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An enriched biosignature of gut 
microbiota‑dependent metabolites 
characterizes maternal plasma 
in a mouse model of fetal alcohol 
spectrum disorder
Manjot S. Virdee1, Nipun Saini1, Colin D. Kay2, Andrew P. Neilson2, Sze Ting Cecilia Kwan1, 
Kaylee K. Helfrich1, Sandra M. Mooney1 & Susan M. Smith1*

Prenatal alcohol exposure (PAE) causes permanent cognitive disability. The enteric microbiome 
generates microbial-dependent products (MDPs) that may contribute to disorders including 
autism, depression, and anxiety; it is unknown whether similar alterations occur in PAE. Using a 
mouse PAE model, we performed untargeted metabolome analyses upon the maternal–fetal dyad 
at gestational day 17.5. Hierarchical clustering by principal component analysis and Pearson’s 
correlation of maternal plasma (813 metabolites) both identified MDPs as significant predictors for 
PAE. The majority were phenolic acids enriched in PAE. Correlational network analyses revealed 
that alcohol altered plasma MDP-metabolite relationships, and alcohol-exposed maternal plasma 
was characterized by a subnetwork dominated by phenolic acids. Twenty-nine MDPs were detected 
in fetal liver and sixteen in fetal brain, where their impact is unknown. Several of these, including 
4-ethylphenylsulfate, oxindole, indolepropionate, p-cresol sulfate, catechol sulfate, and salicylate, 
are implicated in other neurological disorders. We conclude that MDPs constitute a characteristic 
biosignature that distinguishes PAE. These MDPs are abundant in human plasma, where they 
influence physiology and disease. Their altered abundance here may reflect alcohol’s known effects on 
microbiota composition and gut permeability. We propose that the maternal microbiome and its MDPs 
are a previously unrecognized influence upon the pathologies that typify PAE.

Prenatal alcohol exposure (PAE) causes behavioral, growth, and physical anomalies known as Fetal Alcohol 
Spectrum Disorder (FASD); the deficits in cognition, learning, memory, and executive function persist across 
the lifespan1–3. FASD is a significant public health problem. In the US, an estimated 4.1% (range 3.1–5.0%) of 
U.S. first graders meet the criteria for an FASD diagnosis4, and 3.9% of pregnant women admit to binge drink-
ing in the past 30 days (four or more drinks per occasion)5. Unbiased sampling of newborn bloodspots reports 
even higher exposure rates, and 8.4% in a Texas-statewide sample tested positive for PAE during the month 
prior to birth6. Despite these high rates of prevalence, implementation of screening to identify alcohol-exposed 
pregnancies remains challenging for complex reasons. Social stigmas surrounding gestational alcohol consump-
tion discourage accurate self-disclosure7. Biomarkers such as ethyl-glucuronide and phosphatidylethanol have 
diagnostic utility8,9, but their interpretation is complicated by modifying factors that include the level, pattern, 
and timing of drinking, genetics, nutritional status, and maternal body mass index10–13. A clearer understanding 
of alcohol-related biomarkers would inform their development and interpretation, and could be leveraged into 
interventions that attenuate alcohol’s damage.

One candidate modifier of FASD that receives little attention is the microbiome. The enteric microbiome 
modulates host activity, in part, through its generation of small molecules; these microbial-dependent products 
(MDPs) include direct products of microbial metabolism (volatile fatty acids, indoles), microbial action upon 
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host-derived metabolites (secondary bile acids), and compounds liberated from the food matrix by microbial 
digestion (phytochemicals). These are absorbed predominantly through the colon and circulate at physiologically 
relevant concentrations (nanomolar to high micromolar), where they act as high-affinity ligands for signaling 
systems that govern diverse processes including bile acid synthesis, gut function, insulin sensitivity, immune 
function, and vascular health14–18. Relevant for FASD, dysfunction of the enteric microbiome has been implicated 
in neurological disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, autism spectrum disorder, 
depression, multiple sclerosis, Parkinson’s disease, and seizure risk14,19–24. Various MDPs have been shown to 
interact with the nervous system at physiologically relevant concentrations. For example, microbial-derived 
indoles cross the blood–brain barrier to modulate motor, anxiety, and other behaviors, as well as microglial-
mediated neuroinflammation25–28. The microbial-derived polyphenol 3,4-dihydroxyphenylacetate modulates 
dopamine and catecholamine metabolism and clearance24,28,29. Mechanistically, fecal transfers from diseased 
mice can recreate the MDP signatures, pathologies, and select characteristics of neurological disorders including 
autism, depression, Parkinson’s disease, amyotrophic lateral sclerosis, and ketogenic refractory epilepsy19,21,23,30–32.

