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Abstract

Functional MRI (fMRI) is a prominent imaging technique to probe brain function, however, a 

substantial proportion of noise from multiple sources influences the reliability and reproducibility 

of fMRI data analysis and limits its clinical applications. Extensive effort has been devoted to 

improving fMRI data quality, but in the last two decades, there is no consensus reached which 

technique is more effective. In this study, we developed a novel deep neural network for denoising 

fMRI data, named denoising neural network (DeNN). This deep neural network is 1) applicable 

without requiring externally recorded data to model noise; 2) spatially and temporally adaptive to 

the variability of noise in different brain regions at different time points; 3) automated to output 

denoised data without manual interference; 4) trained and applied on each subject separately and 

5) insensitive to the repetition time (TR) of fMRI data. When we compared DeNN with a number 

of nuisance regression methods for denoising fMRI data from Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database, only DeNN had connectivity for functionally uncorrelated regions 

close to zero and successfully identified unbiased correlations between the posterior cingulate 

cortex seed and multiple brain regions within the default mode network or task positive network. 

The whole brain functional connectivity maps computed with DeNN-denoised data are 

approximately three times as homogeneous as the functional connectivity maps computed with 

raw data. Furthermore, the improved homogeneity strengthens rather than weakens the statistical 

power of fMRI in detecting intrinsic functional differences between cognitively normal subjects 

and subjects with Alzheimer’s disease.
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1. Introduction

Functional magnetic resonance imaging (fMRI) based on the blood-oxygen-level-dependent 

(BOLD) signal is a prominent technique for investigating human brain function. The BOLD 

signal is an indirect measure of neuronal activity which occurs when the subject is scanned 

during task-based and task-free (resting-state) conditions. However, the reliability and 

reproducibility of fMRI is compromised by a large proportion of noise from multiple 

sources, including head-motion related artifacts, cardiac and respiratory oscillations, thermal 

noise inherent to electrical circuits, changes in blood pressure, and other factors (Bianciardi 

et al., 2009; Caballero-Gaudes and Reynolds, 2017; Murphy et al., 2013). Multiple studies 

have demonstrated that these noise sources can adversely affect the results and 

interpretations of task-based or resting-state fMRI experiments (Birn et al., 2006; Chang et 

al., 2009; Van Dijk et al., 2012). An advanced method to substantially improve fMRI data 

quality will advance brain function research by allowing more accurate mapping of human 

brain function.

Extracting nuisance regressors from fMRI data or modeling the noise from externally 

recorded data (physiological data in most cases) and then regressing out these confounding 

signals is a commonly used technique for improving fMRI data quality. Many regression-

based methods have been developed to correct the confounding signal induced by head 

motion or major physiological noise oscillations, such as cardiac and respiratory 

fluctuations. The six rigid-body affine transformation parameters (R=[X Y Z pitch yaw roll]) 

estimated from aligning fMRI volumes have been commonly used to address head-motion 

related artifacts (Friston et al., 1996; Johnstone et al., 2006). The first-order temporal 

derivatives (R’) and squares (R2) of these six realignment parameters were also used in 

nuisance regression to remove spin history related aspects of head motion (Friston et al., 

1996; Satterthwaite et al., 2013). However, the change of image intensity generated by head 

motion might not be properly explained by the realignment parameters. These regressors 

have over-simplified the influence of head motion in fMRI data (Caballero-Gaudes and 

Reynolds, 2017). Physiological noise in fMRI data is usually addressed by constructing 

nuisance regressors with externally recorded physiological data (Birn et al., 2008; Chang et 

al., 2009; Glover et al., 2000; Harvey et al., 2008; Shmueli et al., 2007; Tijssen et al., 2014). 

Instead of explicitly modeling a particular noise source, data-driven methods were developed 

without assuming any parametric noise model. Using the mean whole-brain time series 

(namely global signal) (Anderson et al., 2011; Jo et al., 2010) and the principal component 

decompositions from white matter (WM) and cerebrospinal fluid (CSF) time series (namely 

anatomic Compcor (aCompcor) from Behzadi et al. (2007)) as nuisance regressors are two 

typical examples, which assume that the signal of interest in fMRI data mostly comes from 

gray matter (GM) tissue and that GM shares similar noise characteristics with WM and CSF. 

The inclusion of global signal as a regressor has been heavily debated in recent years 

(Murphy et al., 2009; Power et al., 2018; Saad et al., 2012; Weissenbacher et al., 2009) 
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because it could artificially introduce anticorrelation between brain regions. Methods based 

on principal component analysis (Kay et al., 2013) and independent component analysis 

(Griffanti et al., 2014; Pruim et al., 2015; Salimi-Khorshidi et al., 2014) were recently 

developed for reducing noise in fMRI data by regressing out certain components, which 

were manually or automatically labelled as noise. Regardless of how regressors are obtained, 

increasing the number of regressors may reduce more noise variance from fMRI data but 

could lead to a higher risk of substantially removed BOLD signal as well. In addition, 

nuisance regression could contaminate fMRI data because the regression coefficient is 

heavily driven by one particular frequency band (Chen et al., 2017).

