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Targetable BRAF and RAF1 Alterations in Advanced
Pediatric Cancers
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/ABSTRACT

RAF family protein kinases signal through the MAPK path-
way to orchestrate cellular proliferation, survival, and trans-
formation. Identifying BRAF alterations in pediatric cancers
is critically important as therapeutic agents targeting BRAF
or MEK may be incorporated into the clinical management
of these patients. In this study, we performed comprehen-
sive genomic profiling on 3,633 pediatric cancer samples
and identified a cohort of 221 (6.1%) cases with known or
novel alterations in BRAF or RAF1 detected in extracranial
solid tumors, brain tumors, or hematological malignancies.
Eighty percent (176/221) of these tumors had a known-
activating short variant (98, 55.7%), fusion (72, 40.9%), or

insertion/deletion (6, 3.4%). Among BRAF altered cancers,
the most common tumor types were brain tumors (74.4%),
solid tumors (10.8%), hematological malignancies (9.1%),
sarcomas (3.4%), and extracranial embryonal tumors
(2.3%). RAF1 fusions containing intact RAF1 kinase domain
(encoded by exons 10-17) were identified in seven tumors,
including two novel fusions TMF1-RAF1 and SOX6-RAF1.
Additionally, we highlight a subset of patients with brain
tumor with positive clinical response to BRAF inhibitors,
demonstrating the rationale for incorporating precision medi-
cine into pediatric oncology. The Oncologist 2021;26:
el53—-e163

Implications for Practice: Precision medicine has not yet gained a strong foothold in pediatric cancers. This study describes
the landscape of BRAF and RAF1 genomic alterations across a diverse spectrum of pediatric cancers, primarily brain tumors,
but also encompassing melanoma, sarcoma, several types of hematologic malignancy, and others. Given the availability of
multiple U.S. Food and Drug Administration-approved BRAF inhibitors, identification of these alterations may assist with
treatment decision making, as described here in three cases of pediatric cancer.

INTRODUCTION

Pediatric cancers are a leading cause of death in the U.S.
among children aged 1 to 14 years [1]. Despite significant
improvements in 5-year overall survival for this population,
outcomes vary considerably depending on cancer type, with
cure rates not exceeding 20% in patients with recurrent dis-
ease [2, 3].

Precision medicine, defined as biomarker-informed
treatment, accounts for significant advances in manage-
ment of patients with cancer during the past two decades,
including trastuzumab for HER2-positive breast cancer [4],
imatinib for BCR-ABL—driven chronic myeloid leukemia [5],
crizotinib targeting ALK-rearranged non-small cell lung
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cancer [6], and BRAF V600E-targeting agents in melanoma
[7, 8].

With certain exceptions, such as the use of tyrosine
kinase inhibitors in Philadelphia chromosome—positive
acute lymphoblastic leukemia, the targeted therapy para-
digm has not been fully realized for pediatric patients with
cancer. Improvements in cytotoxic chemotherapy and radi-
ation therapy techniques have dramatically improved
survival rates in many pediatric cancers over the past 50
years; however, certain tumor types continue to be resis-
tant to standard therapeutic approaches [9], and when
therapy is effective, long-term toxicities in survivors remain
problematic [10-12].

Comprehensive genomic profiling (CGP) with next-
generation sequencing is an effective tool for identifying clin-
ically relevant genomic alterations (GAs) across diverse types
of pediatric cancers, including low grade glioma (LGG) and
high grade glioma (HGG) [13-15], osteosarcoma [16], neuro-
blastoma [17], medulloblastoma [18], thyroid carcinoma [19],
acute myeloid leukemia (AML) [20], T-lineage acute lympho-
blastic leukemia [21], gonadal tumors [22], and histiocytic
neoplasms [23], with implications for more precise diagnoses,
prognoses, and personalized therapeutic decision making.