Although microbial dysfunction is causative in alcohol-related diseases such as cirrhosis and pancreatitis, 
potential contributions to FASD are unknown. Alcohol reduces the immunological activities and mucosal tight 
junctions that maintain the intestinal barrier’s integrity, and thus enhances paracellular entry of MDPs into 
the circulation33,34. Alcohol also alters the enteric microbiome composition and promotes the growth of gram-
negative facultative anaerobes that produce exotoxins such as lipopolysaccharide35–38. These signal through the 
toll-like receptors (TLR) to stimulate the inflammation, fibrosis, and cell death that underlie alcoholic end-organ 
damage. Microbiome contributions to FASD were indirectly suggested by recent demonstrations that loss-of-
function in TLR4, which mediates inflammatory responses to microbial LPS, attenuates neuroinflammatory 
responses to improve memory, anxiety and social behaviors in mouse models of PAE39,40. However, it is unknown 
whether PAE alters the maternal enteric microbiome and the spectrum of biochemicals that it generates, whether 
these reach the fetus, and how such changes contribute to the pathologies of FASD.

To gain insight into this question, we employed an untargeted UPLC–MS/MS approach and characterized 
the MDP profile of mother and fetus, using our established mouse model of PAE41. We report here that MDPs 
comprise a distinctive and significant biosignature that distinguishes alcohol-exposed dams from their controls. 
We readily detect MDPs within the fetus, where PAE again alters their abundance. Several of these analytes were 
previously implicated in neurological dysfunction. Data implicate MDPs as a hitherto unappreciated contribu-
tor to FASD.

Results
Litter characteristics.  The alcohol dose used (3  g/kg) caused a mean blood alcohol concentration of 
211 ± 14 mg/dl at 30 min post-gavage, and the mice were inebriated but did not pass out. Alcohol exposure 
(ALC) did not affect maternal food intake41 or overall weight gain (Supplementary Table S1 online); the ALC 
dams had a non-significant trend to reduced weight gain during the alcohol exposure period (embryonic day (E) 
8.5–E17.5) compared to controls (CON, 11.22 ± 0.47 g; ALC, 9.98 ± 0.44 g; p < 0.07). Prenatal alcohol exposure 
did not affect litter size (p = 0.31) or fetal survival (p = 0.69) at E17.5, and no adverse outcomes were observed in 
dam or fetus.

Alcohol‑exposed maternal plasma is enriched in MDPs.  Untargeted metabolite analysis identified 
813 biochemicals in maternal plasma, 733 with known chemical structures and 80 that were unknown. Of the 
813 metabolites, 146 had significantly altered representation (q < 0.05 by Mann–Whitney U-test followed by 
Benjamini–Hochberg correction) in response to PAE. Principle Component Analysis (PCA) of the metabolite 
profiles showed that alcohol-exposure is a clear driver of variance within the metabolic profiles, and placed one 
dam (ALC-6) as an outlier (Supplementary Figure S1A,B online). This dam’s plasma ethyl glucuronide level was 
just 14.0% of that for the other alcohol-exposed dams, suggesting a gavage error, and she was removed from 
further analysis. Repeating the PCA with omission of ALC-6 revealed that the metabolomic profile explained 
the separation of the samples by intervention. PC1 explained 23.1% of the sample variance, and PC2 explained 
an additional 15.9% (Fig. 1a), and visual inspection of the data set revealed that MDPs were among the strong-
est drivers of PC1 and PC2 (Fig. 1b). Analysis of the log-fold change q-values using T-statistic similarly found 
that MDPs were over-represented (Fig. 1c), and of 146 metabolites having a q ≤ 0.05, 28.1% (N = 41) were MDPs, 
although they comprised 10.5% of the 733 known metabolites. Housing assignment can also affect enteric micro-
biome composition42; remapping the PCA results against housing assignment affirmed that cage assignment did 
not influence analyte distribution or abundance (Supplemental Fig. S1C).