Artificial intelligence technique has recently gained a lot of interest in neuroscience research 

(Marblestone et al., 2016; Yang et al., 2020a). In this study, we have used this technique to 

develop a non-regression-based denoising neural network (DeNN) for automatically 

alleviating the influence of noise in fMRI data. Similar to the assumption in aCompcor that 

GM and non-GM time series share similar noise but no functional signal of interest is 

expected in non-GM regions, DeNN is designed with the hypothesis that disentangling time 

series between GM and non-GM voxels can substantially reduce noise in fMRI data. We 

compared DeNN with multiple nuisance regression methods (Behzadi et al., 2007; Friston et 

al., 1996; Murphy et al., 2009; Yang et al., 2019) by analyzing standard resting-state fMRI 

data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, http://

adni.loni.usc.edu/). Then, we examined positive and negative correlations in resting-state 

networks, evaluated the similarity of functional connectivity maps between subjects, and 

compared the group difference of graph theory measures between cognitively normal (CN) 

subjects and subjects with Alzheimer’s disease (AD). Limited analysis was also carried out 

with multi-band fMRI data from Human Connectome Project (HCP) (Van Essen et al., 

2013).

2. Materials and methods

Subject Demographics and Image Acquisition.

Data acquired at the baseline visits were included from 193 participants in the multi-site 

ADNI project (http://adni.loni.usc.edu/), with the inclusion criterion that participants were 

diagnosed as having normal cognition, early mild cognitive impairment (eMCI), or AD, with 

resting-state fMRI data and structural MRI data available. The study was approved by each 

participating ADNI site’s local Institutional Review Boards, as documented on the ADNI 

website. All participants gave written, informed consent. The subject ID, imaging data ID, 

and other demographical information are listed in Table S1. The summary of the 

demographic information, including diagnosis, age, gender, handedness, education, and 

MMSE scores are listed in Table 1. All subjects were scanned on 3.0-Tesla Philips MRI 

scanners. The magnetization prepared rapid acquisition gradient echo (MP-RAGE) sequence 

was used to acquire T1-weighted structural images. The structural MRI scans were collected 

with a 24cm field of view and a resolution of 256 × 256 × 170 to yield a 1 × 1 × 1.2mm3 

voxel size. The resting-state fMRI data were acquired from a regular echo-planar imaging 

sequence with 140 time points, TR/TE=3000/30 ms, flip angle=80 degrees, 48 slices, spatial 
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resolution=3.3 × 3.3 × 3.3mm3 and imaging matrix=64 × 64. More details about the MRI 

protocol can be found on the ADNI website.

General fMRI preprocessing.

Functional and structural MRI imaging data were processed with SPM12 (https://

www.fil.ion.ucl.ac.uk/spm/) and ANTs (version 2.1.0, http://stnava.github.io/ANTs/) 

toolboxes. The first five volumes of fMRI data were discarded to avoid data with unsaturated 

T1 signals. The following fMRI preprocessing steps were applied: (i) slice-timing correction 

(SPM12); (ii) rigid-body realignment of all fMRI volumes to mean fMRI image using 7th 

order B-Spline interpolation (SPM12); (iii) co-registration of mean fMRI image to the skull-

stripped T1 structural image (command ANTS 3 -m MI[T1_dir, meanfmri_dir,1,32] in 

ANTs); (iv) standard space normalization of T1 image to the MNI152 2mm template 

(command antsRegistrationSyN.sh -d 3 -f MNI152_dir -m T1_dir in ANTs); (v) 

transforming all fMRI volumes to MNI space with the transformation information from (iii) 

and (iv) (command antsApplyTransforms in ANTs). Nuisance regression or DeNN 

denoising was applied after the general fMRI preprocessing step.

DeNN network architecture.

We observed that the time series denoised by our previous deep learning strategy (Yang et 

al., 2019) still contained some band structure visible in the gray plot of time series, 

introduced by head motion and other noise sources (Figure S1). The reason is possibly 

twofold. First, this denoising strategy was regression-based, which could be insufficient for 

modeling spatial variation of motion artifacts across the brain. Second, the same network 

parameters were used for all time points in our previous neural network without considering 

the uniqueness of noise at each time point. The property of temporal independence could 

have reduced the effectiveness of our previously developed deep neural network in 

addressing abrupt motion and other irregular noise variances. A non-regression-based deep 

neural network with a time-dependent layer could potentially further improve fMRI data 

quality. Therefore, a deep neural network with this property, namely DeNN, is introduced in 

this study.

DeNN consists of six layers in a sequential order, namely a novel time-dependent fully-

connected layer proposed in this study, two 1-dimensional temporal convolutional layers, 

and three time-distributed fully-connected layers, as shown in Fig. 1. DeNN is fed with 

original time series after general preprocessing steps and outputs denoised data directly, 

instead of outputting nuisance regressors as in Yang et al. (2019).

The schematic diagrams of different fully-connected layers with T × L input nodes and K 
output nodes is shown in Fig. 2, where T, L, and K represent the number of time points, the 

input channels, and the output channels, respectively. The standard fully-connected layer 

connects all input nodes, with the output nodes ignoring the temporal property of the data 

(left panel of Fig. 2). A time-distributed fully-connected layer applies a fully-connected 

operation with the same parameters to each time point separately (middle panel of Fig. 2). In 

contrast, the time-dependent fully-connected layer has a fully-connected operation to each 

time point with different parameters (right panel of Fig. 2). The number of parameters in the 
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time-dependent layer linearly increases with the number of time points acquired in fMRI 

data, resulting in a higher computational cost for longer time series. The temporal 

convolutional layers can be treated as a set of temporal filters with unknown pass bands, 

which are learned from the data without manually specifying a fixed frequency threshold. 

We have demonstrated this property in previous task fMRI denoising work (Yang et al., 

2020b). Learning filtering properties from data is particularly important because the 

commonly used frequency threshold of 0.1 Hz in fMRI preprocessing remains a topic of 

debate (Boubela et al., 2013; Chen and Glover, 2015; Cordes et al., 2001).