BRAF encodes a member of the RAF family of protein
kinases, which includes ARAF, BRAF, and CRAF (RAF1).
These kinases function downstream of RAS as part of the
MAPK (RAF-MEK-ERK) signaling cascade that facilitates cell
proliferation, survival, and transformation [24, 25]. BRAF
mutations have been reported in up to 20% of all cancers,
with a majority occurring at the V600 position [26, 27].
BRAF fusions, which activate the MAPK pathway, have
been reported in multiple tumor types [28] and are the
most common genomic alteration in juvenile pilocytic
astrocytoma (PA), a type of LGG [29]. RAF1 fusions, which
are functionally similar to BRAF fusions, are recurrent in
adult solid tumors [30-32] and juvenile PA [15, 33-35].
Among LGGs, BRAF V600E may predict poorer long-term
outcome after chemotherapy and radiation therapies com-
pared with non—BRAF V600E tumors and those harboring
BRAF fusions (KIAA1549-BRAF), although further study is
needed [36-38]. Furthermore, BRAF V600E has been
observed concurrent with CDKN2A loss in patients with
ganglioglioma, although no significant difference in prog-
nosis was identified compared with patients with BRAF
V600E and intact CDKN2A [39].

Therapeutic strategies targeting BRAF-driven tumors rely
mostly on U.S. Food and Drug Administration (FDA)-
approved small molecule tyrosine kinase inhibitors (e.g.,
dabrafenib), approved in metastatic melanoma and non-
small cell lung cancer, and vemurafenib, approved in meta-
static melanoma and Erdheim-Chester disease. These and
additional investigational BRAF V600E-targeting agents [40,
41] are under clinical evaluation for pediatric indications in
multiple early phase trials. BRAF-altered pediatric malignan-
cies have derived clinical benefit from BRAF V600E—targeting
agents in central nervous system disease [2, 42-49] and his-
tiocytic neoplasms [50, 51]. Targeting BRAF fusions remains a
challenge in pediatric brain tumors, although reports demon-
strating clinical benefit with MEK inhibitors are increasing
[52-56]. Therapeutic modalities targeting RAF1 fusion—
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positive tumors are even rarer, with no clinical studies (pedi-
atric or adult) available. However, three reports demon-
strated clinical benefit from trametinib in two adult patients
with melanoma [30, 57] and a pediatric patient with LGG,
respectively [58].

Despite gains in clinical success of biomarker-informed
targeted therapy in children with cancer, access to rele-
vant targeted therapy is limited [2, 5-38, 40-54, 58-61].
In this study, we sequenced tumors from 3,633 patients
with pediatric cancer and identified a cohort of 221 cases
with known and novel BRAF or RAF1 alterations in extra-
cranial solid tumors, brain tumors, or hematological malig-
nancies. Furthermore, we highlight a subset of patients
with brain tumors with positive clinical response to BRAF
inhibitors, demonstrating the rationale for incorporating
precision medicine into pediatric oncology.

MATERIALS AND METHODS

CGP was performed in a Clinical Laboratory Improvement
Amendments—certified, College of American Pathologists—
accredited laboratory  (Foundation  Medicine, Inc.,
Cambridge, MA). Approval for this study, including a waiver
of informed consent and a Health Insurance Portability and
Accountability Act waiver of authorization, was obtained
from the Western Institutional Review Board (protocol
no. 20152817). The pathologic diagnosis of each case was
confirmed on routine hematoxylin and eosin—stained slides,
and all samples forwarded for DNA extraction contained a
minimum of 20% tumor nuclear area as a proportion of all
nucleated cells. In brief, 250 ng DNA was extracted from
40 microns of specimen from formalin-fixed, paraffin-
embedded tissue blocks or unstained slides. The samples
were assayed by CGP using adaptor ligation, and hybrid cap-
ture was performed for all coding exons from 287 (version
1) to 315 (version 2) cancer-related genes plus select introns
from 19 (version 1) to 28 (version 2) genes frequently
rearranged in cancer. Sequencing of captured libraries was
performed using the lllumina HiSeq technology (lllumina, San
Diego, CA) to a median exon coverage depth of at least 500
and analyzed for GAs, including short variant alterations
(base substitutions, insertions, and deletions), copy number
alterations (focal amplifications and homozygous deletions),
and select gene fusions or rearrangements, as previously
described [62]. Benign germline variants documented in pub-
licly accessible population databases or recurrent variants of
unknown significance that were predicted by an internally
developed algorithm to be germline were removed, with the
exception of known driver germline events (e.g., documented
hereditary and deleterious BRCA1/2 or TP53 mutations) [63].
Somatic alterations present in the Catalog of Somatic Muta-
tions in Cancer were highlighted as biologically significant
[64]. Tumor mutational burden (TMB) was determined on 1.1
megabases of sequenced DNA for each case and categorized
as low (0-5 mutations per megabase [mut/Mb]), intermediate
(619 mut/Mb), or high (220 mut/Mb) as previously
described [65]. Clinical histories, disease stage, and primary
versus recurrent disease status of samples tested were not
available.
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Figure 1. Landscape of known-activating BRAF alterations. (A): Schematic diagram of domains and alterations of BRAF. (B): Sche-
matic of known-activating BRAF fusions, including those identified in this study (STARD3NL-BRAF and KHDRBS2-BRAF). Exon num-
bers at the fusion boundary are depicted below each fusion diagram.