Of the 70 MDPs detected within control and ALC maternal plasma, 41 (58.6%) had significantly altered 
representation (q ≤ 0.05) in response to alcohol (Table 1); the preponderance (44) were enriched by alcohol-
exposure and only two were significantly reduced. The majority of the MDPs (36/70) were plant phenolics that 
originated from the microbial-mediated fermentation of ingested lignins in the cage bedding18, and potentially 
from starch- or cellulose-bound flavonoids in the purified diet43. Alcohol exposure significantly enriched the 
abundance of 29 plant-derived phenolics, including the alcoholic β-glucoside salicin (12.98-fold), catechol sulfate 
(7.41-fold), cinnamate (5.28-fold), ferulic acid 4-sulfate (4.50-fold), hippurate (3.37-fold), caffeic acid sulfate 
(3.21-fold), phenyl sulfate (3.20-fold), and salicylate (3.11-fold). None had reduced abundance, and the overall 
pattern was one in which ALC significantly increased the plasma abundance of plant-derived aromatics and 
their phase-II metabolites.

Alcohol-exposure also increased the maternal plasma levels of multiple indole derivatives including 
indoleacetate, indolelactate, indolin-2-one, 3-formylindole, and 3-indoleglyoxylic acid (range 1.47–1.76-fold), 
and decreased the abundance of indolepropionate (0.41-fold). It also altered the abundance of secondary bile 
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acids, which are generated by microbial action upon those primary bile acids not resorbed in the ileum. Of the 
eleven secondary bile acids detected in maternal plasma, eight were less abundant in ALC dams, although only 
12-dehydrocholate was significantly reduced (0.02-fold, q = 0.0193). In contrast, taurohyodeoxycholic acid (2.21-
fold) and ursocholate (2.19-fold) were elevated in alcohol-exposed maternal plasma, but not significantly. Also 
increased were the sugar derivatives ribitol, tartronate, and threonate, and the betaine ergothioneine. Although 
not microbial-derived, the phytosterols beta-sitosterol and campesterol were also elevated by alcohol-exposure.

MDPs comprise a significant biosignature in plasma of ALC dams.  We utilized Hierarchical Clus-
tering of Principal Components (HCPC) to understand the relationships among these metabolite features. This 
placed the 813 metabolites into five, evenly distributed clusters using Ward’s method. The MDPs were unevenly 
distributed across the clusters, and a majority segregated into cluster 1 (57.8%, 41 of 71 MDPs), followed by clus-
ters 3 (11/71) and 5 (11/71) (Fig. 2a). Clusters 2 and 4 were dominated by endogenous metabolites. This cluster-
ing of MDPs primarily reflected their contribution to PC1, which captured the greatest class separation between 
ALC and control (Fig. 2b). The MDPs in Cluster 1 were predominantly plant-derived aromatics, and all were 
enriched in ALC (Table 2; Supplementary Table S2 online). In contrast, the MDPs in cluster 5 were enriched in 
control plasma and they were mostly (9/11) secondary bile acids. Clusters 3 and 4 were highly skewed towards 
other Principal Component Dimensions, and repeating the PCA and PLSDA analysis according to PC2 (Sup-
plementary Figure S2 online) suggested that dimension 2 modeled the time of plasma collection following the 
intervention. This cluster separation was relevant only for the ALC dataset and not the controls. Because this 
influence did not involve the MDPs, it is the focus of a separate investigation described elsewhere. In sum-
mary, the HCPC and PLSDA analysis revealed that the MDPs clustered by treatment response based on the PC 
loadings. These MDPs had a disproportionate influence in explaining exposure variance within the metabolite 
dataset, and their influence was defined by their molecular structure, in addition to their relative abundance and 
p-value.