The temporal convolutional layers used in this study (layers 2 and 3) have 1-dimensional 

filters with a filter size of five time points. Zero padding is used to ensure the output time 

series have the same number of time points as the input time series. These convolutional 

layers output each time point with data from neighboring time points and the same filters are 

applied for all time points. They are effective for reducing periodic or pseudoperiodic noise 

and have been successfully implemented in our previous work (Yang et al., 2020b). 

However, temporal convolutional layers have a risk of propagating temporally limited noise 

variance (e.g. abrupt motion) through the entire time series and complicating the denoising 

process. Therefore, a time-dependent fully-connected layer is applied before the temporal 

convolutional layer to address irregular noise. For the ADNI data, the time-dependent fully-

connected layer was specified with 128 units, and the first and second temporal 

convolutional layers were specified with 32 and 16 filters, respectively. Following the 

temporal convolutional layers, three time-distributed fully-connected layers were specified 

with 8, 4, and 1 filters, respectively, in sequential order. These time-distributed fully-

connected layers determine the weight of the multiple channels from the second temporal 

convolutional layer and output the denoised time series. Note that a time-distributed fully-

connected layer is equivalent to a temporal convolutional layer with a filter size of one. The 

last layer has a single filter to ensure one output time series for each voxel. The dimension of 

input data, output of each layer, and the network parameters in each layer are marked in Fig. 

1 (the dimension for the number of samples is omitted).

Customized cost function for DeNN.

The cost function provides a criterion to optimize the parameters in the network during the 

iteration step. Many cost functions have been developed for classification or regression in 

machine learning and deep learning applications, such as mean squared error, mean absolute 

percentage error, cross entropy, Poisson, and cosine proximity. Implementation of these cost 

functions requires known true values or classes. However, the true BOLD signal in fMRI 

data is unknown, and extracting the underlying BOLD signal is difficult, if not impossible, 

especially for resting-state data. Therefore, a customized cost function that does not require 

the knowledge of the underlying BOLD signal is preferred.

The rationality embedded in aCompcor (Behzadi et al., 2007) is that GM tissue shares 

similar noise properties with non-GM tissue (including WM and CSF), and removing the 

common variance can improve data quality. With similar rationality, the cost function for 

DeNN is designed to minimize the correlation between GM and non-GM time series. DeNN 

is trained by first arbitrarily pairing one GM voxel with one non-GM voxel. Each paired 
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time series is treated as a sample and assigned to different batches. In each batch, let Yraw 

denotes the original fMRI data within the gray matter mask (GM mask) and Y raw denotes 

the paired time series within eroded white matter or ventricle mask (nonGM mask). Erosion 

is applied to reduce the risk of BOLD signal included in Y raw because of partial volume 

effect. During the learning process, Yraw and Y raw share the same network (including 

network architecture and parameters) and are fed to the network alternatingly in each 

iteration. Each iteration will then provide the corresponding output data Ydenoise and 

Y denoise. The cost function ℒ = ℒ(Y denoise, Y denoise) is defined as the sum of the correlation 

magnitude between paired time series given by

ℒ(Y denoise, Y denoise) = ∑
y ∈ Y denoise, y ∈ Y denoise

∣ corr(y, y) ∣ ,
(1)

where [y, y] is one paired time series from [Ydenoise, Y denoise].

DeNN is optimized for each subject separately, because the characteristics of noise is highly 

subject-dependent, including the severity of head motion, rate and stability of cardiac and 

respiratory pulses, and other unknown subject-specific factors. Since there are hundreds of 

thousands of voxels in a standard fMRI acquisition protocol, the large number of voxels 

makes it feasible to train a subject-specific DeNN model.

DeNN training and calibration.

Since GM and nonGM voxels are paired to calculate the customized loss function, the same 

number of voxels within GM and nonGM masks are required to be the input samples to the 

network. The voxels within GM are randomly paired with voxels within nonGM and the 

extra voxels within GM or nonGM mask are discarded in the following optimization. There 

are about 50,000 paired time series for each subject, which are the input to the network. 90% 

of the paired-voxels are assigned randomly to the training set to update parameters, and the 

remaining 10% of the paired-voxels are assigned to the validation set to monitor whether or 

not the network suffers from over-fitting or under-fitting, leading to either high bias or 

variance, respectively. There is no independent testing set, because the noise variance in 

each fMRI session is unique, and DeNN is trained to specifically address the noise existing 

in the training set. Therefore, once the model is trained, the whole brain original fMRI data 

(including the time series used or not used in training and validation set) are the input to the 

model, with the output of denoised time series.

The initial parameters are randomly sampled from the Xavier uniform initializer (Glorot and 

Bengio, 2010). The parameters are updated with the Adam stochastic gradient-based 

optimization algorithm (Kingma and Ba, 2014), which adapts the parameter learning rates 

by taking advantage of both the average first moment (mean) and the average of the second 

moments of the gradients (uncentered variance). The Adam optimizer is parameterized with 

learning rate η=0.01, learning rate decay γ=0.05, exponential decay rate for the first 

moment estimates β1 = 0.9 and exponential decay rate for the second moments estimates β2 

= 0.999. The parameters and their learning gradients are updated with each batch of 500 

paired time series (or samples). Thus, the input data Yraw and Y raw in each batch have the 
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same dimension of 500 × T × 1, where the singleton dimension “1” represents the number of 

channels. One epoch is defined as running through all batches once and the network is set to 

run up to 50 epochs, with the early stopping criterion that the network stops training if the 

cost for the validation data does not reduce in the last five epochs. The number of layers in 

the network is heuristically selected. To determine the network architecture for ADNI data, 

we have applied DeNN on ten randomly selected subjects multiple times with gradually 

increasing layer sizes until the mean cost does not show considerable decrease with larger 

layer sizes, which allows the network to be relatively time-efficient and effective. The same 

network architecture is used for all subjects to avoid extensive human effort.

