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Abstract

Stroke is the leading cause of death and the main cause of disability in surviving patients. The 

detrimental interaction between immune cells, glial cells, and matrix components in stroke 

pathology results in persistent inflammation that progresses to fibrosis. A substantial effort is 

being directed towards understanding the exact neuroinflammatory events that take place as a 

result of stroke. The initiation of a potent cytokine response, along with immune cell activation 

and infiltration in the ischemic core, has massive acute deleterious effects, generally exacerbated 

by comorbid inflammatory conditions. There is secondary neuroinflammation that promotes 

further injury, resulting in cell death, but conversely plays a beneficial role, by promoting recovery. 

This highlights the need for a better understanding of the neuroinflammatory and fibrotic 

processes, as well as the need to identify new mechanisms and potential modulators. In this 

review, we summarize several aspects of stroke-induced inflammation, fibrosis, and include a 

discussion of cytokine inhibitors/inducers, immune cells, and fibro-inflammation signaling 

inhibitors in order to identify new pharmacological means of intervention.
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1. Introduction

Stroke, a sudden interruption of blood supply to the brain or blood vessel in the brain, causes 

neurological deficits (Ojaghihaghighi et al., 2017). Stroke is the 3rd leading cause of death, 

and every year 15 million people are affected in the world (Jayaraj et al., 2019). In the 

United States, it is the 5th leading cause, and about 140,000 people die each year (https://

www.cdc.gov/). The stroke risk varies with gender and age (Roy-O’Reilly and McCullough, 

2014). Mortality rates are similar for both men and women below 45 years of age, but 

women aged 45–74 years are at less risk of stroke mortality than men of the same age 

(Reeves et al., 2008). Different types of stroke include ischemic stroke (clots), which 

accounts for 87% of total stroke cases, hemorrhagic stroke (bleeds), transient ischemic 

attack (TIA, also known as mini-strokes), cryptogenic (of unknown cause) stroke, and brain 

stem stroke (lack of body function) (https://www.stroke.org/). Ischemic stroke is further 

classified into two subgroups, thrombotic strokes and embolic strokes. Thrombotic strokes 

are caused by blood clots that develop in the brain blood vessels, whereas embolic strokes 

are caused by blood clots arising from the body via the bloodstream. Inflammation, initiated 

by blood supply to the brain is interrupted and is known to play a dual role in a stroke 

pathology and having both detrimental and beneficial effects (Iadecola and Anrather, 2011). 

The immune system consists of a wide variety of immune cells, which are important for 

brain development and function and contribute to several neurological diseases including 

stroke (Iadecola and Anrather, 2011). The circulating immune cells, such as neutrophils, 

lymphocytes, macrophages, and endothelial cells, are actively involved in the inflammatory 

process (Perera et al., 2006). Whereas microglia, astrocytes, and neurons are active 

contributors to inflammation in brain ischemia. Previous studies suggest that components of 

the immune system are involved in all stages of stroke-induced inflammation (Iadecola and 

Anrather, 2011; Urra et al., 2009). The inflammatory and immune responses to stroke results 

from activation of the innate and adaptive immune system, which may enhance tissue injury 

and also promote healing in stroke (McCombe and Read, 2008). In this review, we aim to 

summarize currently known information about how inflammation and, fibrosis underlies 

stroke pathology, and a better understanding immunology of stroke could be used to guide 

future research and intervention strategies.

2. Inflammatory response to ischemic stroke

Ischemic stroke causes decreased blood flow in the brain, loss of cellular integrity, and 

subsequent cellular damage resulting in inflammation (Rock et al., 2010). The onset of 

ischemic stroke leads to activation of stress signals via tissue hypoxia, glutamate excitation, 

oxidonitrosative stress, which causes activation of glial cells in the brain. There are two 

mechanisms of action in the immune system, adaptive immunity and innate immunity 

(Nakamura and Shichita, 2019). Microglial cells are resident myeloid cells derived from 

yolk-sac progenitors and are a key component of the innate immune response system 

(Gomez et al., 2015). At the same time, in response to the stroke injury, other bone marrow 

derived monocytes are recruited to the damaged tissue and exhibit morphology similar to 

that of microglia. Danger associated molecular patterns (DAMPS) such as high-mobility 

group box 1 protein (HMGB-1) derived from dying neurons (Agalave and Svensson, 2015), 

and further activates innate microglia and other immune cells, via mediating toll like 
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receptors (TLR), which in turn produce many proinflammatory cytokines, chemokines, and 

matrix metalloproteinases (MMPs). MMP 9 is upregulated by HMGB1 via TLR4 and its 

induced cytokines as TNFα or IL-1β mediating cellular death after ischemic stroke (Qiu et 

al., 2010). Time-dependent inhibition of MMP-9 improves stroke outcomes via the 

degradation of DAMPS (Cauwe et al., 2009). Previous studies have demonstrated local and 

systematic inflammatory responses after stroke in humans (Zaremba and Losy, 2001; 

Pedersen et al., 2004). The studies with human brains by histology during autopsy showed 

that neutrophil recruitment starts from the first day and drastically increased within 2 to 3 

days after stroke whereas macrophage infiltration begins after three days and persistent for 

several years in infarct regions (Chuaqui and Tapia, 1993; Mena et al., 2004).

3. Immune cells

Leukocytes, mainly neutrophils invade first to infiltrate the ischemic region and decreases 

rapidly with time (Jin et al., 2010). In humans, the circulating neutrophils constitute 50–

70%, compared 75–90% in rodents (Mestas and Hughes, 2004). Infiltrating neutrophils 

contributes to inflammation and progression to injury by generation of pro-inflammatory 

signals, such as inducible nitric oxide synthase (iNOS), matrix metalloproteinases (MMPs), 

toll like receptor 2 (TLR2), antigen presenting proteins, chemokines and, immunoglobulins 

which are differentially expressed in mice and humans (Mestas and Hughes, 2004; Iadecola 

and Anrather, 2011). The use of antileukocyte strategies with antiadhesion molecule such as 

beta2-integrins are proven to be more effective in transient middle cerebral occlusion 

(tMCAO) model but not in permanent middle cerebral artery occlusion (pMCAO) (Yilmaz 

and Granger, 2008). Immune cells such as T lymphocytes, especially CD8+ T and CD4+ T 

cells, influx into the brain within 3 hr and 24 hr respectively, and are responsible for the 

damaging effect of this acute phase of stroke (Gill and Veltkamp, 2016; Rogove et al., 2002). 

Cytokines are key mediators in the inflammatory response following stroke (Doll et al., 

2014). While the recent study reported the deleterious effect of interferon-γ in inflammation 

after stroke (Seifert et al., 2014). Increasing evidence suggests that immune cells are not 

only involved in the critical event of neuroinflammation as key contributors to stroke 

pathogenesis but are also important players in the maintenance of central nervous system 

(CNS) homeostasis (Greenwood et al., 2011). Inhibition of aberrant infiltration of immune 

cells and pro-inflammatory cytokine is vital to counter the deleterious effects of 

inflammation in stroke. Immune cells inhibitors/inducers for stroke therapy listed in table1.

3.1. Neutrophils

Neutrophils are the first and critical cells to invade into injured tissue after stroke, and the 

severity of pathogenesis depends on their influx in the ischemic region (Chen et al., 2016). 

After invading the CNS, in the diseased state, neutrophils transform into two different 

phenotypes, namely N1 phenotype (proinflammatory property) and N2 phenotype (anti-

inflammatory property) (Easton, 2013; Kolaczkowska and Kubes, 2013; Segel et al., 2011). 