Correlation analysis further informs whether influences in addition to exposure drive the metabolite rela-
tionships and variance across the dataset. We repeated the hierarchical clustering using Spearman’s correlation 
(Fig. 2c). The strong association between the plant phenolics was retained, and 47/71 were correlated within 
Cluster 5, comprising 27.8% of that cluster, and these were all enriched by alcohol exposure (Table 3, Sup-
plementary Table S3). New associations also emerged, and Cluster 1 (13/71) included a mixture of phenolics, 
indoles, and secondary bile acids largely unaffected by alcohol-exposure. These findings further support that 
alcohol exposure strongly influenced plasma MDP content, and their relationships further depended on chemi-
cal structure and metabolic fate.

Metabolite classes that tightly cluster together in the correlation analysis share a consistent response to treat-
ment. Similarly, metabolites that are downstream products of a shared cellular process affected by alcohol also 
will maintain equilibrium with each other during the analysis. Thus, highly conserved correlations likely repre-
sent a metabolite set that exists within a molecular equilibrium. The consistent clustering of MDPs in both the 
HCPC and Spearman’s correlation suggested the existence of such relationships. To investigate this, we filtered 
the correlation matrix to correlations greater than 0.9, and subjected these to network correlation analysis, and 
segregated by treatment. This yielded very different network structures for Control and ALC maternal plasma 
(Fig. 3). The network architecture of the controls was comprised of two dense hubs connected by tightly-linked 
interactions, and each joined to separate satellites that were in turn weakly linked (Fig. 3a). In contrast, the ALC 
plasma network architecture was dominated by just a single dense hub that was more loosely connected with a 

Figure 1.   Plasma microbial-derived metabolites distinguish alcohol-exposed and control dams. (a) Dimension 
1 and 2 of the PCA on the scaled metabolite profiles within plasma of nine control (CON) and eight alcohol-
exposed (ALC) dams. (b) PCA biplot with microbial-derived metabolites overlaid onto the samples plot. PCA 
values for the MDPs are presented in Supplemental Table S2. (c) T-statistic plot of all 813 metabolites (arranged 
alphabetically along the x-axis) against their log10 q-values. The black dashed line indicates the cut-off for the 
FDR adjusted value of q < 0.05, and the red dashed line indicates q < 0.01. Red dots indicate microbial-derived 
metabolites having q < 0.05. Sample size is n = 9 control and n = 8 alcohol-exposed dams.
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Metabolite HMDB ID

F–C

p-Value q-Value

Rel. abundance %Pos samples

Alc/Cont Cont Alc Cont Alc

Plant Phenolics

Benzoate HMDB01870 1.07 0.2359 0.4631 958,546 ± 215,335 1,078,999 ± 62,041 100 100

Salicylate HMDB01895 3.11 0.0006 0.0076 2.14 ± 0.57E+07 7.70 ± 3.01 100 100

Gentisate HMDB00152 3.99 0.0001 0.0021 225,041 ± 189,114 1,225,172 ± 518,151 100 100

2,6-Dihydroxybenzoic 
acid HMDB13676 2.54 0.0001 0.0021 5.42 ± 0.79E+07 1.22 ± 2.95E+07 100 100

Methyl-4-hydroxy-
benzoate sulfate 3.13 0.0006 0.0097 20,506 ± 0 73,411 ± 40,088 11 88