Abbreviation: CR, conserved region.

RESULTS

Characteristics of the Pediatric Cohort

CGP was performed on 3,633 pediatric (median 10.5 years,
range < 1-21 years) cancer samples and revealed 221 (6.1%)
unigue samples that harbored alterations in BRAF. Alterations
were classified as “known-activating” or “functionally
impairing” if supported by publicly available, peer-reviewed
biochemical data. An alteration was classified as
“uncharacterized” if biochemical data supporting a specific
functional status were not available at the time of this study’s
publication.

Of the BRAF mutation—positive cohort, 176 (79.6%) sam-
ples harbored a known-activating short variants (SVs), inser-
tions/deletions (indels), or fusion; 34 (15.4%) harbored an
uncharacterized SV, indel, or nonfusion rearrangement;
8 (3.6%) harbored a SV known to result in decreased protein
function (i.e., functionally impairing); and 3 (1.4%) contained
multiple uncharacterized or functionally impairing SVs

www.TheOncologist.com

(supplemental online Fig. 1A). Of the 176 samples bearing a
BRAF known-activating alteration, 98 (55.7%) encompassed
SVs, 72 (40.9%) fusions, and 6 (3.4%) indels (supplemental
online Fig. 1B).

Known-activating BRAF alterations were identified in
samples encompassing six primary histological categories:
brain tumors (74.4%; 18 subtypes), other solid tumors
(10.8%; 6 subtypes), hematological malignancies (9.1%; 5 sub-
types), sarcomas (3.4%; 3 subtypes), and extracranial embry-
onal tumors (2.3% 2 subtypes) (supplemental online Fig. 2A).
Brain tumors (n = 131) included pilocytic astrocytoma (PA),
grade | (45; 34.4%); low grade glioma (LGG) not otherwise
specified (NOS) (19; 14.5%); glioblastoma (GBM) (13; 9.9%);
pilomyxoid astrocytoma, grade 2 (13; 9.9%); ganglioglioma,
grade 1 (10; 7.6%); and 13 additional subtypes of varying fre-
guency (supplemental online Fig. 2B).

Sarcomas (n = 6) included rhabdomyosarcoma (NOS) (2;
33.3%); sarcoma (NOS) (3; 50%); and rhabdomyosarcoma,
embryonal (1; 16.7%) (supplemental online Fig. 2C).

© 2020 AlphaMed Press
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Figure 2. Genomic landscape of hematological malignancies and extracranial solid tumors with a known-activating BRAF alteration.
Specimens are arranged from young to old (left to right) within each cancer type.

Abbreviations: AML, acute myeloid leukemia; MPNST, malignant peripheral nerve sheath tumor; MSI, microsatellite instability;
MSS, microsatellite stable; mut/Mb, mutations per megabase; NOS, not otherwise specified; TMB, tumor mutational burden.

Embryonal tumors (n = 4) included neuroblastoma (3; 75%)
and malignant mixed germ cell tumor (1; 25%) (supplemental
online Fig. 2D). Hematological tumors (n = 16) included
Langerhans cell histiocytosis (11; 68.8%), histiocytic cell
neoplasm (NOS) (2; 12.5%), anaplastic large cell lymphoma
(ALK-positive) (1; 6.3%), AML (treatment-related) (1; 6.3%),
and T-lymphoblastic leukemia/lymphoma (1; 6.3%) (supple-
mental online Fig. 2E). Other solid tumors (n = 19) included
melanoma (10; 52.6%), papillary thyroid carcinoma (4;
21.1%), acinar cell carcinoma (2; 10.5%), and three additional
subtypes (supplemental online Fig. 2F).