Studies have shown the increased expression of N2 markers such as chitinase-like protein 

(Chil3 protein or YM1) YM1/Chil3, and Arginase 1+ proteins after stroke, whereas, N1 

neutrophil markers like YM1− were lesser in the ischemic brain following experimental 

stroke induced by middle cerebral artery occlusion (MCAO) in TLR4 knockout (KO) mice 
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(Garcia-Culebras et al., 2019). The shift in N2 polarization by peroxisome proliferator-

activated receptor gamma (PPARγ) activation with the agonist rosiglitazone is an essential 

event of inflammation that participates in neuroprotection after stroke in pMCAO mice 

model (Cuartero et al., 2013). Recent evidence indicates that neutrophil accumulation is 

downregulated with the administration of all-trans retinoic acid (atRA) in the MCAO mouse 

model (Cai et al., 2019). With the decrease in neutrophil accumulation, they transform 

toward the N2 phenotype in stroke lesions and reduce infarct volume. The atRA treatment 

suppressed STAT1 signaling through enhancing the expression of suppressor of cytokine 

signaling-1 protein (SOCS1) (Cai, Wang, 2019). Neutrophil migration into the stroke lesion 

can be determined by myosin1f levels in the brain after stroke and further study 

demonstrated that myosin1f KO mice subjected to MCAO had smaller infarcts than wildtype 

controls (Wang et al., 2019a). Given that neutrophil-mediated proinflammatory cytokines 

such as interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), interferon-gamma 

(IFN-γ), and IL-6 are increased in ischemic stroke (Kostulas et al., 1999), targeting them is 

essential for therapeutic approaches to limiting inflammation after stroke (Doll et al., 2014; 

Jickling et al., 2015). Blockade of neutrophils by a recombinant neutrophil inhibitory factor 

(rNIF) such as UK-279, 276, which selective binding to CD11b integrin have not been 

effective in clinical trials (Del 2004). Similarly, the use of rNIF against neutrophil β2 

Integrin CD18 was failed to improve long-term outcomes after stroke (Smith et al., 2015).

3.2. Microglia

Microglia are the resident macrophages of the brain and possess an ability to maintain 

constant population at a homeostatic level in the CNS (Bruttger et al., 2015), whilst playing 

a key role in the immuno-surveillance of the CNS and maintaining a homeostatic 

environment by eliminating cellular debris (see (Thurgur and Pinteaux, 2019) for review). 

Microglial activation is considered to be the first step in the initiation of inflammation after 

stroke and is considered to be detrimental (Block et al., 2007). However, a recent study 

demonstrated that selective elimination of microglia leads to increased infarct volume and 

neuronal death with calcium overload, which is reversed by microglial repopulation, and the 

same study further found that microglia perform a critical role in the clearing of damaged 

neurons and promoting neuronal survival in the injured mice brain (Szalay et al., 2016). 

Microglial cells express macrophage like markers under normal physiological conditions, 

although several candidate markers like CD45 and CD39 can be used to differentiate 

microglia from the peripheral macrophage population (Dudvarski et al., 2016). Furthermore, 

several studies have identified markers such as Iba1high, CD206− CD45low, CD163− CD11b
+, MHCII+, F480+, Cx3cr1high, Ly6C− being specifically expressed by activated microglia in 

the brain (Ginhoux et al., 2010; Kierdorf et al., 2013). Activation of microglia varies with 

the acute and delayed phase after injury and remains active from weeks to months after acute 

injury (Kabba et al., 2018).

Previously, microglia were referred to as M1/M2-like phenotype (activated macrophage 1 

(M1) and alternatively activated macrophage 2 (M2)). However, several studies have 

recently demonstrated that microglial phenotypes are complex and cannot be classified 

strictly into just these two different classical phenotypes (Chiu et al., 2013; Geissmann et al., 

2010; Kan et al., 2015). Regardless, the morphological and phenotypic changes of the 
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microglia after stroke are often accompanied by increased expression of IL-6, TNF-α, 

MMPs, as well as chemokines CCL2, CX3CL1, MIP-1, and free radicals (Kabba et al., 

2018). A cell based therapy using preconditioned microglia by oxygen glucose deprivation 

(OGD) induces microglia to acquire an M2-like phenotype leading to secretion of 

neurotrophic factors vascular endothelial growth factor (VEGF), transforming growth factor-

β (TGF-β), as well as MMP-9, rendering microglial modulation as a therapeutic strategy for 

ischemic stroke in rats (Kanazawa et al., 2017). One mechanism by which ischemic 

preconditioning triggers neuroprotection is via induction of low-grade inflammation. In line 

with this, our group previously reported that intra-arterial administration of low dose IL-1α 
reduces microglial activation, improves functional outcomes and triggers neurogenesis and 

angiogenesis after experimental stroke, demonstrating that low levels of IL-1α regulate 

microglial activation and has likely beneficial effects on neuroinflammation following stroke 

(Salmeron et al., 2019). A human study reported the intravenously administration of 

minocyclin with 10 mg/kg alone and in combination with tissue plasminogen activator is 

safe and was effective in multiple preclinical stroke models by reduction of microglial 

activation, reduced NO production, and inhibition of MMP activity in stroke pateints (Fagan 

et al., 2010).

3.3. Macrophages

Macrophages are one of the blood-borne monocytes that infiltrate the brain parenchyma 

after stroke from perivascular spaces. They perform a critical role in neuroinflammation 

after ischemic stroke. They migrate through endothelial cells of the blood-brain barrier 

(BBB) to the stroke lesion under the action of cytokines, chemokines, and cell adhesion 

molecules (Jian et al., 2019). Macrophages are characterized as expressing different markers 

such as CD206+, CD163+, CD45high, CD11b+, MHCIIhigh, Ly6Clow, F480+, Cx3cr1low, 

Iba1low under diseased state (Goldmann et al., 2016; Zeisel et al., 2015; Faraco et al., 2017; 

Faraco et al., 2016) and are commonly referred to as non-parenchymal macrophages, to 

differentiate them from microglia. According to Ritzel and colleagues, more recently 

activated, BrdU-positive (a marker of cell division) macrophages rather than microglia were 

observed in the ischemic brain of mice, and these macrophages exhibited increased IL-1β 
production (Ritzel et al., 2015). The anti-inflammatory role of macrophages is characterized 

by expression of several cytokines including TGF-β, IL-4, IL-10, and IL-13 following stroke 

(Hu et al., 2015; Jian et al., 2019). A study revealed that half of the monocyte derived 

macrophages/mononuclear cells accumulate in the stroke-injured hemisphere (Wattananit et 

al., 2016). Another half of spontaneously recruited monocytes migrate to the injured site and 

contribute to long-term behavioral recovery via expression of TGF-β, Ym1, and CD163 in 

mice after MCAO (Wattananit et al., 2016).

3.4. Lymphocytes

Lymphocytes are essential subtypes of white blood cells in immune systems and include T 

cells and B cells. They are mainly involved in both pathogenesis and protective mechanisms 

in ischemic stroke (Liesz et al., 2015).

3.4.1. T lymphocytes (T cells)—T cells have multiple roles in ischemic stroke and 

cause inflammation after entering infarcted tissue by the release of pro-inflammatory 
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cytokines such as TNF-α, IFN-γ, IL-1β, IL-17, and IL-21 (Pawluk et al., 2020; Rayasam et 

al., 2018). One study suggests that CD8 T cell recruitment to the CNS is increased in aged 

mice after MCAO via the release of TNF-α, IFN-γ, and monocyte chemoattractant protein 1 

(MCP-1/CCL2) (Ritzel et al., 2016). CD4+ T cells invade into infarct tissue via release of 

proinflammatory cytokines such as IL-1, IFN-γ, and IL-17 (Arumugam et al., 2005). Fas 

ligand (FasL) belongs to the TNF family of cytokines and plays a critical role in stroke 

pathology. FasL mutation reduces stroke injury by attenuating CD4+ T cells and nuclear 

factor-kappa B (NF-κB)-mediated M1 microglia polarization in mice model of MCAO 

(Zhao et al., 2018). PDPK1 is downstream of FasL signaling and inhibition of PDPK1, by 

treatment with its inhibitor BX-912, reduces cytotoxicity of CD8+ T cells after stroke in 

mice (Fan et al., 2020). Anti-CD4 depletion antibody administered to mice after stroke 

resulted in an improved behavioral score, and levels of IFN-γ -inducible protein (IP-10) 

were elevated in serum and brain of male mice following MCAO (Harris et al., 2020). 