2-Aminophenol 
sulfate HMDB61116 1.89 0.0082 0.0462 29,136 ± 2730 70,453 ± 13,683 44 88

Hippurate HMDB00714 3.37 0.0001 0.0021 3.16 ± 2.05E+07 11.6 ± 5.27E+07 100 100

2-Hydroxyhippurate HMDB00840 2.91 0.0040 0.0277 127,409 ± 15,397 295,330 ± 251,375 56 100

4-Hydroxyhippurate HMDB13678 2.68 0.0010 0.0100 143,377 ± 82,882 387,206 ± 51,704 100 100

Catechol sulfate HMDB59724 7.41 0.0001 0.0021 491,694 ± 234,179 4,874,352 ± 2,650,700 100 100

4-Methylcatechol 
sulfate 3.11 0.0002 0.0030 1.20 ± 0.40E+07 2.94 ± 1.09E+07 100 100

4-Vinylcatechol sulfate 3.91 0.0001 0.0021 252,230 ± 207,416 645,391 ± 188,414 100 100

4-Methylbenzenesul-
fonate 1.05 0.6058 0.8168 117,042 ± 7652 133,763 ± 17,266 100 100

p-Cresol sulfate HMDB11635 1.03 1.0000 1.0000 1.32 ± 0.29E+08 1.29 ± 0.19 + 08 100 100

p-Cresol glucuronide HMDB11686 0.80 0.1389 0.3169 6.17 ± 1.32E+07 4.40 ± 1.85E+07 100 100

Phenol sulfate HMDB60015 3.20 0.0016 0.0139 4.25 ± 3.36E+07 15.45 ± 7.43E+07 100 100

4-Acetylphenol sulfate 7.69 0.0004 0.0066 53,565 ± 12,600 254,938 ± 162,332 22 100

3-Ethylphenylsulfate HMDB62721 2.05 0.0006 0.0076 144,522 ± 52,789 265,503 ± 84,944 100 100

4-Ethylphenylsulfate HMDB62551 2.11 0.0037 0.0255 800,922 ± 448,872 1,720,531 ± 671,132 100 100

4-Ethylphenol glucu-
ronide 3.28 0.0006 0.0076 44,781 ± 22,943 156,697 ± 26,135 78 100

4-Vinylphenol sulfate HMDB62775 1.91 0.0010 0.0100 4.76 ± 2.20E+07 9.46 ± 0.26E+07 100 100

3-Phenylpropionate HMDB00764 3.69 0.0006 0.0076 0.56 ± 0.32E+07 1.96 ± 1.23E+07 100 100

3-(3-Hydroxyphenyl)
propionate sulfate 2.61 0.0083 0.0462 121,465 ± 0 220,591 ± 197,731 11 88

3-(4-Hydroxyphenyl)
propionate HMDB02199 3.45 0.0031 0.0244 88,159 ± 49,748 266,463 ± 196,354 67 100

Cinnamate HMDB00930 5.28 0.0006 0.0076 57,488 ± 14,984 292,667 ± 156,654 89 100

Cinnamoylglycine HMDB11621 4.86 0.0013 0.0126 190,747 ± 48,511 767,472 ± 534,399 89 100

4-Hydroxycinnamate HMDB02035 7.23 0.0001 0.0021 0.37 ± 0.26E+07 1.94 ± 0.40E+07 100 100

4-Hydroxycinnamate 
sulfate 7.57 0.0006 0.0076 118,831 ± 57,335 435,877 ± 217,416 78 100

Caffeic acid sulfate HMDB41708 3.21 0.0001 0.0021 6.86 ± 5.08E+07 2.08 ± 5.66E+07 100 100

Dihydrocaffeate 
sulfate 1.44 0.0592 0.1859 124,031 ± 45,309 17,689 9 ± 35,472 100 100

4-Allylphenol sulfate 2.53 0.0139 0.0680 283,211 ± 367,729 562,278 ± 71,665 78 100

