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Comparative genomic analysis of
Polypodiaceae chloroplasts reveals fine
structural features and dynamic insertion
sequences
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Abstract

Background: Comparative chloroplast genomics could shed light on the major evolutionary events that
established plastomic diversity among closely related species. The Polypodiaceae family is one of the most species-
rich and underexplored groups of extant ferns. It is generally recognized that the plastomes of Polypodiaceae are
highly notable in terms of their organizational stability. Hence, no research has yet been conducted on genomic
structural variation in the Polypodiaceae.

Results: The complete plastome sequences of Neolepisorus fortunei, Neolepisorus ovatus, and Phymatosorus
cuspidatus were determined based on next-generation sequencing. Together with published plastomes, a
comparative analysis of the fine structure of Polypodiaceae plastomes was carried out. The results indicated that the
plastomes of Polypodiaceae are not as conservative as previously assumed. The size of the plastomes varies greatly
in the Polypodiaceae, and the large insertion fragments present in the genome could be the main factor affecting
the genome length. The plastome of Selliguea yakushimensis exhibits prominent features including not only a large-
scale IR expansion exceeding several kb but also a unique inversion. Furthermore, gene contents, SSRs, dispersed
repeats, and mutational hotspot regions were identified in the plastomes of the Polypodiaceae. Although dispersed
repeats are not abundant in the plastomes of Polypodiaceae, we found that the large insertions that occur in
different species are mobile and are always adjacent to repeated hotspot regions.

Conclusions: Our results reveal that the plastomes of Polypodiaceae are dynamic molecules, rather than
constituting static genomes as previously thought. The dispersed repeats flanking insertion sequences contribute to
the repair mechanism induced by double-strand breaks and are probably a major driver of structural evolution in
the plastomes of Polypodiaceae.
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Background
Chloroplasts are the plant organelles in which photosyn-
thesis takes place. Each chloroplast contains its own gen-
ome (plastome), which usually occurs in multiple copies
within the organelle [1]. In recent years, the chloroplast
(cp) genome has become a preferred target for compara-
tive genomics because of its mostly uniparental inherit-
ance, compact size, lack of recombination, and moderate
evolutionary rate compared to the two other genomes
found in plant cells (nuclear and mitochondrial ge-
nomes) [2–4]. Advances in DNA sequencing technology
have provided highly efficient, cost-effective sequencing
platforms, and the properties of the plastome made it
one of the first candidates for high-throughput sequen-
cing and assembly. Plastomes have now been extensively
used for exploring phylogenetic relationships and under-
standing evolutionary processes of plants [5–7].
Ferns, which are the second largest group of vascular

plants, play important ecological roles and hold a pivotal
phylogenetic position [8]. The sequencing of fern plas-
tomes has greatly increased our understanding of the
plastomic diversity and evolution of this lineage. The
sizes of the plastomes of ferns are highly conserved, and
they usually exhibit a circular structure ranging from
120 to 170 kb [9]. The plastomes of ferns typically con-
sist of four parts, including a pair of large inverted re-
peats (IRs), a large single copy (LSC) region, and a small
single copy (SSC) region. Almost all fern IRs contains a
core gene set of four ribosomal RNAs (16S, 23S, 4.5S,
and 5S) and several tRNA genes (trnA-UGC, trnI-GAU,
trnN-GUU, and trnR-ACG). Structurally, the plastome
of fern lineages has evolved in a conservative manner.
Most fern plastomes are largely collinear, requiring only
a few inversions and IR expansions to account for the
large-scale structural rearrangements observed among
major lineages. For example, the unique chloroplast gen-
omic rearrangement of core leptosporangiate ferns (Sal-
viniales, Cyatheales, and Polypodiales) and Schizaeales
can be explained by an expansion of the IRs and “two in-
versions” [10], which mainly affect the orientation and
gene content of the IRs [11]. The conservative nature of
the plastome makes it homogeneous enough to allow
comparative studies to be conducted across higher-level
taxa, but it is also sufficiently divergent to capture vari-
ous evolutionary events.
The Polypodiaceae family is one of the most species-

rich groups of extant ferns [12], displaying remarkable
morphological and systematic diversity. Leptosporangi-
ate ferns diversified in an angiosperm-dominated can-
opy during the Cenozoic radiation period, thus
establishing the diversity of the Polypodiaceae [13].
Most species within Polypodiaceae are epiphytes, and
this family represents one of the most diverse and
abundant groups of pantropical vascular epiphytes in

tropical and subtropical forests [14, 15]. The plastomes
of Polypodiaceae have undergone a variety of complex
genomic reconstructions over evolutionary time, mak-
ing them significantly different from those of the basal
ferns (Marattiales, Ophioglossales, Psilotales, and Equi-
setales). Few studies have analyzed the gene content
and structural changes of Polypodiaceae plastomes in
detail because plastome evolution in Polypodiaceae is
considered relatively dormant compared with that in
other lineages. Most of the relevant research has fo-
cused on phylogenetic topics. Recent studies, however,
have shown that the plastomes of polypods contain not
only hypervariable regions but also widespread mobile
sequences [16, 17]. Unfortunately, the corresponding
studies have rarely involved Polypodiaceae because of
the limited available plastome data for this group. This
indicates that the currently available plastome informa-
tion may be insufficient to elucidate the evolutionary
patterns of the fern genome, and the exploration of the
structural diversity of Polypodiaceae plastomes is also
far from sufficient. Comparative genomic analyses of
the chloroplasts among closely related species can gen-
erate genetic markers and provide a more exhaustive
understanding of the evolutionary trajectory of the gen-
ome [18, 19]. Nevertheless, the plastome structural and
sequence homogeneity among low-level taxa makes it
difficult to identify various evolutionary events. There-
fore, it is necessary to compare the fine structural char-
acteristics of Polypodiaceae plastomes to increase the
understanding of the diversity and dynamic evolution
of fern plastomes. Upon this premise, we performed the
first family-scale comparative analysis of plastome
structure and content in Polypodiaceae.
We utilized a high-throughput sequencing platform to

assemble three new plastomes, two from Neolepisorus and
one from Phymatosorus, and used them to perform
detailed comparative analysis with the set of all previously
published Polypodiaceae plastomes in an effort to: 1)
characterize the genomic structure and gene content of
newly sequenced plastomes; 2) examine Polypodiaceae
plastome variation at the fine structural level; and 3) gain
insight into the plastome evolution of Polypodiaceae.