Nuisance regressors.

The nuisance regressors used in this study include the linear detrending regressor, six rigid-

body realignment parameters R, first order derivative of R (R’), squares of R and R’, mean 

WM and CSF time series, aCompcor, and the global signal (GS). Different combinations of 

these regressors lead to the five datasets named as 12P, 24P, 14P, 14P+GS, and 12P

+aCompcor. As shown in Fig. 3, 12P consists of 12 regressors, including the six realignment 

parameters R and their first order derivative R’. 24P consists of the 12P and its squared 

regressors. 14P indicates 14 regressors consisting of regressors in 12P, and mean WM and 

CSF time series. aCompcor is applied with the top three principal components from WM 

and CSF as nuisance regressors (in total 6 regressors). Erosion is carried out to generate WM 

and CSF masks to avoid the partial volume effect. Nuisance regression is applied after 

general preprocessing steps.

Graph theoretical network analysis.

The mean region of interest (ROI) time series is computed with 94 cortical and subcortical 

ROIs from the revised AAL atlas (AAL2) (Tzourio-Mazoyer et al., 2002), and then the 

functional connectivity map is constructed with Pearson’s correlation. To evaluate how 

different denoising strategies influence the power of detecting brain function difference 

between AD and CN, graph theoretical analysis is performed, and 2-sample t-test is applied 

to evaluate the group difference with age, gender, handedness and education as covariates. 

The graph theoretical network analysis is carried out using the GRETNA toolbox (version 

2.0.0) (Wang et al., 2015). 11 network metrics are obtained for analysis, including 

assortativity, betweenness centrality, degree centrality, global efficiency, local efficiency, 

clustering efficiency Cp, γ, λ, path length Lp, σ, and synchronization. The nodal network 

metrics are averaged across all ROIs to generate a single measure for comparison.

3. Results

We analyzed data from 193 ADNI subjects to explore the extent to which the denoising steps 

influence fMRI data quality. In this section, we demonstrate the performance of different 

strategies qualitatively by comparing the gray plot of the time series and quantitatively by 

conducting the functional connectivity (FC) analysis. A group comparison of network 

metrics between CN and AD presents intermediate evidence to further support our 

hypothesis.
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Visualization of denoised time series.

Time series from six example subjects after different denoising strategies are shown in Fig. 

4. These subjects are selected to demonstrate different noise characteristics and the varying 

performance of different denoising strategies. The gray plots of all subjects can be seen in 

the Supplementary. The framewise displacement (FD) (Power et al., 2012) derived from 

rigid head motion estimation, along the time point (x-axis), is shown in the top panel. The 

higher FD value means that the rigid head motion is more severe. The original whole-brain 

time series and the time series processed by 12P, 24P, 14P, 14P+GS, 12P+aCompcor and 

DeNN are presented in a descending order. Motion artifact, signal drift, and noise 

fluctuation introduced by unknown sources are observed in these subjects. Head motion 

corrupts fMRI data with varying duration (note width of dark band in Fig. 4). A large motion 

might not have a visually obvious effect in fMRI data (e.g. arrow A1), but a small motion 

could considerably change the signal (e.g. arrow A2). By only regressing out rigid-body 

realignment parameters and their variants (e.g. 12P and 24P), motion artifacts were 

insufficiently addressed. These regressors can even be detrimental for some time points (e.g. 

arrow A3). The band structure in the gray plot indicates similar noise fluctuation widespread 

across the entire brain. This particular noise structure was alleviated by including additional 

regressors extracted from fMRI data, such as global signal, mean WM, and CSF time series 

or principal components from WM and CSF time series (aCompcor). However, such noise 

artifacts remained noticeable (e.g. arrow A4–6). In contrast, DeNN visually showed 

substantially reduced band-structure artifacts and achieved more homogeneous time series. 

Besides band structure variation, the pseudoperiodic variations in subjects 126_S_4514 and 

003_S_4644 were also considerably reduced. The gray plots for all ADNI subjects were 

included in the Supplementary. In addition to the time series achieved by the methods in Fig. 

4, the denoised time series by running DeNN without the time-dependent fully-connected 

layer (all the other layers remain the same, named DeNN0) were also plotted in the 

Supplementary, which clearly demonstrated the necessity of the time-dependent fully-

connected layer in DeNN to reduce band structure variance in fMRI data.

Seed-based functional connectivity analysis.

A quantitative comparison of different denoising strategies was applied by conducting a 

functional connectivity analysis. We predefined a PCC seed as a 10-mm sphere around the 

coordinate (−7, −55, 27) in Montreal Neurological Institute (MNI) space to select regions 

having positive and negative correlations with the PCC seed. The whole-brain functional 

connectivity map between voxel-wise time series and the PCC seed was calculated for each 

subject. Four ROIs were identified as positively correlated with the PCC seed, and six ROIs 

were identified as negatively correlated with the seed by following Fox et al. (2005). The 

positive-correlated ROIs include PCC, the medial prefrontal cortex (MPFC), left lateral 

parietal cortex (LLP), and right lateral parietal cortex (RLP), which are within the default 

mode network. The six anticorrelated ROIs include the bilateral insula, the bilateral middle 

frontal gyrus (MFG), and the bilateral supramarginal gyrus (SMG), which are within the 

task positive network (TPN) and consistent with the task-positive regions observed in Fox et 

al. (2005). The correlation coefficients between ROIs and the PCC seed were converted to a 

normal distribution by Fisher’s r-to-z transformation. The four regions showing significant 
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positive correlation and the six regions showing significant negative correlation with the 

PCC seed are shown in Fig. 5a and Fig. 5b, respectively.