CD3+CD4−CD8− T cells (double-negative T cell; DNT) were upregulated in peripheral 

blood after stroke. Targeting infiltrating DNTs with microglial FasL/PTPN2/TNF-α 
mediated signaling is a promising therapeutic approach in ischemic stroke (Meng et al., 

2019). Gamma delta T cells (γδT) cells increases ischemic damage by releasing IL-17 

(Gelderblom et al., 2012b). Th1 cells aggravate brain injury by secreting IL-2, IL-12, and 

IFN- γ, whereas Th2 cells are neuroprotective by production of anti-inflammatory cytokines 

include IL-4, IL-5, IL-10, and IL-13 (Dolati et al., 2018; Filiano et al., 2017). Infiltrating 

regulatory T cells (Treg cells) are one of the most important T cells sub-population known to 

regulate adaptive immunity, and have beneficial role in ischemic stroke (Liesz et al., 2013). 

A recent study characterized sirtuin2 expression in infiltrating Treg cells after acute stroke in 

mouse tMCAO, demonstrating increased expression and decreased anti-inflammatory 

activity in infiltrating Treg cells. Furthermore, the use of the hypoxia-inducible factor 1-

alpha (HIF-1α) inhibitor PX-478 abolished microglia mediated Sirt2 expression (Shu et al., 

2019).

3.4.2. B lymphocytes (B cells)—B cells play critical roles in host defense against 

pathogens including antibody production, and modulation of T cell responses (Selvaraj et 

al., 2016). They are categorized into B1, B2, and regulatory B cells (Breg cells) based on 

pathogenic and regulatory function. Breg cells consist of seven different subsets including 

two immature and five mature cell types. Several studies confirmed a role of B cells in 

synthesizing cerebrospinal fluid–specific immunoglobulin such as IgG, IgM, and IgA after 

stroke (Pruss et al., 2012; Rostrom and Link, 1981) and secrete IL-10 (Duddy et al., 2007). 

B cells infiltrate into infarcted tissue in a delayed manner (Doyle et al., 2015), however 

depletion of B cells affects neither stroke-induced brain injury nor behavioral function 

(Schuhmann et al., 2017). Berchtold and collaborators (Daniel et al., 2019) reported that B-

cell-deficient mice (μMT KO) did not affect stroke volume in mice after MCAO (Ren et al., 

2011), a finding that is in line with a previous study using Rag1 KO mice that reported no 

effect on stroke following tMCAO (Yilmaz et al., 2006). However, another study showed 

that B-lymphocytes infiltrate the infarcted tissue within weeks after stroke (Doyle et al., 

2015). In this process, B cells undergo isotype switching, leading to IgA and IgG antibodies 

being expressed and this resulted in dementia in mice that underwent the distal MCAO 

(dMCAO) surgery (Doyle et al., 2015). B cells have an anti-inflammatory role as regulatory 
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B (Breg) cells via the expression of IL-10 and were shown to strongly reduce the infarct 

volume in ischemic mice (Seifert et al., 2018). This observation demonstrated that the 

transfer of enriched Breg cell populations might be of important therapeutic value in stroke 

patients (Seifert et al., 2018). A study evaluated the effect of fingolimod, and it was 

administered orally (0.5 mg per day for 3 consecutive days) in 22 patients by comparing 11 

control patients. The results showed that 11 fingolimod recipients had lower circulating 

lymphocyte and better neurological outcomes (Fu et al., 2014).

3.5. Dendritic cells

Dendritic cells/antigen-presenting cells (APCs) are immune cells responsible for the 

initiation of the adaptive immune response, and a recent study demonstrated that these cells 

are also found in the brain parenchyma after stroke (Kostulas et al., 2002). Conventional 

type 2 dendritic cells, IRF4+/CD172a+ infiltrate into ischemic brain while expressing IL-23 

(Gelderblom et al., 2018). IL-23 receptor KO mice have been reported to be protected 

against ischemic stroke, albeit with defective IL-17 levels (Gelderblom et al., 2018). The 

study showed increased expression of dendritic cell-associated C-type lectin-1 (dectin-1) and 

spleen tyrosine kinase (Syk), which triggers neuroinflammation in a mouse model of 

cerebral focal ischemia. The dectin-1 antagonist laminarin-1 and Syk inhibitor piceatannol 

decrease TNF-α as well as inducible nitric oxide synthase (iNOS) expression, resulting in 

smaller infarct volume, and improved neurological score in a mouse model of cerebral focal 

ischemia (Ye et al., 2020). Hence, dectin-1/Syk mediated signaling is an important 

therapeutic target after ischemic stroke (Ye et al., 2020). Fisetin, a flavonoid administered 

before and after experimental cerebral ischemia, reduced the number of CD11c+ cells in the 

brain in a mouse tMCAO model (Gelderblom et al., 2012a). This study also suggests that 

fisetin mediated suppression of NFκB activation and JNK/Jun phosphorylation is 

neuroprotective in cerebral ischemia as well (Gelderblom et al., 2012a).

4. Pro and anti-inflammatory cytokines role in neuroinflammation after 

stroke

Cytokines are immunoregulatory molecules released by immune cells in systemic 

circulation as well as in the CNS in response to various stimuli in order to re-establish 

homeostasis. An anti-inflammatory response opposes pro-inflammatory cytokine signals, 

and an imbalance between them leads to localized tissue and organ damage in stroke. 

Cytokine inhibitors/inducers for stroke therapy are listed in table2.

4.1. Pro-inflammatory cytokines

4.1.1. Interleukin-1 (IL-1)—IL-1 is a master regulator of inflammation and immunity 

and plays a pivotal role in most, if not all, inflammatory disease. The role of IL-1 in 

neuroinflammation induced by stroke and its associated risk factors that are linked with 

raised systemic inflammatory profile has been long established (Sobowale et al., 2016). 

Hence, current therapies aimed at targeting IL-1 actions in stroke are currently underway. 

The IL-1 family comprises 11 cytokines and a large family of IL-1 related receptors. These 

networks of cytokines regulate innate immune cells and play a key role in inflammation after 

stroke (Dinarello, 2011). IL-1β is the main released isoform of the IL-1 family, expressed 
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primarily by immune cells, as a pro-IL-1β released extracellularly via an NLR family pyrin 

domain containing 3 (NLRP3)/caspase-1 dependent mechanism (Weber et al., 2010). The 

role of IL-1β in stroke has been long established with early studies demonstrating that IL-1β 
is expressed in the brain after experimental stroke (Liu et al., 1993; Wiessner et al., 1993). 

Several published studies demonstrated that pharmacological inhibition of IL-1β actions by 

using the IL-1 receptor antagonist (IL-1Ra) confer neuroprotection after experimental stroke 

(Garcia et al., 1995, Relton and Rothwell, 1992). Interestingly, studies using IL-1 KO mice 

showed that genetic deletion of IL-1β failed to affect ischemic brain injury, whereas deletion 

of IL-1β and IL-1α (second main isoform that is intracellularly stored) induces a significant 

reduction in brain damage (Boutin et al., 2001), hence both IL-1α and IL-1β play an 

important compensatory effect in stroke. Further study found that both centrally- and 

peripherally-derived IL-1α and IL-1β contribute to stroke pathogenesis (Denes et al., 2013). 