Landscape of BRAF Known-Activating Variants

BRAF V600E accounted for 50% (88/176) of all identified
known-activating variants, followed by K601E (2.3%; n = 4)
and N581S (1.7%; n = 3). Less common known-activating SVs
included G469V (1.1%; n =2), V600D (0.6%; n =1), and
V600K (0.6%; n =1). Known-activating indels identified

© 2020 AlphaMed Press

included N486_T491 > K and N486_P490del (each at 1.1%,
n = 2) and A598_T599insT and T599_V600insT (each at 0.6%;
n = 1) (Fig. 1A). A known-activating BRAF fusion was iden-
tified in 72 cases (32.6% of the BRAF mutation—positive
cohort), all of which contained an intact BRAF kinase
domain (encoded by exons 11-18) and breakpoints in
BRAF introns 7, 8, 9, or 10. Sixty-four (88.9%) of these
included the KIAA1549 fusion partner, with 8 distinct
KIAA1549-BRAF fusion variants identified. BRAF fusions
with unique fusion partners were identified in eight
cases, with two involving the novel fusion partners STAR-
D3NL and KHDRBS2 (Fig. 1B).

Genomic Landscape of Hematologic Malignancies
and Extracranial Solid Tumors with Known-Activating
BRAF Alteration

Among 45 patients with extracranial solid tumors or hemato-
logic malignancies harboring a known- activating BRAF

Oncologist
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Case 1.
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A Diagnosis Age (yrs) BRAF Genomic Alteration
PA, G1 4 duplication of exons 9-18
LGG (NOS) 10 deletion of exons 1-7
Osteosarcoma 21 deletion of exons 1-7
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Figure 5. Landscape of BRAF nonfusion rearrangements. (A): Description of BRAF rearrangements in pediatric malignancy. (B): Sche-
matic representing loss of BRAF exons 1-7. (C): Genomic landscape of pediatric cancers bearing a BRAF nonfusion rearrangement.
Abbreviations: G, grade; LGG, low-grade glioma; MSI, microsatellite instability; MSS, microsatellite stable; mut/Mb, mutations per
megabase; NOS, not otherwise specified; PA, pilocytic astrocytoma; TMB, tumor mutational burden.

alteration, BRAF V600E was the most common SV (n = 25/45,
55.6%) and was observed in AML (therapy-related) (n = 1);
histiocytic neoplasms (n = 9); melanoma (n = 8); papillary thy-
roid carcinoma (n =4); and rhabdomyosarcoma, acinar cell
carcinoma, and serous carcinoma (n =1 each). A known-
activating BRAF fusion was identified in seven samples:
KIAA1549-BRAF in embryonal rhabdomyosarcoma (n = 1), sar-
coma (NOS) (n =1), and malignant peripheral nerve sheath
tumor (n = 1); CUX1-BRAF in sarcoma (NOS) (n =1); STAR-
D3NL-BRAF in sarcoma (NOS) (n = 1); PPP1CC-BRAF in acinar
cell carcinoma (n = 1); and KHDRBS2-BRAF in large cell neuro-
endocrine carcinoma (unknown primary) (n = 1) (supplemen-
tal online Table 1).

Few co-occurring genomic driver alterations or signatures
were identified in this cohort with the notable exception of
the hematological and melanoma sample subsets. Thirteen

© 2020 AlphaMed Press

of 45 samples contained either CDKN2A/B deletion (n = 9) or
a CDKN2A truncating alteration (n = 4). Co-occurring known-
activating KRAS SVs were found in four samples. The majority
of cases contained low or intermediate TMB with the excep-
tion of melanoma samples, of which 50% (5/10) displayed
high TMB. All cases that could be assessed for microsatellite
instability demonstrated a microsatellite stable status (Fig. 2).

Genomic Landscape of Primary Brain Tumors with
Known-Activating BRAF Alterations

Analysis of 131 primary brain tumors revealed 66 samples
with known-activating BRAF SV or indels and 65 with a
known-activating gene fusion. BRAF V600E was the most
common (62/66 cases) SV or indel observed in 14 distinct
histological subtypes. Less common, known-activating BRAF
variants were identified in one patient with high grade

Oncologist
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Figure 6. Landscape of RAF fusions. (A): Hematoxylin and eosin staining and corresponding schematics representing recurrent and
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Abbreviations: MSI, microsatellite instability; MSS, microsatellite stable; mut/Mb, mutation; mutations per megabase; NOS, not
otherwise specified; TMB, tumor mutational burden.

glioneuronal tumor (NOS) (N581S), one patient with GBM could be assessed for microsatellite instability all demon-
(N486_T491 > K), and two patients with LGG (NOS) strated a microsatellite stable status (Fig. 3).