The specificity defined as

Starget = Ztarget − Zreference
Ztarget + Zreference

∈ [ − 1, 1], (2)

by following Chai et al. (2012) is used to compare the seed-based connectivity values 

achieved by different denoising strategies, where Z is the Fisher r-to-z transformed 

connectivity value. In this equation Ztarget refers to the connectivity from the MPFC to the 

positive-correlated or anticorrelated ROIs and Zreference refers to the mean connectivity from 

MPFC to the two reference regions in visual cortex. MPFC is expected to be functionally 

uncorrelated with the visual area (Biswal et al., 1995; Chai et al., 2012; Fox et al., 2005; Van 

Dijk et al., 2010). The connectivity between MPFC seed (10-mm sphere centered at 

coordinates (−1, 49, −2) in MNI space) and two visual regions (10-mm spheres centered at 

coordinates (−30, −88, 0) and (30, −88, 0)) (see Fig. 5c) is evaluated, and the mean 

connectivity between these two visual regions and MPFC seed is used as the reference 

connectivity to compute specificity.

The connectivity (and standard error) between MPFC and two visual reference regions is 

shown in Fig. 6. 12P and 24P have significant positive bias for bilateral visual regions, and 

14P, 14P+GS and 12P+aCompcor have significant negative bias for bilateral visual regions. 

Compared to original fMRI data, 12P and 24P regressors led to more severe positive bias, 

and 14P, 14P+GS and 12P+aCompcor led to negative bias in the reference regions. In 

contrast, DeNN achieved the most unbiased connectivity (close to zero) between MPFC and 

visual reference regions. The connectivity and its specificity values of the four positive ROIs 

are shown in Fig. 7. 12P and 24P had similar connectivity strength and specificity as original 

fMRI data. 14P, 14P+GS, 12P+aCompcor, and DeNN overall reduced connectivity strength 

and improved specificity compared to original fMRI data. DeNN had the highest specificity 

for all four positive ROIs with an average of 21.2% better than original fMRI data and an 

average of 8.2% above the second highest specificity achieved by 12P+aCompcor. A paired 

t-test between the specificity values achieved by DeNN and 12P+aCompcor showed that 

DeNN significantly improved specificity with p<10−10 for these four positive ROIs.

The connectivity and its specificity values of the six anticorrelated ROIs are shown in Fig. 8. 

Negative connectivity did not emerge in original data or the data only processed by 

realignment parameters and their variants. Global signal regression is well known to 

artificially introduce anticorrelation (Murphy et al., 2009), as expected, 14P+GS showed 

strongest anticorrelation among all methods. Consistent with the finding in Chai et al. (2012) 

that aCompcor is less likely to artificially introduce anticorrelation, 12P+aCompcor had 

weaker connectivity compared to 14P+GS, and DeNN had the weakest negative 

connectivity. In terms of specificity, DeNN had the highest specificity for all six 

anticorrelated ROIs with an average of 19.6% above the second highest specificity achieved 

by 12P+aCompcor. A paired t-test between the specificity values achieved by DeNN and 

12P+aCompcor showed that DeNN has significantly improved specificity, with p<10−5 for 
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these six negative ROIs. Compared to original fMRI data, 12P and 24P had decreased 

connectivity magnitude for negative ROIs and increased connectivity magnitude for the 

reference regions. Therefore, the specificity of these six negative ROIs for these two 

methods was considerably lower than the value of original fMRI data. Negative specificity 

was observed in 24P and CNN12, which was because the connectivity magnitude was lower 

than the connectivity magnitude of the reference regions.

Inter-subject homogeneity of whole-brain functional connectivity.

In addition to seed-based connectivity, we have calculated the whole-brain functional 

connectivity (FC) map using the AAL atlas (Tzourio-Mazoyer et al., 2002). Because the 

noise fluctuations in fMRI data could vary between subjects and between brain regions, 

“artificial connectivity” induced by these noise could lead to heterogeneous FC maps, 

improved between-subject similarity of FC maps is expected if a denoising technique 

correctly reduces the noise without considerably corrupting the signal in the data. Pair-wise 

Pearson’s correlation was used to evaluate the similarity of FC maps between each two 

subjects. The boxplot of FC similarity for different processed data is shown in Fig. 9. 

Compared to other processed datasets, DeNN substantially improved the inter-subject FC 

similarity. The mean similarity values are 0.207, 0.364, 0.371, 0.369, 0.397, 0.392, 0.405 

and 0.582 for original, 12P, 24P, 14P, 14P+GS, 12P+aCompcor, CNN12 and DeNN 

processed data, respectively. The mean similarity achieved by DeNN is 181% higher than 

the value of the original data and 44% higher than the second highest similarity value 

achieved by CNN12. The set of 12 deep learning derived regressors in CNN12 shows 

improved inter-subject similarity over its traditional counterpart 12P and is slightly better 

than 12P+aCompcor but is less substantial than DeNN. We have also tested the FC maps 

with a functional atlas (Power et al., 2011) and observed consistent performance (see Figure 

S2). Furthermore, we have applied DeNN with the same network architecture, except that 

the number of time points for the first layer is adjusted correspondingly, on fast-acquisition 

fMRI data from HCP cohort and have found that DeNN retains the highest between-subject 

similarity (see Figure S3). With known intrinsic “functional connectivity” map in the 

simulated fMRI data (see Appendix), DeNN is consistently observed to have the best 

performance in uncovering the true connectivity map.

