicating that Pilea species may have ex-
perienced a rapid evolutionary process, resulting in a
species-rich genus.

Eight hypervariable regions could be used as potential
DNA barcodes

Moreover, we used DnaSP v6.0 to quantify DNA se-
quence polymorphisms by conducting a sliding window
analysis (window length, 500 bp; step size, 500 bp). Simi-
lar to the results of mVISTA, most regions except IR re-
gions have high Pi values, which means that several
regions have potential for the development of molecular
markers. We recommend eight hypervariable regions,
petN-psbM  (Pi=0.06067); psbZ-trnG-GCC  (Pi=
0.07067); trnT-UGU-trnL-UAA (Pi = 0.06433); accD-psbl
(Pi=0.06003); ndhF-rpl32 (Pi=0.06100); rpi32-trnL-
UAG (Pi=0.06800); ndhA-intron (Pi=0.06533) and
almost the entire ycfl gene (Pi values ranging from
0.07367 to 0.17067), as potential molecular markers for
Pilea taxa. In particular, the gene ycfl, with a large num-
ber of InDels, can be used as a specific molecular
marker, which is of great significance for us to correctly
identify and rationally utilize medicinal taxa from this
genus.

Phylogenetic analysis of Pilea based on the plastid
genome

Compared to nuclear and mitochondrial genomes, plas-
tid genomes are highly conserved, and they have been
widely used in phylogenetic and evolutionary studies
[51-53]. With the development of high-throughput se-
quencing technology, the chloroplast genome sequence
plays an important role in species identification as a
super barcode [54, 55].

The phylogenetic relationships of Pilea in Urticaceae
were analyzed based on the complete plastome se-
quences. In a one-sided analysis based on plastid ge-
nomes, Pilea and Elatostema were found to be sister
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groups to each other, both belonging to the subfamily
Lecanthoideae. This is consistent with the results of
traditional classification studies [5]. However, due to the
maternal inheritance of the plastid genome [56], these
results are limited. Accurate phylogenetic relationships
still require a comprehensive analysis of nuclear and
organellar genes [57]. Furthermore, only 14 of the 58
genera of Urticaceae have been sequenced to date. More
genome sequencing is needed in the future to determine
the relationships among Pilea and other species from
the family Urticaceae.

Conclusions

In this study, four plastid genomes of Pilea were se-
quenced and assembled for the first time in this genus.
These 4 plastomes have similar structural characteristics
and a typical quartile structure similar to that in most
angiosperms. Unusually, the sequences of these 4 plas-
tomes, including the relatively conserved protein-coding
regions, have rather high levels of variability, which pro-
vides insight into the interspecific diversity of the plastid
genome of Pilea. In addition, eight hypervariable regions
were identified, which could be used as molecular
markers for the identification of this genus. Our results
enrich the data on the plastid genomes of Urticaceae
and provide the basis for the phylogenetic reconstruc-
tion of Pilea.

Methods

Plant material, DNA extraction and sequencing

Fresh leaves of four Pilea species were collected from
the local flower market of Guangzhou, Kunming and
Sugian. They were identified by Professor Jie Yu. These
species are cultivated as ornamental plants, and no per-
mission is required to collect these samples. Our experi-
mental research, including the collection of plant
materials, are complies with institutional, national or
international guidelines. All the samples were deposited
in the Herbarium of Southwest University, Chongging,
China (voucher code: UP200602 to UP200605). The de-
tailed information for the plant samples shown in Add-
itional File 1: Table S8. Total genomic DNA was
extracted by using the CTAB method [58]. The DNA li-
brary with an insert size of 350 bp was constructed using
a NEBNext® library construction kit and sequenced by
using the HiSeq Xten PE150 sequencing platform. Se-
quencing produced a total of 5.4-5.9 Gb of raw data per
species. Clean data were obtained by removing low-
quality sequences, including sequences with a quality
value of Q < 19 that accounted for more than 50% of the
total bases and sequences in which more than 5% bases
were “N”.
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Genome assembly and annotation