IL-1α is also expressed by microglia after stroke, although expression precedes that of IL-1β 
expression (Luheshi et al., 2011), suggesting that both isoforms may exert specific non-

overlapping actions in stroke, In light of this, our recent study found that IL-1α, but not 

IL-1β, induces brain cells to generate the laminin-like globular domain 3 (LG3) 

neuroprotective protein fragment of the extracellular matrix component perlecan, a 

prominent heparan sulfate proteoglycan extracellular matrix (ECM) component of the BBB 

(Saini et al., 2011), whereas IL-1α is a key inducer of angiogenesis and neurogenesis after 

stroke (Salmeron et al., 2019). Therefore, alternative strategies aimed at selectively targeting 

IL-1α or IL-1β might prove more effective than complete IL-1 blockade by IL-1ra. In a 

randomized phase, II study reported that of intravenous (IV) administration of IL-1ra in 

patients with acute stroke showed reduced cerebral inflammation and greater reduction in 

National Institutes of Health Stroke Scale at three months (Emsley et al., 2005).

4.1.2. Interleukin-6 (IL-6)—IL-6 is a pro-inflammatory cytokine and is a critical 

biomarker used to predict stroke associated infection in elderly patients (Kwan et al., 2013). 

Studies proved that significantly higher serum IL-6 levels correlate with infarct volume and 

cerebral perfusion deficits in stroke-affected patients than healthy controls (Hotter et al., 

2019; Jenny et al., 2019; Saroj et al., 2018). Il6 gene polymorphisms also have a significant 

association with increased risk of ischemic stroke (Zhou et al., 2019). Recently, studies 

using pigs show IL-6 was increased after stroke and further elevated by wild type tissue-type 

plasminogen activator (tPA). Indeed, co-administration of LMT-28 with wild type tPA 

blocked JNK and endothelin 1 mediated increase of IL-6, reducing cerebrovascular 

autoregulation impairment, which in turn, would lead to improved outcomes of tPA 

treatment after stroke in pigs (Armstead et al., 2019). Although IL-6 has proinflammatory 

properties, it also has beneficial potential; IV administration of IL-6 to stroked mice results 

in reduced infarct volume and improved functional outcomes in IL-6 KO mice (Gronhoj et 

al., 2017).

4.1.3. Interleukin-18 (IL-18)—IL-18 is a cytokine of the IL-1 family and 

proinflammatory cytokine that plays a critical role in neuroinflammation and stroke 

(Kandikattu et al., 2019). A recent study demonstrated that serum IL-18 levels were higher 

in stroke patients, is increased with the severity of the stroke, and can be used as a diagnostic 

marker for stroke (Hao et al., 2019). Il18 (137G/C and 607C/A) gene polymorphisms are 
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associated with an increased risk of ischemic stroke (Zhou et al., 2019). IL-18 level was 

reported to be increased in ischemic mice brain that showed depression-like behaviors, and 

the blockage of endogenous IL-18 by IL-18 binding protein rescued depressive phenotypes 

in spatial restraint-stressed mice. IL-18-mediated depressive behaviors are regulated by the 

interaction between the IL-18 receptor and NKCC1. NKCC1 antagonist bumetanide showed 

a therapeutic effect for post-stroke depression in IL-18-induced depressive mice (Wu et al., 

2020). However, a study from our group showed that genetic deletion of IL-18 in mice had 

no effect on brain injury after stroke (Wheeler et al., 2003), indicating that IL-18 may be 

involved in mediating the depression occurring due to stroke, more than other aspects of 

stroke pathogenesis.

4.2. Anti-inflammatory cytokines

4.2.1. Interleukin-4 (IL-4)—IL-4 triggers a pleiotropic phenotype in both microglia and 

macrophages and is involved in diverse immune responses of M2 microglia polarization 

(Francos et al., 2016). Results from a previous study showed that IL-4 induces PPAR-γ 
mediated activation of M2 polarization. Protein expression of translocator protein (TSPO) 

antagonist PK11195 treatment modulates IL-4 expression that subsequently promotes 

increased expression of CD206, Arg-1, YM-1, and FIZZ-1 under hypoxic ischemia (Zhou et 

al., 2020). Intraperitoneal administration of dimethyloxalylglycine, a HIF-1α activator, 

reduced the infarct size by promoting IL-4 and IL-10 levels (Yang et al., 2018). Elevated 

HIF-1α activity had a synergistic effect with limb remote ischemic preconditioning (RIPC) 

on reducing infarction volume after stroke in rats by inhibiting prolyl hydroxylase (PHD) 

enzyme inactivation (Yang et al., 2018). In accordance with this notion, mice that lacked 

IL-4 were associated with worse neurological score outcome, along with increased immune 

cell infiltration and Th1/Th2 ratio in the infarct region (Xiong et al., 2011). Together, these 

findings indicate that IL-4 signaling has a beneficial role of reducing inflammation in the 

ischemic core.

4.2.2. Interleukin-10 (IL-10)—IL-10 mediated neuroprotection is well studied in brain 

injury. As an anti-inflammatory cytokine, it promotes neuronal cell survival via various 

signaling pathways such as suppression of tumorigenicity 2 (ST2)/IL-33 (Liu et al., 2020; 

Mills, 2001). Previous study using IL-10 KO mice showed that increased infarct volume and 

neurologic deficits were observed in ischemic mice (Perez et al., 2013). IL-10 deficiency in 

mice was reported to promote the expression of CTLA-4, a T-cell inhibitory molecule in the 

ischemic tissue (Perez et al., 2013). A recent study explained that transplanted mesenchymal 

stem cell (MSC)/IL-10 intravenously injected through the catheter at 0 or 3 hr after 

ischemia-reperfusion significantly reduced infarct volume and enhanced motor functional 

recovery at 72 hr and 7 days after MCAO in rats as an acute phase of ischemic stroke 

(Nakajima et al., 2017). A recent meta-analysis revealed Il10 gene polymorphism 

(1082A/G) to be associated with ischemic stroke (Liu et al., 2017). In another study focused 

on different promoter regions of IL-10, functional polymorphisms at −1082 promoter region 

of IL-10 was found to be rare in the Chinese Han population compared to American/

European people, and it was concluded that it might be a protective factor for ischemic 

stroke (Tong et al., 2018).
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4.2.3 Interleukin-13 (IL-13)—IL-13 is a key anti-inflammatory cytokine secreted by 

activated T cells. Transplanting IL13-expressing MSCs leads to a M2 microglia phenotypic 

switch with a significant increase of Arg-1 and decreased expression of major 

histocompatibility complex II (MHC-II) in a mouse model of MCAO (Hamzei et al., 2018). 

A recent study revealed that peripherally administered IL-13 after pMCAO in mouse 

significantly reduced the infarct volume, increased levels of Arg1 and Ym1, and improved 

neurologic deficit functions (Kolosowska et al., 2019). A previous study has shown TREM2 

as neuroprotective in the ischemic penumbra of a mouse model of MCAO. TREM2 

expression also increased in IL-4/IL-13-treated microglia under OGD (Zhai et al., 2017).