Functional connectivity vs. motion summary measure.

We have further tested the association between functional connectivity and motion summary 

measure. The scatter plots of median correlation magnitude (MCM) versus mean FD are 

shown in Fig. 10. Each dot represents the value from an individual subject. The MCM of 

each individual subject is defined as the median strength of the connectivities between 94 

ROIs in the AAL atlas. MCM was observed to have a large variability between subjects in 

original, 12P, 24P, and CNN12 processed datasets. The variability was considerably reduced 

in 14P, 14P+GS, 12P+aCompcor, and DeNN. 14P and 14P+GS showed significant 

association between MCM and mean FD with p<0.001 and p<10−9, respectively, and all the 

other datasets did not have significant association between MCM and mean FD. Linear 

fitting was applied for 14P and 14P+GS data with a 95% confidence level, as shown in the 

figure.
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Group comparison based on network metrics.

The question that naturally arises is whether the improved inter-subject homogeneity of FC 

maps would be detrimental for detecting the intrinsic difference between cognitively normal 

subjects and subjects with a neurodegenerative condition. Since the functional change in AD 

group is expected to be more severe and the functional change in eMCI is likely to be less 

detectable, we limit the group comparison to CN and AD groups in this study. Graph 

theoretical analysis as described in MATERIALS AND METHODS section was applied on 

the FC maps and the group difference between AD and CN was tested using 11 network 

metrics, with age, gender, handedness and education as covariates. The t statistical values of 

the group difference achieved by the seven processed datasets are shown in Fig. 11. Only the 

metrics passing p<0.05 after Bonferroni correction over the number of metrics and the 

number of datasets are marked with t value. Only with DeNN processed data, the AD group 

shows significant higher path length Lp and significant lower degree centrality, global 

efficiency, local efficiency, and clustering coefficient Cp. 14P and 12P+aCompcor show 

similar group difference, but the statistical significance does not pass the Bonferroni-

corrected significance level p<0.05.

4. Discussion

In this study, we have designed a subject-level deep neural network for denoising fMRI data 

as a data-driven non-regression technique. This network is optimized with fMRI time series 

as input, which does not require externally recorded data (e.g. physiological data) to model 

any specific noise sources. Therefore, DeNN can be widely applied for many existing fMRI 

datasets, particularly for those data that do not have externally recorded data available. In 

addition, once the network architecture is determined, DeNN automatically outputs denoised 

data without requiring human effort to identify noise fluctuation, which could be subjective 

and labor intensive. Since DeNN is trained for each subject separately with paired time 

series as input samples, this network is applicable for a study with a small sample size or 

even a single subject analysis.

By applying DeNN to resting-state fMRI data from the ADNI cohort, DeNN does not 

artificially induce connectivity (neither positive nor negative) between MPFC seed and 

visual cortex, and shows the highest specificity for positively correlated spontaneous 

fluctuations within the default mode network and for the anticorrelated fluctuations between 

regions in task positive network and PCC seed. The between-subject similarity of functional 

connectivity maps after DeNN denoising (mean similarity 0.582) is about three times of the 

similarity obtained by original time series (mean similarity 0.207) and about 1.5 times of the 

second highest similarity value (CNN12, mean similarity 0.405). Significant association 

between brain connectivity and motion summary measure is observed for 14P and 14P+GS 

but not for DeNN. Possibly because of the large between-subject variability, original, 12P, 

24P and CNN12 data do not have significant association between brain connectivity and 

motion summary measure (see Fig. 10). We further demonstrate that the improved between-

subject similarity in DeNN-processed data does not undermine, but strengthens, the group 

difference between cognitively normal subjects and subjects with AD in terms of graph-

theoretical measures. The result from HCP data (see Supplementary) shows that DeNN is 
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not limited to regular fMRI data but can also be applied on multi-band fast-acquisition (low 

TR) fMRI data. Overall, DeNN offers a new pathway towards improving the statistical 

power of fMRI and could strengthen the capability of fMRI in future neuroscience research 

and clinical practice.

DeNN vs. nuisance regression.

One main difference between DeNN and traditional nuisance regression methods is that 

DeNN takes advantage of the network structure to make it adaptive to the variability of noise 

fluctuation across the entire brain. While nuisance regression could adjust the weights of 

regressors for each brain region (or voxel), the regressors are fixed without considering 

potential spatial-dependent fluctuations caused by the same noise source. Our previous study 

(Yang et al., 2019) demonstrated that the same noise source could lead to a peak for some 

voxels but a dip for other voxels. In addition, adding more regressors to explain additional 

noise variance could potentially remove BOLD signal and induce unwanted noise variance 

(Chen et al., 2017). In contrast, DeNN is a non-regression-based denoising method. 

Naturally, DeNN does not involve the selection of regressors. Instead, after optimizing the 

model by disentangling GM time series from non-GM time series, DeNN automatically 

outputs the denoised time series with original time series as input.

Because 12P, 24P and CNN12 are observed as less effective methods in addressing the band-

structure artifact, indicating similar noise fluctuation across the entire brain, this band 

structure could lead to “artificial positive connectivity” between brain regions. Therefore, 

12P, 24P and CNN12, together with the original time series, have a stronger connectivity 

magnitude than other processed time series for the four positive ROIs in the default mode 

network. Such artificial connectivity could dominate over the intrinsic anticorrelation 

between PCC and the six negative-correlated ROIs in the task positive network, leading to 

erroneous positive connectivity. In contrast, DeNN and the denoising strategies with average 

time series or principal components extracted from fMRI data have correctly identified the 

anticorrelation. Consistent with the finding by Chai et al. (2012) that replacing the global 

signal with aCompcor components alleviates the overestimated anticorrelation, a similar 

finding is observed in our study. However, significant negative bias is still observed with 

aCompcor. Methods including 14P, 14P+GS, and 12P+aCompcor have significant negative 

bias in the reference regions, which is not the case for DeNN. This phenomenon could 

explain why DeNN has weaker anticorrelation compared to these three methods, and the 

anticorrelation obtained by DeNN more likely reflects the intrinsic connectivity strength of 

neural fluctuations because of DeNN’s unbiased connectivity estimation in the reference 

regions.