De novo genome assembly from the clean data was ac-
complished utilizing NOVOPlasty v2.7.2 [59], with a k-
mer length of 39 bp and a sequence fragment of the rbcL
gene from maize as the seed sequence. The correctness
of the assembly was confirmed by using Bowtie2 (v2.
0.1) [60] to manually edit and map all the raw reads to
the assembled genome sequence under the default set-
tings. The plastid genome was annotated initially by
using CPGAVAS2 [61] with a reference genome (Elatos-
tema dissectum, GenBank: NC_047192.1). GeSeq was
then used to confirm the annotation results [62]. Fur-
thermore, the annotations with problems were manually
edited by using Apollo [63], and genome maps were
drawn by OGDRAW [64]. The raw sequencing data and
the four genome sequences have been deposited in Gen-
Bank (accession numbers: PRJNA675740; MT726015,
MT726016, MT726017 and MT726018).

Repeats and SSR analysis

The GC content was determined by using the cusp pro-
gram provided by EMBOSS (v6.3.1) [65]. The simple se-
quence repeats (SSRs) were identified using the online
website MISA (https://webblast.ipk-gatersleben.de/misa/
), including mono-, di-, tri-, tetra-, penta-, and hexanu-
cleotides with minimum numbers of 10, 5, 4, 3, 3, and 3,
respectively [66]. Additionally, REPuter (https://bibiserv.
cebitec.uni-bielefeld.de/reputer/) was used to calculate
palindromic repeats, forward repeats, reverse repeats,
and complementary repeats with the following settings:
hamming distance of three and minimal repeat size of
30 bp [67].

Genome comparison

The plastomes of the 4 Pilea species were compared by
using the shuffle-LAGAN mode in mVISTA [68, 69] to
identify interspecific variations (http://genome.lbl.gov/
vista/mvista/submit.shtml). A total of 79 orthologous
genes among the 4 species were identified and extracted
by using PhyloSuite [70]. The corresponding nucleotide
sequences were aligned by using MAFFT (v 7.450) [71]
implemented in PhyloSuite. We used MEGA v6.0 [72] to
calculate the percentage of variable sites in the protein-
coding genes. We also conducted a sliding window ana-
lysis (window length: 500 bp, step size: 500 bp) by using
DnaSP v6.0 [32] to calculate the nucleotide polymorph-
ism (Pi) among the 4 species. Finally, IRscope (https://
irscope.shinyapps.io/irapp/) was used to visualize the IR
boundaries in these genomes [73].

Analysis of the nucleotide substitution rate

The protein-coding sequences in the previous step were
processed in parallel. We used the CODEML module in
PAML v.4.9 [34] to estimate the rates of nucleotide
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substitution, including dN, dS, and the ratio of dN to dS.
The detailed parameters were as follows: CodonFreq =2
(F3 x 4 model); model = 0 (allowing a single dN/dS value
to vary among branches); cleandata =1 (removing sites
with ambiguous data); and other parameters in the
CODEML control file set to the default settings. A
phylogenetic tree of each gene was generated by using
the maximum likelihood (ML) method implemented in
RAxML v8.2.4 [74].

Phylogenetic analysis

The plastid genomes of 19 species belonging to the fam-
ily Urticaceae were downloaded from GenBank (NCBI,
https://www.ncbi.nlm.nih.gov/). These species belong to
4 subfamilies (Additional File 1: Table S7). Two species
from Moraceae (Morus indica and Ficus carica) were
used as outgroups. The complete plastome sequences
were aligned by using MAFFT (https://mafft.cbrc.jp/
alignment/server/) online version 7.471 [71]. These
aligned sequences were used to construct the phylogen-
etic trees by using the maximum likelihood (ML)
method implemented in RAXML v8.2.4 [74]. The param-
eters were “raxm!lHPC-PTHREADS-SSE3 -f a -N 1000
-m GTRGAMMA -x 551314260 -p 551314260”. The
bootstrap analysis was performed with 1000 replicates.
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