Results
Genome assembly and annotation
Illumina paired-end sequencing generated 6,760,171, 6,
821,122, and 6,764,140 raw reads from Neolepisorus
fortunei, Neolepisorus ovatus, and Phymatosorus cuspi-
datus, respectively (Table 1). A total of 635,763 to 1,054,
231 clean reads were mapped to the reference plastome
and 11 to 16 contigs were assembled for three species,
reaching over 160× coverage on average over the plas-
tomes. The draft plastome of N. fortunei, N. ovatus, and
P. cuspidatus had six, two, and three gaps, respectively.
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The gap regions for each resulting plastome were filled
by using PCR-based sequencing with corresponding
pairs of primers (Table S1). The length of the complete
plastome sequences ranged from 151,915 to 152,161 bp,
with an average GC content of 41.7% (range 41.3–42.3%;
Table 1). All plastomes exhibited the typical quadripar-
tite structure, harboring a pair of large IRs (24,609–24,
756 bp). The two IR regions divide the plastomes into an
LSC region (80,670–81,175 bp) and an SSC region (21,
601–21,733 bp) (Fig. 1, Table 2). The three newly
sequenced plastomes have a similar gene content, with a
few notable distinctions. Compared to the other two
plastomes, loss of trnR-UCG is observed in P. cuspidatus
(Fig. 1). rps16 harbors an approximately 470-bp intronic
deletion in N. fortunei (Fig. S1). Furthermore, N. fortunei
has extra complete copies of ndhB in IRb because of its
IRa/LSC border adjacent to ndhB, whereas N. ovatus
and P. cuspidatus only contains a second fragment of

Fig. 1 Plastome gene maps of N. ovatus, N. fortunei, and P. cuspidatus. The plastome map represents all three species since their gene numbers,
orders and names are the same, except that N. fortunei has lost the trnR-UCG gene. Genes located outside and within the black circle are
transcribed in the clockwise and counterclockwise directions, respectively. Different colors represent genes belonging to different
functional groups

Table 1 Details of plastome sequencing and assembly

Sample N. ovatus N. fortunei P. cuspidatus

Raw Reads 6,760,171 6,821,122 6,764,140

Clean reads 5,765,899 5,907,868 5,880,444

Raw data 2.03G 2.05G 2.03G

Clean data 1.73G 1.77G 1.76G

Contig 13 11 16

Genome coverage (×) 313 292 160

Size (bp)/GC% 151,936/42.3 151,915/41.3 152,161/41.4
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ndhB in IRb due to their IRa/LSC border lies within
ndhB.

Whole-chloroplast genome comparison among
Polypodiaceae
The three newly obtained plastomes of Polypodiaceae
(N. ovatus, N. fortunei, and P. cuspidatus) were com-
pared with nine previously published plastomes repre-
senting three subfamilies of Polypodiaceae, i.e.,
Microsoroideae, Platycerioideae, and Drynarioideae
(Table 2). The Polypodiaceae plastomes appeared to be
structurally similar to each other, showing a typical
quadripartite structure consisting of two IRs separated
by LSC and SSC. Overall, the analysis showed that the
size of the plastome varies widely among Polypodiaceae,
ranging from 151,936 bp in N. ovatus to 164,857 bp in
Selliguea yakushimensis. The lengths of the LSC and
SSC regions of most species are approximately 81 kb
and 21 kb, respectively, but these two regions of the
Drynaria roosii plastome are significantly larger, reach-
ing 86 kb and 24 kb, respectively. Furthermore, the plas-
tome of Leptochilus hemionitideus also contains a larger
SSC (25,492 bp). The IR regions of the Polypodiaceae
plastomes show significant variation in length compared
to the SC regions, varying from 23,416 to 32,017 bp. The
base composition of the Polypodiaceae plastomes is
more conservative relative to their size variation. The
distribution of GC content is heterogeneous, with the
highest being observed in IR regions (42.1–45.9%),
followed by LSC (37.9–43.6%), while the lowest is found
in the SSC region (34.4–43.0%) (Table 2).
The gene order of the plastomes of Polypodiaceae is

almost collinear. However, the structure of the S.

yakushimensis plastome is considerably different from
the typical structure of Polypodiaceae. A notable differ-
ence in the plastome of S. yakushimensis is a transpos-
ition of an ~ 6 kb segment spanning ndhF to ccsA from
the SSC to the IR; this inversion appears at the junction
of IRb/SSC (Fig. 2). At another junction, SSC/IRa, we
observed an extensive IR expansion resulting in the
duplication of ycf1, chlL, and chlN at the end of IRa. In
addition, a minor inversion (~ 2 kb) was detected
between Lepidomicrosorum hederaceum and D. roosii
plastomes, which was located in rps15-ycf1 in the SSC
region of L. hederaceum and rrnL-trnR in the LSC
region of D. roosii, respectively (Fig. 2). Genomic struc-
tural changes that occur in intergenic regions may play
an additional evolutionary role, but they are difficult to
detect because intergenic regions have no coding func-
tion. This unique inversion may be related to inserted
sequenced or is an intermediate form of the evolution of
other plastomes. As the number of published Polypodia-
ceae plastomes increased, the evolutionary processes of
Polypodiaceae should become clearer.
The size variations of the plastome may be a result of

the dynamic changes of IR boundaries [20]. However,
the Polypodiaceae plastomes exhibit high similarity at
SC/IR boundaries, except in S. yakushimensis (Fig. 3).
The trnN-GUU gene is located in the IR adjacent to
either ndhF or chlL at the SSC/IR border. The ndhF and
chlL genes cross the SSC/IR border, extending from 14
to 53 bp and 51–99 bp in the IR, respectively. The IRa/
LSC border is located within the coding region of ndhB
and generates a pseudogene of 1,134–2,345 bp at the
LSC/IRb border in 11 of the plastomes, except for that
of N. fortunei. The LSC/IRb border is located within or