4.2.4. Interleukin-33 (IL-33)—IL-33 is a cytokine of the IL-1 family and a crucial 

mediator of the immune response (Chen et al., 2018; Liew et al., 2016). IL-33 is 

neuroprotective after ischemic stroke via regulating the inflammatory response (Luo et al., 

2015). A recent study demonstrates the role of IL-33/suppression of tumorigenicity 2 

signaling in microglial activation and neuroprotection after stroke in mice (Yang et al., 

2017). The activated microglia, in turn, release IL-10 which helps in neuronal survival under 

in vitro OGD conditions (Yang et al., 2017). Previous findings demonstrate that the 

administration of recombinant mouse IL-33 protein to mice before MCAO helps to attenuate 

brain damage and CNS inflammation (Luo et al., 2015). The neuroprotective effect of IL-33 

might be associated with inhibition of neuroinflammation via turning on the T helper 1 and 2 

(Th1/Th2) response while suppressing Th17 immune response (Luo et al., 2015). IL-33 acts 

as a neuroprotectant via mediating regulatory T cell (Tregs) response in experimental 

ischemic stroke (Xiao et al., 2019). However, another study showed that IL-33 treatment 

increased the number of Tregs in the MCAO model and suggested that IL-33-ST2 signaling-

mediated neuroprotection in stroke (Liu et al., 2020).

5. Mechanisms of neuroinflammation and the inflammatory pathway

Fig. 1 depicts a schematic of stroke-induced neuroinflammation. Stroke induces activation of 

stress signals, hypoxia, and oxidonitrosative stress that leads to activation of NLRP3 and 

NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling, infiltration 

of immune cells and cytokines, and neuroinflammation. Several reports indicate that these 

signals are activated via mitochondrial damage (Gong et al., 2018; Kandikattu et al., 2017a), 

lysosomal degradation (Aftabizadeh et al., 2019), reactive oxygen species (ROS) induction 

(Xu et al., 2018), Ca2+ release mediated ER stress (Guo et al., 2018a; Kandikattu et al., 

2020; Nakka et al., 2010), and autophagy (Kandikattu et al., 2017b; Wang et al., 2019b). 

Understanding the stress inducers that activate inflammatory pathways and the development 

of drugs that inhibit inflammation is key in the treatment of stroke. Other pharmacological 

therapies with anti-inflammatory activity for stroke therapy are listed in table 3.

5.1. DAMPs and NLRP3 Inflammasome pathway

Damaged-associated molecular patterns (DAMPs) are released from injured tissue after 

stroke (Umahara et al., 2018). DAMPS are a large family of factors which constitute 

pathogen-associated molecular patterns (PAMPS) and alarmins (Tang et al., 2012). Alarmins 

are further divided into protein alarmins such as HMGB1 or heat shock proteins (HSPs), and 
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non-protein alarmins such as adenosine triphosphate (ATP) (Gulke et al., 2018; Lucchese et 

al., 2019). HMGB1 is a cytokine-like nuclear protein and mediator of neuroinflammation 

and pathogenesis after ischemic stroke (Ye et al., 2019). HMGB1 is released into the 

bloodstream and induces inflammation via its receptors TLR2, TLR4, and receptor for the 

advanced glycation end product (RAGE) (Ye et al., 2019). HMGB1 is highly expressed in 

blood under both acute phase and for about 2 weeks after stroke in rats (Kim et al., 2006). 

Previous experiments have demonstrated that lipopolysaccharides administration induced the 

release of HMGB1 in a rat model of MCAO (Kim et al., 2018). In this study, blocking 

HMGB1 function by treatment with HPep1 reduces infarct volume and is considered as a 

therapeutic target for preventing lipopolysaccharides induced post-stroke infection (Kim et 

al., 2018).

NLRP3 inflammasomes are known as one of the novel inflammatory pathways discovered in 

ischemic stroke. They are responsible for mediating cellular damage and death after stroke 

(Abulafia et al., 2009). Under stroke-induced stimuli, NLRP3 assembles by an apoptosis-

associated speck-like protein containing a caspase (ASC), and caspase-1 leading to release 

and maturation of IL-1β. NLRP3 inflammasomes are first expressed in microglial cells, 

followed by microvascular endothelial cells and neurons under oxygen-glucose deprivation/

reoxygenation (OGD/R) (Gong et al., 2018). Mitochondrial dysfunction leads to NLRP3 

activation in microglia in vitro. Hence, the mitochondrial protector diazoxide could inhibit 

NLRP3 mediated inflammation after stroke in the rat model of tMCAO (Gong et al., 2018). 

NLRP3-inflammasome inhibitor, MCC950 treatment, reduced infarction via decreased 

expression of TNF-α, Poly (ADP-ribose) polymerase (PARP), Caspase-3, and IκBα levels 

and showed protection in mouse model of tMCAO (Ismael et al., 2018). However, 

contradicting results from another study suggest, through the use of NLRP3 KO mice or 

targeting NLRP3 with a pharmacological inhibitor, MCC950 showed that NLRP3 is not a 

critical mediator in ischemic brain damage (Lemarchand et al., 2019).

6. Fibrosis

Inflammation is a prime driver for the induction of fibrosis in various diseases, including 

stroke. Immune cell infiltration and cytokine response in stroke induce profibrotic proteins 

like TGF-β, collagens, MMPs accumulation, ECM deposition, and epithelial to 

mesenchymal transmission in infarct regions of ischemic stroke.

6.1. Extracellular matrix deposition in ischemic stroke

ECM proteins are rapidly increased in tissue and cells under pathological stress conditions. 

The ECM consists of a group of proteins that bind to cell surface receptors and regulates 

many genes involved in cellular behavior. ECM proteins have both harmful as well as 

protective roles in stroke (Kawakita et al., 2019). In the stroke environment, the composition 

of ECM proteins is altered, which is implicated in BBB disruption that causes brain damage 

(Baeten and Akassoglou, 2011).

6.1.1. ECM proteins of the BBB in stroke—ECM proteins participate in the 

multicellular activity and support systems for many cells when in complex with integrins 

(heterodimeric receptors containing a transmembrane α and β protein subunit), (Edwards 
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and Bix, 2019). ECM proteins, mainly composed of proteoglycans, glycoproteins, and 

collagens, are primarily present in the basement membrane (BM) of brain microvessels 

between endothelial cells (Summers et al., 2013) and astrocyte end-feet (Baeten and 

Akassoglou, 2011). ECM proteins, fibronectin, laminins and collagen type I and type IV 

play a critical role in fibrosis and are induced in the infarct region after stroke (Baeten and 

Akassoglou, 2011; Summers et al., 2013). Platelet-derived growth factor receptor β 
(PDGFRβ) is an essential molecule for pericyte proliferation and survival and is a mediator 

of fibrosis induced in stroke. Research from our group demonstrated that a protein portion of 

perlecan (an ECM proteoglycan) called domain V (DV) plays a crucial role in modulating 

PDGF responses in angiogenesis (Bix et al., 2007; Bix and Iozzo, 2008). Administration of 

SU11652, an inhibitor of PDGFRβ, reduces fibrosis through decreased desmin and α-

smooth muscle actin (α-SMA) levels in vascular cells (Makihara et al., 2015). However, 

further studies reported that fibrotic scar development after stroke does not primarily occur 

by PDGFRß+ pericytes, and that it is not a contributor to the fibrotic ECM in pMCAO mice 

(Roth et al., 2020). Previous studies showed that the fibronectin-splicing variant containing 

extra domain A (Fn-EDA) was elevated in the plasma of diabetes mellitus and 

hypercholesterolemia comorbid patients (Dhanesha et al., 2015). Further studies showed 

smaller infarcts and lesser expression of phospho-NF-κB p65, IL-1β, and TNF-α levels in 

the MCAO model of apolipoprotein E-deficient mice expressing Fn-EDA (Fn-EDA+:Apoe 

KO mice) (Dhanesha et al., 2015). Still further studies investigated the role of plasma versus 

endothelial Fn-EDA in stroke exacerbation in the comorbid condition of hyperlipidemia. 