Ferulic acid 4-sulfate HMDB29200 4.50 0.0005 0.0076 64,588 ± 33,678 270,978 ± 56,994 56 100

Salicin HMDB03546 12.98 0.0006 0.0097 83,702 ± 86,337 363,162 ± 363,699 33 100

Enterolactone 1.64 0.0016 0.0139 0.89 ± 3.93E+07 1.44 ± 0.24E+07 100 100

Enterolactone sulfate 5.32 0.0025 0.0183 43,661 ± 19,659 313,537 ± 289,225 100 100

Thymol sulfate HMDB01878 1.96 0.2739 0.4964 48,567 ± 6615 41,271 ± 20,617 33 75

Indole derivatives

1H-Indole-7-acetic 
acid 1.32 0.5634 0.7981 79,213 ± 20,397 116,675 ± 89,689 89 100

2-Oxindole-3-acetate HMDB35514 1.32 0.1315 0.3170 43,730 ± 12,970 46,591 ± 11,210 22 75

3-Formylindole HMDB29737 1.50 0.0001 0.0021 6.70 ± 1.01E+07 9.55 ± 0.65E+07 100 100

3-Indoleglyoxylic acid 1.48 0.0016 0.0139 5.37 ± 0.71E+07 6.74 ± 1.32 100 100

6-Hydroxyindole 
sulfate 0.99 1.0000 1.0000 324,828 ± 69,170 312,948 ± 117,634 100 100

Indoleacetate HMDB00197 1.46 0.0001 0.0021 1.12 ± 0.11E+07 1.67 ± 0.25 100 100

Indolelactate HMDB00671 1.76 0.0001 0.0021 2.91 ± 0.58E+08 4.85 ± 0.96E+08 100 100

Indolepropionate MMDB02302 0.41 0.0016 0.0139 1.28 ± 0.56E+08 0.67 ± 0.27E+08 100 100

Indolin-2-one 1.47 0.0152 0.0680 307,433 ± 108,591 468,992 ± 104,000 100 100

Continued
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second, more diffuse hub, each with an adjoining smaller satellite (Fig. 3b). The MDPs held quite different rela-
tionships within these two architectural structures, and the plant phenols formed a dense mini-structure in ALC, 
whereas no such network appeared in controls; the latter’s largest MDP set was a mix of phenolics, indoles, and 
sugar acids. A parallel analysis that focused on Spearman correlations less than 0.9 revealed similarly divergent 
networks, such that the Control network (Fig. 3c) featured far fewer metabolites than did ALC (Fig. 3d), signaling 
that the plasma metabolite profile of ALC was characterized by a loss of tight regulatory control. This is endorsed 
by the more dispersed structure of the ALC network and suggests an overall weakening of metabolite relation-
ships that may be a product of dysregulated metabolism. Overall, the analyses revealed that alcohol-exposure 
altered the relationships between MDPs and endogenous metabolites, and endorsed the MDP biosignature for 
alcohol-exposed maternal plasma.

Additional insight was obtained by merging the Control and Alcohol plasma datasets, and again performing 
network analysis filtered by the Spearman’s correlations. For the negative correlations, this only yielded two-
node subnetworks, none of which contained MDPs. For the positively correlated metabolites, this yielded a 
network dominated by MDPs enriched in ALC (Fig. 4). This included a tightly correlated subnetwork of nineteen 
plant phenolics (hippurates, catechols, salicins, phenols) and a smaller, linked subnetwork of sugar acids that 
was further linked with endogenous-derived sugar acids. Also included were several unknowns including one 

Table 1.   Microbial-derived products detected in maternal plasma. N = 9 control and N-8 alcohol-exposed 
dams; p-value by Mann–Whitney U-test; q-value by Benjamini–Hochberg FDR correction. Relative 
Abundance presents median ± median absolute deviation (MAD). Alc Alcohol-treated, Cont control, F-C fold-
change.