(T599_V600insT, A598_T599insT, respectively) (supplemen- KIAA1549-BRAF was the most common fusion, identified
tal online Table 2). All cases had low TMB, and those that in 61 of 65 fusion-positive cases represented by 16 tumor
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ongoing clinical and radiographic response. Therapy
was discontinued due to recurrent photosensitivity for
an additional 9 months, with ongoing stable disease
and no evidence of tumor progression.

10 year old female with a Ganglioglioma positive for
BRAF (V60OE). Treatment with vemurafenib (960mg
PO BID) resulted in stable disease for 18 months

(ongoing).

7 year old female with a GBM (WHO Grade IV) positive
for BRAF (V600E). Treatment with vemurafenib (480mg
PO BID) resulted in stable MRI findings for 7 months
(ongoing).

Figure 7. Postcontrast magnetic resonance imaging images showing decrease in tumor size in three separate BRAF V600E—positive

pediatric patients after treatment with vemurafenib.

Abbreviations: BID, bis in die (twice daily); GBM, glioblastoma; MRI, magnetic resonance imaging; PO, per os (by mouth); WHO,

World Health Organization.

subtypes, with highest frequency observed in PA, grade
1 (55% of fusion-positive specimens). Noncanonical BRAF
fusions were identified in four other tumors: PA, grade
1 (FAM131B-BRAF); PA, grade 1 (BCASI1-BRAF); anaplastic
pleomorphic xanthoastrocytoma, grade 3 (CCDC6-BRAF); and
anaplastic ganglioglioma, grade 3 (TMEM106B-BRAF) (sup-
plemental online Table 3). All the BRAF fusion—positive cases
except for one contained low or intermediate TMB, the
exception being a single tumor from a 20-year-old patient
diagnosed with anaplastic astrocytoma World Health Orga-
nization (WHO) grade Il that contained a TMB of >40
mut/Mb. All cases that were able to be assessed for micro-
satellite instability demonstrated microsatellite stable sta-
tus (Fig. 4).

BRAF Nonfusion Rearrangements

Nonfusion BRAF rearrangements were identified in five
patients, including one patient with PA, grade 1; one patient
with LGG (NOS); two patients with neuroblastoma; and one
patient with osteosarcoma (Fig. 5A). These noncanonical
BRAF alterations manifested from one of three distinct chro-
mosomal rearrangements, and all resulted in genomic loss or
disruption of the BRAF N-terminal autoinhibitory domain
with breakpoints in intron 7, 8, or 9, which has been shown
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to result in constitutive kinase activation in a RAS-
independent manner [66] (Fig. 5B). All five specimens dem-
onstrated low or intermediate TMB, and none demonstrated
microsatellite instability (Fig. 5C).

RAF1 Known-Activating Fusions in Solid Tumors
Known-activating RAF1 fusions (n = 7) were identified in five
distinct brain tumor subtypes, one sarcoma, and one histio-
cytic neoplasm. All fusions contained an intact RAF1 kinase
domain (encoded by exons 10-17) with unique fusion part-
ners and breakpoints in RAF1 introns 7 or 9. Two involved
the novel fusion partners TMF1 (sarcoma [NOS]) and SOX6
(HGG [NOS]) (Fig. 6A). All seven specimens demonstrated
low TMB, and none demonstrated microsatellite instability
(Fig. 6B).

Index Cases

Three patients with BRAF V600E—mutated brain tumors,
including a 10-year-old boy and 10-year-old girl, each with
ganglioglioma (WHO grade 1) (Index Cases 1 and 2), and a
7-year-old girl with a GBM (WHO grade V) (Index Case 3),
who each experienced progression after conventional treat-
ment, were independently treated with the BRAF inhibitor
vemurafenib on a compassionate basis. Index Cases 1 and

Oncologist



Rankin, Johnson, Roos et al.

el6l

2 showed clinical and radiological response to the targeted
therapy (960 mg b.i.d.) and remained on treatment
22 months and > 18 months, respectively, with ongoing
response. After treatment with vemurafenib for 22 months,
therapy was discontinued in Index Case 1 because of recur-
rent photosensitivity, and this patient has remained off
treatment for >9 months with no radiologic or clinical evi-
dence of tumor progression. The patient described in Index
Case 3 was treated with 480 mg p.o. b.i.d. and showed sta-
ble magnetic resonance imaging findings >7 months with
ongoing sustained response (Fig. 7).