These observations suggest that plasma Fn-EDA KO:Apoe KO mice displayed improved 

stroke outcomes compared with endothelial Fn-EDA KO (Fn-EDAfl/flTie2Cre) mice, and 

endothelial-specific KO mice did not contribute to stroke outcome. Hence it suggests that 

plasma Fn-EDA exacerbates stroke outcome by promoting post-ischemic secondary 

thrombosis. Therefore, targeting plasma Fn-EDA may help to reduce brain damage after 

reperfusion (Dhanesha et al., 2019).

6.1.2. ECM receptors of the BBB in stroke—Ubiquitously expressed cellular ECM 

receptors are primarily dystroglycan and integrins, (Edwards and Bix, 2019). Amongst many 

different types of integrins, endothelial cells express fibronectin receptor α5β1, α4β1 and 

αvβ3 integrins (Guell and Bix, 2014; Roberts et al., 2017). We have demonstrated that α5 

integrin, (an obligate pair to the β1 integrin subunit) endothelial cell-specific knockout mice 

(α5-EC-KO) were resistant to ischemic infarction after tMCAO in mice. We further 

demonstrated that α5 integrin destabilizes the BBB via decreased expression of claudin-5 

after stroke, suggesting that this integrin could be a therapeutic target for stroke (Guell and 

Bix, 2014; Roberts et al., 2017). This was further confirmed by post-stroke administration of 

the α5β1 inhibitor, ATN-161, which significantly reduced the expression of α5β1 in the 

infarct region, stabilized the BBB, and increased collagen IV expression, whilst further 

reducing CXCL12, MMP-9, IL-1β, and CD45 + cells in the brain. These results suggest that 

ATN-161 is a promising novel stroke therapeutic (Edwards et al., 2019).

α4β1 integrin, also known as VLA-4 or CD49d/CD29, is primarily localized in 

lymphocytes, monocytes, and macrophages. Some researchers in both rodent and preclinical 

studies reported that inhibition of α4 showed reduced infarct volumes and improved 
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functional deficits (Becker, 2002; Llovera et al., 2015) in stroke patients. A recent study by 

using hydrogels precisely controlled α3/α5β1 integrin binding and promoted endothelial 

sprout clumping under in vitro (Li et al., 2017). Further, these hydrogels (containing nV and 

fragments) were injected directly into the stroke cavity promoted non-tortuous blood vessel 

formation and non-leaky blood vessels by 10 days after stroke. Hence precisely controlled 

integrin activation from a biomaterial can be used to direct therapeutic vessel regeneration 

and reduce VEGF-induced vascular permeability in vivo (Li et al., 2017). In preclinical 

studies targeting αMβ2, by rNIF (UK279276) and humanized Hu23F2G (Leukarrest) were 

failure to target αMβ2 integrin might be due to not increase of αMβ2 expression in human 

stroke patients compared to rodents (Caimi et al., 2001). α6β4 integrin is expressed on both 

astrocytes and endothelial cells (Milner and Campbell, 2006). The expression was decreases 

within 2–4 hrs after MCAO and increases from day 4 to day 14 (Wagner et al., 1997). A 

recent study on myeloid-specific integrin α9β1 KO mice improved stroke outcome by 

inhibiting post-ischemia/reperfusion inflammation and reduced fibrin, platelet thrombi, 

neutrophil, NETosis, and decreased phospho-NF-κB, tumor necrosis factor-α, and IL-1β 
levels in tMCAO mice brain. (Dhanesha et al., 2020).

6.1.3. Role of perlecan in BBB after stroke—ECM proteins generated and 

proteolytically processed with BBB disruption such as perlecan, play important roles in 

pathology after stroke (Lee et al., 2011). Research from our group demonstrated that one 

such proteolytic protein component of perlecan, DV, plays a crucial role in modulating 

PDGF responses in angiogenesis (Bix et al., 2007; Bix and Iozzo, 2008). Perlecan DV, a C-

terminal perlecan fragment that can be generated by an unknown protease(s) in vivo after 

experimental stroke (Lee et al., 2011), can be further processed into the protein fragment 

LG3 via proteases cathepsins B and L (Bix et al. 2004; Gonzales et al. 2005; Cailhier et al. 

2008 and Saini and Bix 2012), and BMP-1 (Gonzalez et al., 2005). LG3 has been shown to 

be present in the blood, cerebrospinal fluid and the urine of human patients with end-stage 

kidney disease, thus demonstrating that it is a proteolytic fragment in vivo, especially in 

humans (Adkins et al., 2002; Cartier et al., 2004; Pieper et al., 2004). Increased levels of 

LG3 were observed in primary fetal cortical neurons (FCN) under OGD/reperfusion 

condition, which was not blocked by the cathepsin L specific inhibitor, Z-FY-CHO. 

However, the cathepsin B inhibitor CA074 could inhibit LG3 production under OGD (Saini 

et al., 2011). Furthermore, IL-1α treatment increases LG3 levels via cathepsin L and B 

mediated expression in FCN (Saini and Bix, 2012), and promotes angiogenesis in brain 

endothelial cell cultures, and induces angiogenesis derived VEGF and CXCL1 expression 

and therefore, IL-1α is neuroprotective against stroke (Salmeron et al., 2016; Salmeron et 

al., 2019). Increased expression of DV and LG3 in the ischemic core of both mice and rats 

after stroke was shown to be beneficial (Bix, 2013; Saini and Bix, 2012). In seeming 

agreement with the importance of endogenous DV after stroke, perlecan hypomorph mice 

that express 10% of total protein (Pln−/− mice) showed larger ischemic stroke lesions 

following stroke (Lee et al., 2011; Yanagihara et al., 1984). Further, perlecan DV expression 

is reported to be upregulated in the brains of stroke patients (Trout et al., 2020). Studies 

using perlecan deficient mice showed significantly fewer NPCs at the subventricular zone 

(SVZ) following MCAO and leads to larger infarcts and decreases in neurogenesis (Trout et 

al., 2020). Administration of DV to mice 7 days after stroke enhanced neurogenesis and 
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improved neurological deficit function with less infarct volume (Trout et al., 2020). 

Collectively, these studies suggest that perlecan DV could be a novel therapeutic for 

ischemic stroke (Bix, 2013; Marcelo and Bix, 2014; Parham et al., 2014; Trout et al., 2020).

6.1.4. Role of other basement membrane components in the BBB after 
stroke—Laminin is a heterotrimeric protein that occurs in 15 different isoforms (including 

α, β and γ subunits). The increased expression of laminin in both endothelial cells and 

astrocytes of ischemic penumbra are observed within 24 hrs after rat MCAO (Kang and Yao, 

2020). Endothelial laminin-10 is essential for BBB integrity after in vitro OGD by regulating 

occludin and ZO-1 expression and localization to the extracellular cell wall, decreasing 

paracellular resistance through the endothelial cells (Kangwantas et al., 2016). Type IV 

collagen are a major component of all basement membranes (Mao et al., 2015). A recent 

study with small stroke patient populations revealed the variation in COL4A1 and COL4A2 
genes causes of weakness of the basement vascular membranes causes perinatal arterial 

ischemic stroke (Kocak et al., 2020). However, collagen IV-deficient mice (null allele of the 

Col4a1/2 locus in mice) die at E10.5– E11.5 due to vascular bleeding in the heart and 

arteries (Poschl et al., 2004). The proteolytic fragment of type IV collagen, tumstatin are 

generated by MMP-9 proteolysis and are known to suppress angiogenesis via αVβ3 integrin 

(Hamano et al., 2003). Studies on collagen IV expression need more investigation and 

improvement before any determination of collagen IV’s impact on stroke severity, or 

poststroke recovery can be made (Edwards and Bix, 2019).