Table 2 Comparison of general features of the plastomes of Polypodiaceae

Subfamily Microsoroideae Platycerioideae Drynarioideae

Species NO NF PC PN LC LHem LM LHed PBi PBo DR SY

LSC (bp) 81,117 80,670 81,175 81,506 81,093 81,403 81,244 81,395 79,002 82,479 86,040 80,975

SSC (bp) 21,601 21,733 21,688 21,759 21,679 25,492 21,797 21,756 21,485 21,723 24,433 19,848

IR (bp) 24,609 24,756 24,649 24,643 27,113 24,594 27,494 24,593 28,249 26,986 23,416 32,017

Size (bp) 151,936 151,915 152,161 152,551 156,998 156,083 158,029 152,337 156,985 158,174 154,305 164,857

PGGs 88 89 88 88 88 87 88 88 88 88 88 91

tRNAs 35 35 34 35 35 34 35 35 33 35 35 35

rRNA 8 8 8 8 8 8 8 8 8 8 8 8

Pseudo 1 0 1 1 0 2 1 1 1 1 1 1

Genes 132 132 131 132 131 131 132 132 130 132 132 135

LSC (GC%) 40.2 42.1 40.4 41.5 40.46 43.6 40.5 41.9 37.9 40.1 39.8 39.5

SSC (GC%) 37.5 38.8 37.6 39.0 37.9 43.0 37.9 39.7 34.4 37.4 36.6 39.8

IR (GC %) 44.9 45.1 44.8 45.3 45.4 45.9 45.3 45.2 44.9 45.6 45.1 42.7

GC (Total%) 41.3 42.3 41.4 42.4 41.8 44.2 41.8 42.7 39.9 41.6 40.9 40.8

NO N. ovatus, NF N. fortunei, PC P. cuspidatus, PN P. niponica, LC L. clathratus, LHem L. hemionitideus, LM L. microphyllum, LHed L. hederaceum, PBi P. bifurcatum,
PBo P. bonii, DR D. roosii, SY S. yakushimensis, PCG protein-coding gene, Pseudo pseudogene
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next to the trnI-CAU gene. In contrast to the subtle
changes in IR boundaries, the IR of S. yakushimensis has
experienced extensive expansion, capturing the ycf1,
chlL, and chlN genes in the SSC region. This expansion,
combined with the inversion of the ndhF-ccsA region,
causes a unique SSC/IR boundary in the S. yakushimen-
sis plastome (Fig. 3). The SC/IR boundaries of the Poly-
podiaceae plastomes are highly similar but not identical,
indicating that the expansion and contraction of IR is an
independent and recurrent phenomenon in evolution.
Furthermore, the change in IR boundaries is not suffi-
cient to cause a large difference in genome size, and we
believe that microstructural changes (such as insertions
and deletions) may be responsible for the difference.
There are some variations in the gene content of

Polypodiaceae plastomes due to varying degrees of IR
boundary changes and inversions. trnR-UCG exists in all
Polypodiaceae species except for L. hemionitideus, P.
cuspidatus, and Platycerium bifurcatum. trnV-UAC is

also absent in the plastome of P. bifurcatum. Another
difference is that the plastome of N. fortunei contains an
additional intact ndhB gene in the IR region, whereas
only one ndhB fragment exists in other species. Further-
more, close inspection of the gene annotations of the 12
Polypodiaceae plastomes indicated that the rpoC1 gene
of the L. hemionitideus has been pseudogenized by a
frameshift mutation.

Sequence diversity and mutational hotspots of the
Polypodiaceae plastome
The multiple sequence alignments performed in mVISTA
software showed the similarity of the whole sequences of
the plastomes of the 12 Polypodiaceae species analyzed
(Fig. 4). Lower divergence was found in the IR and
protein-coding regions than in the single-copy and non-
coding regions. Nevertheless, we found that obvious large
inserted fragments were present in the rrn16-rps12 spacer
of the IRs in the plastomes of Lepisorus clathratus,

Fig. 2 Synteny and rearrangements detected in the plastome sequences of Polypodiaceae using Mauve alignment. Local collinear blocks are
represented as boxes of the same color connected with lines, which indicate syntenic regions. Histograms within each block represent the
sequence identity similarity profile. The colored blocks, which are above and below the center line, represent sequences transcribed in
reverse directions
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Pyrrosia bonii, and P. bifurcatum. To detect mutational
hotspots in the plastomes of Polypodiaceae, sliding-
window analysis was performed on the whole-genome
alignments of the sequences using DnaSP v5.0. The results
showed that the sequence variation between the plastomes
of Polypodiaceae was relatively low, with nucleotide diver-
sity (Pi) ranging from 0.00232 to 0.20028. Overall, the SSC
region exhibited the highest sequence variation, with an
average Pi of 0.10103, followed by the LSC and IR regions,
with average Pi values of 0.07317 and 0.02676, respect-
ively. A total of nine highly divergent loci were identified
in the plastomes of Polypodiaceae, including matK-rps16,
rps16, trnC-trnG, psbZ-psbC, psbD-trnT, trnP-psaJ, and
rpl2-trnI, located in LSC; rrn16-rps12, located in the IR
region; and one protein-coding gene, ycf1, located in SSC.
The ndhF-ccsA region in SSC showed a higher Pi value

than the other loci, most likely due to the inversion occur-
ring in this region, which resulted in higher sequence vari-
ation (Fig. S2). Therefore, it may not be categorized as a
common mutational hotspot in the Polypodiaceae.