Prior Molecular Testing

To better understand the extent to which prior molecular
testing was used in this data set of tumors that harbored
BRAF or RAF1 known-activating alterations, we assessed
cases (n = 35) with available clinical histories. Of those with
prior BRAF molecular testing results, 19 (54.3%) reported
results from prior testing methodologies inconsistent with
the respective BRAF alteration type later identified with CGP
(supplemental online Fig. 3A). Specifically, of eight PA cases
with either KIAA1549-BRAF or QKI-RAF1 fusion detected by
CGP, six were previously tested for BRAF V600E by immuno-
histochemistry or polymerase chain reaction, and therefore
the underlying BRAF fusion was not detected (supplemental
online Fig. 3B).

DiscussioN

In this study we highlight the diverse landscape of pediatric
cancer types that harbor genomic alterations in BRAF or
RAF1 and describe three index cases with durable benefit
with RAF inhibitors. In our data set, alterations in BRAF likely
to represent driver events were identified in approximately
6% of all pediatric tumors screened with CGP during routine
clinical care. Key among these findings is that 25% of the
tumor samples represent extracranial solid or hematologic
tumor types for which single gene or broad panel testing for
druggable biomarkers are unlikely to be employed routinely
in a clinical setting. For example, KIAA1549-BRAF, CUX1-
BRAF, STARD3NL-BRAF, or TMF1-RAF1 fusions, which were
identified in four separate patients with sarcoma in our
study, would have likely gone unrecognized with standard of
care molecular testing.

Multiple biomarker-informed targeted therapies have
been developed for adult patients with cancer, but there
continues to be significant lag time for similar development
for pediatric cancers. Notable exceptions are recent age-
agnostic therapy approvals, including larotrectinib and
entrectinib for NTRK fusion—positive patients and the emer-
gence of umbrella protocols, including the Children’s Oncol-
ogy Group—National Cancer Institute Pediatric Molecular
Analysis for Therapeutic Choice (Pediatric MATCH) protocol
[67]. To address this disparity, one potential strategy is the
repurposing of off-label FDA-approved targeted therapies for
pediatric patients with cancer with malignancies harboring
relevant predictive biomarkers. Notably, a key challenge in
implementing such a strategy is the ability to identify
patients likely to benefit from a given targeted therapy. Per
patient, single gene tests or other protein expression—based

www.TheOncologist.com

diagnostics suffer the limitations of requiring significant tis-
sue and/or a limited range of biomarker detection. Sequen-
tial testing of individual biomarkers via multiple molecular
diagnostic tests can result in significant loss of treatment
time or in unnecessary toxicity because of use of conven-
tional therapy. Our data are consistent with this; of cases
with prior BRAF molecular testing results available, more
than half of reported results were inconsistent with the
respective BRAF alteration later identified by CGP. Moreover,
even within one indication, diverse and druggable bio-
markers are potentially discoverable. For example, at least
60% of PAs harbor KIAA1549-BRAF fusion. However, tumors
found to be BRAF fusion—negative by standard molecular
testing (e.g., fluorescence in situ hybridization) may instead
harbor alternative activating variants in diverse genes includ-
ing BRAF, NTRK1-3, FGFR1, NF1, or KRAS [14, 15, 68], all of
which are directly or indirectly druggable with currently
approved targeted therapies [69]. Large gene panel-based
molecular profiling is currently the most efficient means of
identifying the breadth of potentially clinically relevant vari-
ants in pediatric cancers.

CONCLUSION

There remains wide disparity in survival depending on cancer
type in pediatric cancers. Improved therapeutic strategies
are therefore urgently needed. Broad panel-based molecular
profiling can efficiently identify multiple key genomic drivers
and should therefore be considered a component of stan-
dard molecular testing in advanced or recurrent pediatric
cancer types, regardless of disease indication.
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