6.2. Matrix metalloproteinases in ischemic stroke

MMPs are a large family of proteolytic enzymes with crucial roles in ECM remodeling and 

BBB disruption (Chang et al., 2016). In turn, they affect leukocyte infiltration and 

subsequent inflammation, in addition to cerebral edema. Neutrophils express different types 

of MMPs at the injury site after ischemic stroke (Jickling et al., 2015). A number of studies 

have highlighted the increase in levels of MMPs 1, 2, 3, 8, 9, 10 and 13 in response to stroke 

(Chelluboina et al., 2015a; Chelluboina et al., 2015b; Cuadrado et al., 2009; Hafez et al., 

2016; Han et al., 2016; Hirono et al., 2018; Ma et al., 2016; Orbe et al., 2011; Roncal et al., 

2017). In addition, recent meta-analyses have revealed Mmp gene polymorphisms that are 

implicated in predispositions to ischemic stroke (Wang et al., 2018; Zhang et al., 2018). 

Although most of the MMPs act as a pro-inflammatory factor, MMP-9 has a vital role in 

neuronal proliferation and apoptosis (Morancho et al., 2010; Vandooren et al., 2014). Time-

dependent inhibition of MMP-9 improves stroke outcomes via the degradation of DAMPS 

(Cauwe et al., 2009). Indeed, the timing of inhibition of MMPs is thought to be critical in 

terms of therapeutic effect, because MMPs have been shown to play different roles based on 

timing relative to stroke onset. In the early stages after stroke, MMPs have been reported to 

contribute to the injury process (Asahi et al., 2001; Lee and Lo, 2004; Lo et al., 2003), while 

later on, they contribute to the repair and recovery process (Zhao et al., 2006). Previous 

results demonstrated that MMP-12 upregulation leads to increased expression of other 

proteases such as MMP-9 and MMP-2 that could contribute to disruption of tight junction 

proteins in ischemic tissue after MCAO (Chelluboina et al., 2015a).
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Finally, the activity of MMPs is tightly regulated via interactions with Tissue Inhibitors of 

Metalloproteinases (TIMPs) (Cuadrado et al., 2009; Hirono et al., 2018) and ADAMs (a 

disintegrin and metalloproteinases) (Montaner et al., 2019), as well as the interactions with 

other MMPs. Recent studies have shown that MMP-12 KO in rats and genetic deletion of 

MMP-12 in mice causes major alterations in the expression of other MMPs and that nature 

of this alteration is different in rats from mice (Chelluboina et al., 2015b; Nalamolu et al., 

2018). TIMP-1 has been shown to inhibit MMP-9 and is implicated in post-stroke BBB 

preservation (Fujimoto et al., 2008). Therefore, it is possible to target MMPs directly, as well 

as indirectly via TIMP activity modulation for therapeutic intervention.

7. Conclusion and future therapeutic perspective

Stroke is a cerebrovascular disease that affects millions of people every year. Immuno-

inflammatory mechanisms leading to ischemic damage are still not fully understood, but 

accumulating evidence suggests that inflammation is a key element in stroke pathogenesis. 

Activation of immune cells releases many inflammatory cytokines and critical inflammatory 

mediators that are not only harmful but also exhibits beneficial effect during inflammation, 

and fibrosis after stroke. How the temporal expression patterns and polarization into 

different immune cell subsets affects their function after stroke should be taken into special 

consideration. The role of DAMPS and NLRP3 signals and recognition of extracellular 

matrix proteins and the intracellular molecular switches could be promising therapeutic 

approaches for post-stroke inflammation and progression to fibrosis.
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Highlights:

• Stroke is a disorder of blood vessels accompanied with the detrimental 

interaction between glia, neurons, vascular cells, and matrix components.

• Illustrates immune cell infiltration, cytokines response in stroke

• Discusses fibrosis ECM deposition, MMPs in stroke

• Elucidates the neuroprotective role of perlecan domain V in stroke via its 

angiogenesis property

• Summarizes cytokine inhibitors/inducers, immune cell, and inflammation 

signaling inhibitors, and other pharmacological therapies for stroke.
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Fig.1. 
Schematic of stroke-induced neuroinflammation. Stroke induces activation of stress signals, 

hypoxia, OGD, oxido-nitrosative stress, DAMPS such as high-mobility group box 1 protein 

(HMGB-1) derived from dying neurons, and it further activates innate microglia and other 

immune cells, via mediating toll like receptors (TLR), which in turn produce many pro-

inflammatory cytokines, and matrix metalloproteinases (MMPs), which leads to activation 

of NLRP3 signaling and infiltration of immune cells and potent cytokine response and 

neuroinflammation. Following stroke, activated parenchymal microglial cells transforms to 

M1 and M2 macrophage polarization. M1 macrophages release proinflammatory cytokines 

whereas M2 macrophages release anti-inflammatory cytokines and inhibit 

neuroinflammation.
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Table 1

Immune cell inhibitors/inducers for stroke therapy.

Immune cells Immune cell 
inhibitors/inducers Study organism Experimental 

study Biological effects Reference

Microglia
Pexidartinib 
(PLX3397. 290 mg in 
1 kg chow)

CS7BL/6 J and 
Cx3CrlGFP/ + mice

fMCAO (60 
mm)

↑ in Cx3CrlGTP/+, − (no change) 
in BBB injury and ↑ in brain 
injury with ↑ in TNFα. IL-6. 
MCP-1, KC (CXCL1), 1L-4

(Szalay et al., 
2016)

Macrophages
Anti-CCR2 
monoclonal antibody 
MC-21 (IP)

Male C57BL/6 J and 
B6SJL (CD45.1), 
CX3CR1-EGFP 
(CD45.2). (β-actin-
GFP + C57BL/C mice

fMCAO ↑ in MDMs. TGFβ, CD163. Yml, (Wattananit et 
al., 2016)

DHA sodium salt (10 
mg/kg, IP)

CS7BL/6 mice (both 
male and female. 8–12 
wk)

tMCAO (60 min)

↓ infiltration of peripheral 
macrophages (CD11b + 
CD45highLy6G −). neutrophils 
(CD11b + CD4ShighLy6G +). B 
lymphocytes (CD19 + CD3−), T 
lymphocytes (CD3 + CD19−). 
and ↑ in CD206 + Ibal +, 1L-10. 
Arginase-1. TGFβ

(Cai et al., 
2018)

T cells (Treg) Monoclonal antibody 
CD28SA (300 μg. IP)

Male C57BL/6 J mice 
(8–12wk)

pMCAO. 
fMCAO (60 
min)

↑ in IL-10, Treg cells and CD45. 
and ↓ CD11b +, MUCH on 
macrophages/dendritic cells.

(Na et al., 
2015)

B cells
Rituximab 
(Micromedex, 100 μg 
IP)

Transgenic human 
CD20+ expressing 
(hCD20 + /−) mice

tMCAO ↓ infarct volumes and didnť alter 
neurogenesis

(Ortega et al., 
2020)

Dendritic cells
Transgenic GFP + 
overexpress sTNFR1 
cells (2 × 106. IV)

Adult male SD tMCAO ↓ TNF-α and infarct volumes (Works et al., 
2013)

Table Abbreviations, ↑: Increase; ↓: Decrease; −: No change; fMCAO: Filamentous Middle Cerebral Artery Occlusion; BBB: Blood Brain Barrier; 
TNFα: Tumor Necrosis Factor Alpha; IL: Interleukin; MCP: Mast Cell Protease; MDMs: Monocyte-derived macrophages; TGF-β: Transforming 
Growth Factor Beta; CD:Cluster Of Differentiation; tMCAO: Transient Middle Cerebral Artery Occlusion; Treg: Infiltrating Regulatory T Cells; 
IP: Intraperitoneally; pMCAO: Permanent Middle Cerebral Artery Occlusion: MHC: major histocompatibility complex; GFP: Green Fluorescent 
Protein; sTNFR1: Soluble Tumor Necrosis Factor Receptor-1; IV: Intravenously; wk.: Week: SD: Sprague-Dawley; hCD-20: Human Anti-CD20: 
mo:Months; CXCL: C-X-C Motif Chemokine Ligand.
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Table 2

Cytokine inhibitors/inducers for stroke therapy.