Analysis of SSRs and repeat sequence in Polypodiaceae
plastomes
Simple sequence repeats (SSRs), or microsatellites are
short, tandemly repeated DNA motifs of 1–6 nucleotides
[21]. They can exhibit high polymorphism and mutation
rates, which contribute to estimates of genetic variation
[22]. In this study, very similar numbers of potential
cpSSRs were identified from the plastomes of the 12
Polypodiaceae species by using MISA. The total number
of SSRs in Polypodiaceae ranged from 38 to 51. Four
kinds of SSRs were detected: mononucleotides,

Fig. 3 Comparison of the border positions of LSC, SSC, and IR regions among the plastomes of Polypodiaceae species. ψ refers to the
pseudogene of ndhB at the LCS/IRb border
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dinucleotides, trinucleotides, and tetranucleotides (Fig. 5).
However, tetranucleotide repeats were discovered in
only the plastomes of L. clathratus, L. hemionitideus, L.
hederaceum, S. yakushimensis, and D. roosii. Different
SSR motifs appeared at different frequencies in these
plastomes. The most abundant observed repeats were
mononucleotides, accounting for approximately 62.8–
88.3% of the total number of SSR loci, followed by
smaller numbers of dinucleotide (8.7–20.9%) and trinu-
cleotide (6.6–22.5%) repeats, whereas tetranucleotide
repeats were the least common (0–4.4%).

We found that the predominant mononucleotide
repeats in all analyzed species with the exception of D.
roosii, S. yakushimensis, and P. bifurcatum were G/C
tandem motifs, which accounted for 53.3 to 100% of the
mononucleotide repeats in the Polypodiaceae plastomes
(Fig. 6). The Polypodiaceae species included in this study
all exhibited similar SSR distribution patterns in the
plastome. SSRs were much more frequently located in
the LSC region (48.0–71.1%) than in IR (10.5–36.0%)
and SSC regions (9.3–22.0%). Furthermore, the majority
of the identified SSRs were located in intergenic spacers,
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accounting for 66.7–83.3% of all SSRs detected. SSRs
dispersed in intronic regions were the second most com-
mon category (9.5–28.9%). The fewest SSRs were located
in coding genes, which accounted for only 4.0–14.0% of
all SSR loci (Table S2).
Forward, palindromic and reverse repeats of more

than 30 bp with a sequence identity ≥90% were detected
in the Polypodiaceae plastomes using REPuter. The
results showed that the numbers of repeats in the plas-
tomes of Polypodiaceae varied considerably, ranging
from 9 in L. hemionitideus to 146 in P. bifurcatum.
These long repeats ranged from 30 to 307 bp in length
and were repeated twice. Species showed some variation
in the number of long repeat sequences located in inter-
genic spacers and coding genes. Most repeats were
distributed in intergenic spacer regions, and the rest
were distributed in coding genes and intronic regions
(Table S3). We detected some species-specific intergenic
spacers with rich repeats, including the rbcL-trnR-UCG
intergenic spacer of the LSC region of D. roosii, the
rps12-rrn16 intergenic spacer of the IR regions of L.
clathratus and P. bifurcatum, the rps7-psbA intergenic
spacer of the IR region of Lemmaphyllum microphyllum,
and the ndhA intronic/chlL-chlN intergenic spacer of
the SC/IR junction of P. bonii.
Tandem Repeats Finder v4.09 [23] was further used to

identify the tandem repeats present in Polypodiaceae
plastomes, with the minimum identity and size of the
repeats set to 90% and 15 bp in unit length. A small
number of tandem repeats were detected in all species
except for P. bifurcatum and L. hemionitideus (Table 3).
Among the species in which tandem repeats were
detected, L. microphyllum exhibited the most repeats,
and P. bonii exhibited the fewest. The intergenic
spacers rrn16-rps12, rps7-psbA, and rbcL-trnR-UCG
were regions containing abundant repeat sequences in
the plastomes of L. clathratus, L. microphyllum, and
D. roosii, respectively. All detected tandem repeats
were distributed in noncoding regions, and the pro-
portions of tandem repeats located in intergenic
spacers were higher than those in intronic regions in
Polypodiaceae species (Table 3).

Dynamic insertion sequences in Polypodiaceae plastomes
Through a detailed whole-genome alignment, we
found that there are large insertions in some regions
of Polypodiaceae plastomes, including the rrn16-rps12
spacers of L. clathratus, P. bifurcatum, and D. roosii
(~ 2400–3500 bp insertions); the rps7-psbA spacer of
L. microphyllum (~ 3000 bp insertion); the rbcL-trnR
spacer of D. roosii (~ 4000 bp insertion); the petA-psaJ
spacer of P. bonii (~ 1700 bp insertion); and the
rps15-ycf1 spacer of L. hederaceum (~ 3700 bp inser-
tion) (Table 4). The identity of the insertion

Table 3 Size, number, and distribution of tandem repeats in the
plastomes of Polypodiaceae