DeNN vs. previous deep neural network denoising.

DeNN is distinct from our two recently developed deep learning denoising methods, one for 

resting-state (Yang et al., 2019) and the other one for task fMRI data (Yang et al., 2020b). In 

contrast to those two methods, a novel time-dependent fully-connected layer is designed in 

DeNN to effectively remove noise in the data. Unlike Yang et al. (2019) applied deep 

learning to derive nuisance regressors, DeNN is not a regression method, and the network 
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outputs the denoised fMRI data directly. The task design used in task fMRI denoising (Yang 

et al., 2020b) is not required in DeNN, thus DeNN perfectly fits for resting-state fMRI data.

The proposed time-dependent fully-connected layer plays a critical role in boosting the 

performance. The temporal convolutional layer and long short-term memory (LSTM) layer 

are the two kinds of layers used in our previous studies (Yang et al., 2019; Yang et al., 

2020b), which take neighboring time points to inform the current time point. These two 

layers are invariant to the time point, thus they could be more effective for reducing periodic 

or pseudoperiodic noise induced by cardiac or respiratory oscillations. The gray plot of 

original time series shows that the noise variance at each time point can be unique, a 

network without the temporally dependent layer is likely to be less efficient in addressing 

these irregular noise (see gray plots in the Supplementary). DeNN takes advantage of the 

time-dependent fully-connected layer to make it temporally adaptive. Because the network 

for task fMRI data discards any fluctuation irrelevant to the task (Yang et al., 2020b), this 

problem is likely more severe in the network for resting-state fMRI data (Yang et al., 2019). 

To overcome this obstacle, the time-dependent fully-connected layer is proposed in DeNN to 

reduce distinct noise fluctuation for each time point separately. In addition, DeNN outputs 

the denoised time series directly instead of optimizing a set of spatially independent 

nuisance regressors, thereby increasing DeNN’s flexibility and capability to differentiate 

spatial-varying noise from the BOLD signal. Certainly, LSTM potentially can be an 

additional part of DeNN or the replacement of temporal convolutional layer used in current 

DeNN architecture, however, an LSTM layer is not expected to make substantial 

performance difference because of its similar temporal property as a temporal convolutional 

layer.

Limitation and future study.

The parameter size for the time-dependent fully connected layer linearly increases with the 

number of time points, leading to more expensive computational time for longer time series. 

Noise reduction for 135 time points (ADNI data) requires approximately fifteen minutes for 

one subject, and noise reduction for 1200 time points (HCP data) requires approximately six 

hours for one subject on a workstation with a single Tesla K40c GPU card. A large sample 

study may require parallel computation, particularly for data with the number of time points 

larger than 1000. In addition, optimal noise reduction for a set of new data could require 

adjusting the depth of the network or the width of each layer. However, the current network 

architecture performs adequately for two distinct datasets, suggesting that the network is 

insensitive to different acquisition parameters. In addition, DeNN currently is only validated 

with connectivity analysis, the application of DeNN for other types of analysis, e.g. fALFF 

(Zou et al., 2008), requires further investigation. Researchers should first validate the 

applicability of DeNN when using it for non-connectivity analysis.

While DeNN was designed for resting-state fMRI, it can be applied to denoise task fMRI 

data as well. The deep neural network targeted at denoising task fMRI data (Yang et al., 

2020b) is likely to provide more robust activation maps than DeNN because a task design 

matrix is used in Yang et al. (2020b), with the drawback that the data is required to be 

denoised again for a different task design of interest. Instead, DeNN is applied based on 
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fMRI data itself without specifying a task design. Furthermore, DeNN is likely to be a better 

choice for denoising passive-viewing task fMRI data, where specifying a task design is less 

feasible, if not impossible. Currently DeNN is only evaluated with resting-state fMRI data, 

and its performance on task fMRI data remains to be investigated.

5. Summary

Our current results demonstrate the feasibility of using artificial intelligence to denoise fMRI 

data by disentangling the time series between gray matter tissue and non-gray matter tissue. 

This automated fMRI denoising neural network is generally applicable without requiring 

externally recorded data. The proposed time-distributed fully connected layer makes the 

network spatially and temporally adaptive to the noise in the data. The network is applied at 

the subject-level, therefore, it is completely feasible for a study with a small sample size. It 

is insensitive to fMRI acquisition parameters and can be applied both on standard and fast-

acquisition fMRI data. We have shown that the denoising network reveals no connectivity 

between functionally uncorrelated regions and has the highest specificity for the positive 

correlation within the default model network and the anticorrelation between networks. 

