Skip to main content
. 2020 Dec 23;7:603303. doi: 10.3389/fmed.2020.603303

Table 3.

ROC analysis for classification of tumor characteristics by texture features using principal component analysis.

Tumor characteristic AUC Sensitivity Specificity Accuracy
dbPET T-category T1 vs. T2-4 0.89 0.82 0.94 0.86
N-category Negative vs. Positive 0.66 0.85 0.54 0.68
Molecular subtype Luminal A vs. Others 0.73 0.52 0.89 0.68
Ki67 level 20%> vs. 20% ≤ 0.75 0.72 0.79 0.74
PET/CT T-category T1 vs. T2-4 0.94 0.93 0.88 0.91
N-category Negative vs. Positive 0.71 0.70 0.75 0.73
Molecular subtype Luminal A vs. Others 0.82 0.68 0.84 0.75
Ki67 level 20%> vs. 20% ≤ 0.86 0.76 0.86 0.79

ROC, receiver operating characteristic; dbPET, dedicated breast positron emission tomography; PET/CT, positron emission tomography/computed tomography; AUC, area under the curve.