Sample Motif Count Start-end Location

N. ovatus 19 4 83,880-83,955 trnT-UGU intron

23 2.3 108,602-108,647 rpl21-rpl32

19 4 149,099-149,174 trnT-UGU intron

N. fortunei 26 2 27,472-27,523 psbM-petN

15 3 52,744-52,788 trnR-UCG-accD

15 3.9 116,723-116,781 ndhA-intron

P. cuspidatus 45 2 1719-1809 matK-rps16

26 2.5 2183-2248 matK-rps16

15 3 113,805-113,849 psaC-ndhE

P. niponica 18 3 25,927-25,980 rpoB-trnD-GUC

15 5 53,389-53,463 trnR-UCG-accD

L. clathratus 24 2 1894-1941 matK-rps16

22 2 21,463-21,506 rpoC1 intron

26 2 93,242-93,293 rrn16-rps12

27 3 93,291-93,380 rrn16-rps12

69 2 93,405-93,542 rrn16-rps12

46 4 93,470-93,653 rrn16-rps12

46 4 144,421-144,604 rps12-rrn16

27 3 144,716-144,796 rps12-rrn16

18 4 144,797-144,848 rps12-rrn16

L. microphyllum 30 1.9 12,813-12,870 atpH-atpI

18 3.1 97,069-97,123 rps7-psbA

47 2.2 98,673-98,773 rps7-psbA

27 1.9 98,749-98,800 rps7-psbA

27 2.9 98,870-98,948 rps7-psbA

15 5 119,960-120,034 ndhA intron

27 2.9 140,326-140,404 psbA- rps7

27 1.9 140,474-140,525 psbA- rps7

47 2.2 140,501-140,601 psbA- rps7

18 3.1 142,151-142,205 psbA- rps7

L. hemionitideus 22 2 19,153-19,197 rpoC2-rpoC1

25 1.9 74,525-74,572 rps11-rpl36

P. bonii 23 2 120,079-120,124 ndhA intron

D. roosii 146 2 5433-5711 trnQ-UGG-psbK

23 2 19,077-19,122 rpoC2-rpoC1

18 3 54,433–54,486 rbcL-trnR-UCG

47 3 54,550-55,871 rbcL-trnR-UCG

42 2 54,644-54,727 rbcL-trnR-UCG

S. yakushimensis 26 2 26,779-26,831 psbM-petN

28 3.2 125,129-125,218 ndhF-ndhD
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sequences in the rrn16-rps12 spacers of L. clathratus,
P. bifurcatum and D. roosii was calculated using
MegAlign v8.1.3 [24]. The pairwise alignments
showed that the identity of the insertions in the three
plastomes was only 48.3–50.1%, indicating that these
insertions may have different origins (Fig. S3).
Robison et al. [17] previously proposed the concept

of MORFFO (Mobile Open Reading Frames in Fern
Organelles), which are a set of mobile insertion
sequences that are widely present in fern organelles.
To verify whether the insertions detected in the Poly-
podiaceae plastomes are consistent with the MORFFO
sequences, MORFFO sequences were determined by
local BLAST searches [25, 26] using the database
established from the 12 Polypodiaceae plastomes, with
the consensus sequences of morffo1, morffo2, and
morffo3 as queries. Furthermore, to examine whether
the insertions identified in this study present mobile
properties, these sequences were subjected to local
BLAST searches. Our results showed that morffo1
presents similarity to the petA-psbJ fragment of P.
bonii (71.2%) and the rrn16-rps12 fragment of P.
bifurcatum (70.3%). Morffo2 was detected in rrn16-
rps12 of P. bifurcatum and ycf1-ccsA of S. yakushi-
mensis, with identities of 71.0% and 67.9%, respect-
ively (Table 5).
Surprisingly, the insertions contained in different spe-

cies show significant BLAST hits against each other,
which suggests that DNA fragments may have been
transferred from one plastome to another. For example,
a fragment of the L. clathratus insertion shows high
sequence similarity to the rps7-psbA insertion located in
the IR of L. microphyllum, rbcL-trnR located in the LSC
of D. roosii, and rps15-ycf1 located in the SSC of L.
hemionitideus. Morffo1 is located within the P. bifurca-
tum-P. bonii consensus insertion fragment, but morffo2

does not show overlap with the insertions detected in
this study (Table 5). Previous studies have revealed that
MORFFO-like sequences are often associated with struc-
tural changes in the genome and may be the main driv-
ing force for structural evolution in the plastome. In this
study, a number of movable insertions were found in the
relatively static plastomes of Polypodiaceae, indicating
that the different insertion fragments arising during the
evolution of genome structure may have different
functions.

Discussion
Plastome variation across Polypodiaceae
Our comparative analysis of 12 species from Microsoroi-
deae, Platycerioideae, and Drynarioideae showed that the
length of the plastomes varies greatly in Polypodiaceae,
even within the same subfamily. Generally, dynamic ex-
pansions or contractions in IR boundaries are consid-
ered a primary mechanism leading to the size variation
of land plant plastomes [20]. Although there are differ-
ences in the IR boundaries between Polypodiaceae plas-
tomes, they also exhibit obvious similarities. Therefore,
the minor shifts in the IR boundaries of the Polypodia-
ceae plastomes are expected to be insufficient to account
for marked differences in genome size. For example, in
Microsoroideae, we found that despite the IR boundaries
being deeply conservative, the IR regions of L. clathratus
and L. microphyllum are approximately 2500 bp longer
than those of other species, and the SSC region of L.
hemionitideus is approximately 3700 bp longer than
those of other species. A fine-scale analysis of the plas-
tome sequence data of Polypodiaceae revealed several
large insertions in the specific intergenic spacers of IR or
SC regions that correspond to the observed genome size
differences. This situation corresponds well with those
in the species of the other two subfamilies, with the

Table 4 Comparison of the length of intergenic regions containing large insertions in the plastomes of Polypodiaceae