Furthermore, this network substantially increases the homogeneity of functional connectivity 

maps and strengthens the statistical power of fMRI data in detecting the group difference 

between cognitively normal subjects and subjects with AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Simulation

Instead of generating noise from scratch, we use non-GM time series extracted from real 

fMRI data to define noise data without any BOLD signal. To simulate the neural signal in 

GM, we use boxcar functions (specified below) that are convolved with the canonical 

hemodynamic response function. With this definition, the simulated time series y with 135 

time points can be written as

y = (1 − f) ∗ ysignal + f ∗ ynoise, (A1)

where f is the noise fraction. Specifically, the noise ynoise is generated by randomly selecting 

one time series ynon–GM from non-GM voxels of real resting-state data from one subject, and 

adding additional white Gaussian noise according to the equation

ynoise = ynon−GM + 0.05 ∗ N(0, I), (A2)

where N(0, I) represents a normal random vector following a Gaussian distribution with 

mean 0 and identity covariance matrix I. The BOLD signal in a voxel is defined to be

ysignal = S ⋅ (wi + 0.1 ∗ N(0, I)), i = randi(8) . (A3)

Fig. A1. 
Boxplot of FC similarity between true FC map and FC map estimated with denoised time 

series.
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The index i is a positive random integer with maximum value 8 and S = [s1, …, s8] contains 

8 simulated BOLD components where each vector si is generated by convolving a random 

binary vector (consisting of 105 zeros and 30 ones) with the canonical hemodynamic 

response function.The weight vectors wi, i = 1, … , 8 are given by

W = [w1, w2, …, w7, w8] =

0.5 0 0 0 0.5 0 0 0
0.5 0 0 0 0 0.5 0 0
0 0.5 0 0 0.5 0 0 0
0 0.5 0 0 0 0.5 0 0
0 0 0.5 0 0 0 0.5 0
0 0 0.5 0 0 0 0 0.5
0 0 0 0.5 0 0 0.5 0
0 0 0 0.5 0 0 0 0.5

. (A4)

80% of GM voxels are simulated to have BOLD signal (named informative voxels) and the 

remaining 20% of GM voxels do not carry any BOLD signal. The scripts for simulation are 

publicly available at https://github.com/pipiyang/DeNN.

We have run DeNN on simulated data with the same architecture for ADNI data. To evaluate 

how well each denoising strategy can uncover the intrinsic connectivity between informative 

voxels, we randomly select 100 informative voxels and calculate the “functional 

connectivity” (FC) map between these 100 voxels with the true signal ysignal, original 

simulated time series y, and different denoised time series. Then we have calculated the 

similarity between FC map from true signal and FC map from original or denoised time 

series after vectorising the FC map, namely corr(FCsignal, FCtimeseries). The noise fraction is 

specified as 0.8 to have the similarity of simulated original data close to the inter-subject 

similarity of real original fMRI data. We have repeated selecting 100 informative voxels 

randomly for 1000 times and the boxplot of the similarity is shown in Fig. A1. Substantial 

improvement is observed with DeNN processed data, which is consistent with real data.
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Fig. 1. 
Architecture of the denoising neural network (DeNN). DeNN consists of one novel time-

dependent fully-connected layer (dark blue arrow), two 1-dimensional temporal 

convolutional layers (brown arrow), and three time-distributed fully-connected layers (light 

blue arrow) in a sequential order. The input to the network is the voxel time series, and the 

output is the denoised time series. The parameters (constant term is omitted) for each layer 

are illustrated above the arrow, with each color representing the parameters for an output 

channel. The dimension of the parameters for each layer is marked under the arrow.
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Fig. 2. 
Schematic diagrams of a fully-connected layer (left), a time-distributed fully-connected 

layer (middle) and a time-dependent fully-connected layer. The fully-connected layer links 

all (T × L) input nodes to each output node leading to (T × L) × K parameters in the layer 

and K output nodes. The time-distributed fully-connected layer links the L input nodes with 

K output nodes at each time point with the same parameter leading to L × K parameters and 

the T × K output dimension. The time-dependent fully-connected layer links the L input 

nodes with K output nodes at each time point with distinct parameters, leading to T × L × K 

parameters and T × K output dimension.
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Fig. 3. 
Different denoising strategies for fMRI data.
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Fig. 4. 
Gray plot of the time series from six example subjects. The top panel for each subject shows 

the framewise displacement (in mm) derived from rigid head motion estimation. The 

remaining panels show the time series with voxels along the y-axis and time points along the 

x-axis.
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Fig. 5. 
(a) Four positive-correlated ROIs; (b) six negative-correlated ROIs; (c) two reference regions 

in visual cortex (VC1 and VC2), which are not expected to have connectivity with the 

MPFC seed.
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Fig. 6. 
Mean connectivity between MPFC and bilateral visual regions using different denoising 

methods. The error bar indicates 2 × standard error.
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Fig. 7. 
Connectivity (top panel) and corresponding specificity (bottom panel) for four positive-

correlated ROIs. The error bars are 2 × standard error. *** denotes p < 10−10.
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Fig. 8. 
The connectivity (top panel) and the corresponding specificity (bottom panel) for six 

negative ROIs. The error bars are 2 × standard error. ** denotes p < 10−5
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Fig. 9. 
Pairwise similarity of functional connectivity between subjects.
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Fig. 10. 
Scatter plots of median correlation magnitude vs. mean framewise displacement. Each dot 

represents the value from an individual subject.

Yang et al. Page 28

Neuroimage. Author manuscript; available in PMC 2021 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Group difference of graph theoretic metrics between cognitive normal subjects and subjects 

with AD. Only the metrics passing p values less than 0.05 after Bonferroni correction are 

marked with the t value.
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Table 1

Demographic information of the 193 subjects from the ADNI cohort.

CN eMCI AD

Age (years ± std) 75.9±5.6 73.6±7.0 73.5±8.4

Handedness (Right/Left) 55/5 63/7 59/4

Education (years ± std) 16.5±2.4 15.9±2.8 15.9±2.7

Gender (Male/Female) 27/33 39/31 36/27

MMSE ± std 27.8±5.4 27.0±5.4 22.1±2.9
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