Cytokine Cytokine 
Inhibitor/inducer Study organism Experimental 

study Biological effects Reference

IL-1α IL-la (50 pg/μL. 
LA) Male C57BL/6 mice

CCA/M CAO (60 
min) followed by 
reperfuston for 7 
days

IL-lα reduced infarct volumes via 
↓ IL-1β,1L-6, or CXCL-1 levels 
and ↑ expression of PECAM. 
ICAM-1. and VEGFR2

(Salmeron et al., 
2019)

IL-1Ra IL-IRa 
overexpressing mice

CS7BL/6-Tg (UBC-
GFP)30Scha/J (Stock 
No. 004353) (GFP-TG) 
breeding pairs

tMCAO (40 min)

↑ IL-IRa and ↓ expression of 
IL-1β produced by microglia 
mediating MAPK signaling in the 
ischemic cortex

(Clausen et al., 
2016)

IL-1β
Monoclonal anti-IL-
lβ antibody (10 μg/g 
IV)

JunD siRNA (siJunD)-
treated mice with 
CS7BL/6 J WT (wild 
type) background mice

tMCAO (45 min)
↓ in infarct volume. – (no change) 
in 1L-6, TNF-α. and 4-
hydroxynonenal levels

(Diaz-Canestro et 
al., 2019)

IL-4 IL-4 KO CS7BL/6 J WT, tMCAO (60 min) ↓ in smi32/MBP ratio (Zhang et al., 
2019)

IL-10 Recombinant IL-10 SD rats (8 wk) tMCAO (90 min) ↓ in TNF-α. IL-1β. 1L-6 (Nakajima et al., 
2017)

ICV IL-10 CS7BL/6 J (10–12 wk) pMCAO ↓ in PD-L1. CXCL9 RE (Liesz et al., 2014)

IL-13 Recombinant IL-13 Male (4-mo) BALB/
cOlaHsd mice MCAO

− (no change) in GFAP. Ibal. ↓ in 
C.D45+, ↑ in Ibal +/Argl +

(Kolosowska et 
al., 2019)

IL-33 Recombinant IL-33 Male C57BL/6 mice 
(8–10 wk)

CCA/MCA (30 
min)

↓ in IFN-γ + T cells, ↑ in Foxp3+ 
T cells. IL-4, IL-10. TGF-β in 
spleen tissues

(Xiao et al., 2019)

Table Abbreviations, ↑: Increase; ↓: Decrease; −: No change; IL-lα: Interleukin 1 alpha; CCA/MCAO: Central Carotid Artery/ Middle Cerebral 
Artery Occlusion; Intracerebroventricular; I A: Intra Arterial; IP, Intraperitoneally; IV: Intravenously; min: Minutes; hr Hours; mo: Month; wk.: 
Week; Yr: year, IL: Interleukin; CXCL: C-X-C Motif Chemokine Ligand; PECAM-1: Platelet/endothelial cell adhesion molecule-1; ICAM-1: 
Intercellular Adhesion Molecule 1; VEGFR-2: Vascular endothelial growth factor receptor 2; IL-IRa: Interleukin-1 Receptor Antagonist; MAPK: 
Mitogen-activated protein kinase; TNFα: Tumor Necrosis Factor Alpha; WT: Wild Type; GFP: Green Fluorescent Protein; SD: Sprague-Dawley: 
KO: Knock Out; tMCAO: Transient Middle Cerebral Artery Occlusion: IL-1β: Interleukin 1 Beta: siRNA: Small Interfering RNA; SMI32: a 
marker of demyelinated axons; MBP: major myelin protein; ICV: Intracerebroventricular. pMCAO: Permanent Middle Cerebral Artery Occlusion; 
GFAP: Glial fibrillary acidic protein; Interferon gamma; FOXP3:Forkhcad Box P3; TGF-β: Transforming Growth Factor Beta.
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Table 3

Other pharmacological therapies with anti-inflammatory activity for stroke therapy.

Cell types inhibitors Study organism Experimental study Biological effects Reference

Microglia .Melatonin (20 mg/kg. 
IP)

Male C57BL/6 J 
mice (8–10 wk) dMCAO

STAT3 mediated pathway with ↓ 
In pSTAT3. CD11b. CD86, 
iNOS, TNF-α. 1L-6. and IL-1β 
and ↑ in CD206. Arg-1. YM1/2, 
TGF-β. IL-10

(Liu et al., 
2019)

Berberine 
hydrochloride. BP1108 
(50 mg/kg/day)

Male C57BL/6 
mice tMCAO (45 min)

AMPK mediated signaling with 
↓ in IL-1β. CD32. TNF-α. and 
iNOS, p-AMPK and ↑ in CD206. 
Arg-1. IL-10, Ym1/2

(Zhu et al., 
2019)

α-lipoid acid (50 
mg/kg) Male SD MCAO (30 min) ↓ in lba-1-TNF-α-specifk cells (Wu et al., 

2016)

Neurons Fluoxetine (40 mg/kg. 
IP)

C57B1V6 J mice 
(3 mo.)

t.MCAO (1 h)/24hR. 
Drug administered 1 h 
and 12 h after tMCAO

Fluoxetine was inhibiting IL-10. 
Bax. and p53 and ↑anti-apoptotic 
protein Bcl-2 level.

(Shan et al., 
2016)

JNK inhibitor SP 
600125 and the ET-1 
antagonist BQ 123

Yorkshire pigs 
(1.1–1.6 kg; 2–7 
days old)

Photothrombotic stroke ↓ in 1L-6 levels (Armstead et 
al., 2019)

Neutrophils
rtPA (10 mg/kg. femoral 
vein) and NLRP3 
shRNA

SD rats
Thromboembolic focal 
cerebral ischemia 
model

PPARY/SIRT6/Fox03a mediated 
pathway with ↑ in PPARγ. 
SIRT6 and ↓ in p-FoxO3a. 1L-6, 
IL-1β. TNF-α; inhibited the 
microglia activation and 
neutrophils infiltration

(Guo et al., 
2018b)

Table Abbreviations, ↑: Increase; ↓: Decrease: −: No change; IL-lα: Interleukin 1 alpha: Intracerebroventricular. IA: Intra Arterial; IP. 
Intraperitoncally; IV: Intravenously; min: Minutes; hr. Hours; mo: Month: wk.: Week; Yr: year; 1L Interleukin; dMCAO: Distal middle cerebral 
artery occlusion; STAT3: Signal transducer and activator of transcription 3; pSTAT3: Phospho- signal transducer and activator of transcription 3; 
iNOS: Inducible nitric oxide synthase; CD: Cluster Of Differentiation; IL-1β: Interleukin 1 Beta; TNF: tumor necrosis factor, TGF-β: Transforming 
Growth Factor Beta; p-AMPK: Phospho-AMPK;PPARs: Peroxisome proliferator- activated receptors; SIRT6: Sirtuin 6; FOXO: Forkhcad box class 
O; Arg1: Arginase-1;; tMCAO: Transient Middle Cerebral Artery Occlusion; JNK: c-Jun N-terminal kinase; ET-1: Endothelin 1; ET-1: Endothelin 
1; PPARγ: Peroxisome Proliferator-Activated Receptor Gamma: NLRP3:NLR Family Pyrin Domain Containing 3; FOXP3:Forkhcad Box P3: 
Sirt6:Sirtuin 6; Ibal: Ionized calcium binding adaptor molecule 1.
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