Species rrn16-rps12 rps7-psbA rbcL-trnR petA-psaJ rps15-ycf1

N. ovatus 1896 bp 478 bp 128 bp 697 bp 311 bp

N. fortunei 1924 bp 475 bp 123 bp 682 bp 261 bp

P. cuspidatus 1902 bp 482 bp 130 bp 679 bp 313 bp

P. niponica 1916 bp 485 bp 123 bp 681 bp 311 bp

L. clathratus 4420 bp 479 bp 123 bp 464 bp 312 bp

L. hemionitideus 1903 bp 473 bp 126 bp 631 bp 4069 bp

L. microphyllum 1893 bp 3403 bp 127 bp 686 bp 300 bp

L. hederaceum 1893 bp 469 bp 123 bp 693 bp 308 bp

P. bifurcatum 5476 bp 479 bp 125 bp 717 bp 306 bp

P. bonii 4362 bp 470 bp 123 bp 2475 bp 304 bp

D. roosii 1902 bp 475 bp 4107 bp 669 bp 305 bp

S. yakushimensis 1377 bp 364 bp 126 bp 677 bp 309 bp

Regions with large insertions in different species are highlighted in bold.
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exception of S. yakushimensis. Therefore, in most species
of Polypodiaceae, the main reason for the difference in
plastome size is not the variation in SC/IR boundaries
but the large fragment insertions that occur in different
species. Selliguea yakushimensis of Drynarioideae ex-
hibits the largest IRs identified in the fern lineage to
date, mainly because its IR boundary has extended to-
ward the SSC, causing the ycf1, chlL, and chlN genes to
be captured within the IR region. Therefore, we cannot
discuss the differences in the size of the plastomes only
from the perspective of the expansion and contraction of
the IR boundary because the conservative nature of the
plastome itself will cause researchers to ignore other
factors.
It is generally recognized that plastome evolution of

Polypodiaceae has mostly stabilized, and structural
changes such as rearrangements occur rarely. By con-
trast, the results presented here indicate that the plas-
tome of S. yakushimensis is highly unusual in some
respects, containing not only a large-scale IR expansion
exceeding several kb but also a unique inversion. The
large-scale expansion of the IR presumably occurred
through double reciprocal recombination between IR
segments during replication [27]. Numerous dispersed
repetitive sequences located at the original SSC/IR

junction (chlL/trnN-GUU) were detected in the S.
yakushimensis plastome, coinciding exactly with the
mechanism of IR expansion; that is, repeat sequences
provide the potential for genome rearrangement within
or between molecules by homologous recombination
[27, 28]. In general, the homogeneity of plastome struc-
tural changes is low relative to the sequence data. The
structural changes in the S. yakushimensis plastome can
therefore serve as specific genetic markers in species dis-
crimination or phylogenetic analyses. Unfortunately,
there is no way to determine which event took place first
because IR expansion has occurred at the SSC/IRa
boundary, while inversion has occurred near the IRb/
SSC boundary. Consequently, it is necessary to sequence
more plastomes in Polypodiaceae to improve our under-
standing of the evolutionary trajectory of the plastome.
Whole-plastome alignments can elucidate the level of

sequence divergence and easily identify large indels,
which are extremely useful for phylogenetic analyses and
plant identification. In the present study, our results
showed that the IRs present lower sequence divergence
than the SC regions. This phenomenon is considered to
be a result of copy correction between IR sequences and
the elimination of deleterious mutations by gene conver-
sion [29]. Moreover, sequence differences among the

Table 5 Results of matches for insertion sequences within Polypodiaceae identified using local BLAST searches

Query Subject % Identity Alignment length Start End Location

morffo1 P. bonii 71.2 1217 59,496 58,295 petA-psbJ

P. bifurcatum 70.3 1254 93,132 91,893 rrn16-rps12

morffo2 P. bifurcatum 71.0 1668 95,199 93,541 rrn16-rps12

S. yakushimensis 67.9 1121 117,503 118,561 ycf1-ccsA

L. clathratus
(rrn16-rps12)

L. microphyllum 91.5 1276 97,718 96,461 rps7-psbA

L.microphyllum 88.1 796 98,773 97,983 rps7-psbA

D. roosii 92.0 647 54,866 55,512 rbcL-trnR

D. roosii 86.7 668 55,779 56,443 rbcL-trnR

L. hemionitideus 81.4 737 121,798 121,063 rps15-ycf1

L. hemionitideus 71.3 523 120,796 120,281 rps15-ycf1

P. bifurcatum
(rrn16-rps12)

P. bonii 88.8 1502 58,225 59,724 petA-psbJ

P. bonii 84.7 698 59,636 60,323 petA-psbJ

S. yakushimensis 70.5 831 118,643 117,834 ycf1-ccsA

L. microphyllum
(rps7-psbA)

D. roosii 87.0 1527 56,416 54,895 rbcL-trnR

L. clathratus 91.5 1276 95,574 94,305 rrn16-rps12

L. clathratus 88.1 796 94,304 93,538 rrn16-rps12

L. hemionitideus 81.8 1425 120,281 121,697 rps15-ycf1

D. roosii
(rbcL-trnR)

L. microphyllum 87.0 1527 98,595 97,078 rps7-psbA

L. hemionitideus 79.3 1388 121,661 120,281 rps15-ycf1

L. clathratus 92.0 647 93,658 94,304 rrn16-rps12

L. clathratus 86.7 668 94,307 94,969 rrn16-rps12

P. bonii (petA-psaJ) P. bifurcatum 88.8 1502 91,825 93,310 rrn16-rps12
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Polypodiaceae plastomes were evident in the intergenic
spacers, suggesting greater conservation in coding re-
gions than in noncoding regions. Nine divergence hot-
spots between Polypodiaceae species were identified,
including matK-rps16, rps16, trnC-trnG, psbZ-psbC,
psbD-trnT, trnP-psaJ, rpl2-trnI, rrn16-rps12, and ycf1,
among which nine loci were located in SC and one was
located in an IR. Although the ndhF-ccsA regions also
present higher Pi values, they may not be suitable as
general mutational hotspots for Polypodiaceae due to
the existence of inversion in this region of the S. yakush-
imensis plastome. Thus, we must conduct careful data
exploration when screening universal mutational hot-
spots to avoid confusion by plastome structural changes.
In this study, we found many repeat regions, includ-

ing forward repeats, palindromic repeats, and reverse
and tandem structures, which could be important
hotspots for genome reconfiguration [30, 31]. In par-
ticular, the occurrence of large repeats in plastomes,
such as the 307 bp palindromic repeat observed in P.
cuspidatus, has been speculated to result in an un-
stable genome structure due to inappropriate re-
arrangement [32]. In addition, these repeats provide
many informative loci for the development of molecu-
lar markers for phylogenetics and population genetics
[33]. As a very powerful type of molecular marker,
SSRs are widely used in different research fields. They
possess obvious advantages such as high polymorph-
ism and cost effectiveness [34]. Most studies have
shown that the predominant cpSSRs of land plants
are consistent with their AT-biased plastomes. By
contrast, the cpSSRs present in Polypodiaceae show
considerable dissimilarity from the previously reported
patterns. In this study, more than 38 SSRs were iden-
tified in every Polypodiaceae plastome, among which
the majority were C/G mononucleotides and were
distributed in noncoding regions. The previously held
idea that cpSSRs are generally composed of A/T re-
peats has now been challenged [35]. Gao et al. [36]
have shown in denaturation experiments that repeti-
tive structures with a higher GC content contribute
to increasing the thermal stability of the Dryopteris
fragrans plastome and maintaining its structure in the
face of thermal changes. Species of Polypodiaceae
evolved diversified morphological traits and lifestyles
putatively in response to changes in terrestrial ecosys-
tems caused by the radiation of angiosperms during
the Cretaceous period [37]. Thus, we speculate that
these repeating structures with a high GC content
may be one of the molecular foundations of the adap-
tation of Polypodiaceae to the environment, which
also provides new insights for understanding the en-
vironmental adaptation mechanism of plants. Further-
more, the cpSSRs developed in our study provide

unique information for investigating genetic structure
and genetic variation. In particular, these cpSSRs will
be complementary and comparable to nuclear SSRs
from ferns.

Dynamic insertions in Polypodiaceae plastomes
Although genome-wide alignment indicates that Polypo-
diaceae plastomes are rather conservative, we found
abnormally large insertions in certain intergenic spacers.
The large fragment insertion observed in the rrn16-
rps12 intergenic spacer of L. clathratus plastome is con-
sistent with previous findings [16]. Similar insertion se-
quences have been detected in the LSC regions of some
distantly related species and in the mitogenome of
Asplenium nidus, implying that such sequences can
move between genomic compartments [16]. Robison
et al. [17] discovered a similar suite of dynamic mobile
elements through an extensive investigation on fern
plastomes, shedding light on the presence of MORFFO
elements relative to inversions, intergenic expansions,
and changes to inverted repeats. In this study, we char-
acterized a completely different set of insertion se-
quences in the plastomes of Polypodiaceae. There are
only two insertions that overlap with the morffo1 se-
quence, which are located in the petA-psaJ spacer in the
LSC region of P. bonii and the rrn16-rps12 spacer in the
IR region of P. bifurcatum. The detected morffo2 se-
quences are located in the ycf1-ccsA region at the IR/
LSC border in S. yakushimensis and the rrn16-rps12 spa-
cer in the IR region of P. bifurcatum, showing no hom-
ology with other insertions. Our results further confirm
the universality of MORFFO sequences in fern plas-
tomes, and the presence of such a sequence at the inver-
sion endpoint in S. yakushimensis suggests that the
MORFFO sequences may be related to inversion events.
Although MORFFO sequences were not detected in

the remaining Polypodiaceae species, there is another set
of highly mobile insertions present in their plastomes. It
is worth noting that plastid genes are rarely gained or
lost, whereas our study indicates that the identified in-
sertion sequences have been gained and lost frequently
during the evolution of Polypodiaceae plastomes. This
fluidity could indicate that these insertions in plastomes
act as mobile elements. Furthermore, these insertions
are frequently found adjacent to regions where more dis-
persed repeats occur. Many studies have shown that
genomic rearrangement is related to small dispersed re-
peats (SDRs), which contribute to the repair mechanism
induced by double-strand breaks [38, 39]. SDRs usually
make an important contribution to the repetitive space
in highly rearranged genomes and increase structural
polymorphism even in closely related lineages, and they
are mainly present in noncoding DNA fragments and re-
lated to small hairpin structures [38]. We speculate that
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the presence of rich repetitive motifs combined with
highly mobile insertions may constitute the “trigger
mechanism” for genome rearrangement in the plastomes
of Polypodiaceae species, which can induce structural
changes in the plastome under certain conditions. The
limitations of the current sequence data for ferns mean
that it is difficult to determine the exact source of these
insertion sequences. As more genomic data are pub-
lished in the future, the source and migration mecha-
nisms of these insertion sequences should become clear.

Conclusions
As additional plastomes from Polypodiaceae are charac-
terized, we obtain a clearer picture of plastome evolution
for the family. It is generally considered that the evolu-
tion of Polypodiaceae plastomes is conservative, and
their structural features are almost invariant in this fam-
ily. Against this conservative background, however, the
S. yakushimensis plastome stands out as unusual. The
large-scale expansion of IRs and a unique inversion dis-
tinguish the S. yakushimensis plastome from those of all
other Polypodiaceae studied thus far. In addition, many
large mobile insertions are found in the plastomes of
Polypodiaceae species, which often flank the dispersed
repeated elements in the different Polypodiaceae plas-
tomes. These unusual features are found in the structur-
ally stable plastomes of Polypodiaceae and may therefore
be implicated in the dynamic evolution of the plastomes
of the family. In other words, unlike the static plastomes
of Polypodiaceae characterized previously, the plastomes
characterized herein are structurally unstable, as evi-
denced by the large mobile insertions found in
Polypodiaceae.

Methods
Sample collection, DNA extraction, and sequencing
In this study, fresh leaves of N. fortunei, N. ovatus, and
P. cuspidatus were sampled from the living collection
from the South China Botanical Garden, Chinese
Academy of Sciences (CAS), quickly frozen in liquid
nitrogen, and stored at ultra-low- temperature refriger-
ator at − 80 °C until use. Voucher specimens were de-
posited in the Herbarium of Sun Yat-sen University
(SYS; voucher: S. Liu 201,630, S. Liu 201,654, and S. Liu
201,701 for N. fortunei, N. ovatus, and P. cuspidatus,
respectively). Genomic DNA was extracted using the
Tiangen Plant Genomic DNA Kit according to the
manufacturer’s instructions (Tiangen Biotech Co.,
Beijing, China). DNA quality was inspected in 0.8%
agarose gels, and DNA quantification was performed
using a NanoDrop spectrophotometer (Thermo
Scientific, Carlsbad, CA, USA). After quality assess-
ment, 500 ng of DNA was sheared to an average frag-
ment size of 300 bp with a Covaris M220 ultrasonicator

(Covaris Inc., MS, USA). An Illumina paired-end (PE)
sequencing library was constructed using the NEBNext,
Ultra DNA Library Prep Kit (New England BioLabs
Inc., Ipswich, MA). Sequencing took place on the HiSeq
2500 platform (Illumina Inc., San Diego, USA). Illumina
sequencing produced approximately 2 Gb of raw data
for each species.

Genome assembly and annotation
Raw reads were assessed for quality with FastQC v0.10.0
[40]. Low-quality bases (Q < 20) and adapter sequences
were trimmed by using Trimmomatic v0.32 [41]. Clean
reads were mapped against the reference plastome of
Lepisorus clathratus (NC_035739) to filtered chloroplast
data. All mapped reads were de novo assembled into
contigs with Velvet [42], and were further aligned and
oriented with the reference genome. Remaining gaps
were filled by direct PCR using specific primers that
were designed based on contig sequences or homolo-
gous sequence alignments. Chloroplast gene annotation
was conducted using DOGMA [43], followed by manual
correction of the start and stop codons and intron/exon
boundaries based on homologous genes from other pub-
lished closely related fern plastomes. Transfer RNA
(tRNA) genes were verified using ARAGORN [44] and
tRNAscan-SE in organellar search mode with default
parameters [45]. A circular map of the plastome was
drawn with OGDRAW [46]. The accession numbers of
N. fortunei, N. ovatus, and P. cuspidatus were
MT373087, MT364352, and MT364353, respectively.

Comparative analysis of Polypodiaceae plastomes
The availability of multiple plastomes from Polypodiaceae
provides an opportunity to explore the diversity of the gen-
ome within the family, including genome size and structure,
GC content, gene order, and IR expansion/contraction.
Therefore, we performed comparative analyses of three as-
sembled plastome sequences and the nine other available
plastomes of Polypodiaceae species, from Polypodiodes
niponica (NC_040221), Lepisorus clathratus (NC_035739),
Leptochilus hemionitideus (NC_040177), Lemmaphyllum
microphyllum (MN623356), Platycerium bifurcatum
(MN623367), Lepidomicrosorum hederaceum (MN623364),
Pyrrosia bonii (NC_040226), Selliguea yakushimensis
(MN623352), and Drynaria roosii (KY075853). The plastome
of D. roosii was reannotated using gene prediction tools and
manual adjustments before our analyses because of errors
that we noticed in the D. roosii annotations. The genome
size, gene content, IR boundaries, and base composition were
compared based on the sequence and annotation informa-
tion of these plastomes. Whole-genome alignments among
the 12 Polypodiaceae species were performed to identify in-
versions using the ProgressiveMauve algorithm in Mauve
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v2.4.0 [47] after one inverted repeat (IR) copy was removed
from each plastome.
The overall similarities of the 12 Polypodiaceae

plastomes were plotted using the mVISTA [48] online
program in Shuffle-LAGAN mode with the annotations
of N. fortunei as a reference. To estimate nucleotide
diversity (Pi) and mutational hotspots among Polypodia-
ceae species, we performed pairwise alignments of 12
plastomes in MAFFT v7.310 software [49], adjusted
manually with BioEdit software [50] if necessary. The
nucleotide diversity values (Pi) of the aligned sequences
were calculated via sliding window analysis by using
DnaSP v5.0 [51] with window lengths and step sizes of
600 and 200 bp, respectively.

Characterization of SSRs and repeat sequences
Further comparisons between Polypodiaceae species were
performed with the repetitive elements found in their
chloroplast sequences. Simple sequence repeats (SSRs)
were detected using the Perl script MISA [52] (MIcroSAt-
ellite; http://pgrc.ipk-gatersleben.de/misa/), with minimal
iterations of ten repeat motifs for mononucleotides, five
for dinucleotide repeats, and four for tri-, tetra-, penta-
and hexa-nucleotides. Tandem repeats in eight Polypodia-
ceae species were recognized using Tandem Repeats
Finder v4.09 [23], with matches, mismatches, and indels
set at 2, 7, and 7, respectively. The parameter settings were
90 for the minimum alignment score and 500 for the max-
imum period size. REPuter [53] (http://bibiserv.techfak.
uni-bielefeld.de/reputer/) was used to visualize the loca-
tion and size of the dispersed repeats (forward, reverse,
complementary, and palindromic repeat sequences) with a
minimal repeat size of 30 bp and a hamming distance of 3.
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