Metabolite HMDB ID

F–C

p-Value q-Value

Rel. abundance %Pos samples

Alc/Cont Cont Alc Cont Alc

Methyl indole-
3-acetate HMDB29738 0.77 0.5414 0.7682 731,266 ± 192,684 647,994 ± 338,340 100 100

Sugars and derivatives

Erythritol HMDB02994 1.10 0.6730 0.8549 386,441 ± 51,606 407,249 ± 115,312 100 100

Gluconate HMDB00625 1.39 0.0744 0.2131 1.55 ± 0.23E+07 2.08 ± 0.55E+07 100 100

Mannonate 1.21 0.6730 0.8549 6.10 ± 2.15E+07 7.34 ± 1.11E+07 100 100

Ribitol HMDB00508 2.23 0.0037 0.0255 504,272 ± 55,398 845,683 ± 468,022 100 100

Tartarate HMDB00956 1.59 0.0274 0.1017 2.30 ± 1.13E+08 3.22 ± 1.02E+08 100 100

Tartronate (hydroxy-
malonate) HMDB35227 1.68 0.0001 0.0021 1.52 ± 0.21E+07 2.44 ± 0.23E+07 100 100

Threonate HMDB00943 1.86 0.0001 0.0021 4.04 ± 1.04E+08 7.19 ± 1.26E+08 100 100

Betaines

Ergothioneine HMDB03045 1.92 0.0016 0.0139 1.23 ± 0.30E+07 2.35 ± 1.09 100 100

Hercynine 1.99 0.0272 0.1017 340,969 ± 0 227,104 ± 118,864 11 88

Stachydrine HMDB04827 0.92 0.1139 0.2850 1.46 ± 0.64E+07 2.21 ± 1.00E+07 100 100

Plant sterols

Beta-sitosterol HMDB00852 1.40 0.0111 0.0557 0.72 ± 0.22E+07 1.01 ± 0.21 100 100

Campesterol HMDB02869 1.28 0.0079 0.0449 2.00 ± 0.61E+07 2.64 ± 0.26 100 100

Secondary bile acids

3-Dehydrocholate HMDB00502 0.09 0.5911 0.8168 2.39 ± 3.21E+07 0.08 ± 0.05 33 38

6-Beta-hydroxylitho-
cholate HMDB00811 0.35 0.7430 0.8818 52,548 ± 37,161 126,467 ± 56,019 100 100

7-Ketodeoxycholate HMDB00391 0.15 0.2766 0.4964 1.37 ± 1.24E+07 0.94 ± 0.60E+07 100 100

12-Dehydrocholate HMDB00400 0.02 0.0023 0.0193 152,421 ± 178,862 94,362 ± 0 100 12

Deoxycholate HMDB00626 0.43 0.4807 0.7171 7.72 ± 0.63E+07 4.71 ± 1.96E+07 100 100

Glycocholate HMDB00138 1.47 0.1603 0.3577 138,596 ± 160,488 289,158 ± 259,334 67 10

Taurodeoxycholate HMDB00896 0.48 0.1139 0.2850 1.23 ± 0.91E+07 3.12 ± 1.79E+07 100 100

Tauroursodeoxy-
cholate HMDB00874 0.26 0.8148 0.9162 2.82 ± 1.31E+07 3.86 ± 0.71E+07 100 100

Taurohyodeoxycholic 
acid 2.21 0.0220 0.0905 0.34 ± 0.38E+07 1.92 ± 1.34E+07 56 100

Ursocholate 2.19 0.0194 0.0850 100,831 ± 15,843 368,247 ± 132,692 33 88

Ursodeoxycholate HMDB00946 0.18 0.0604 0.1890 2.29 ± 2.05E+07 1.23 ± 0.87E+07 100 88

Others

N-Methylpipecolate 1.13 0.3704 0.6096 472,305 ± 136,660 
539,118 ± 64,132 100 100

3-Hydroxypyridine 
sulfate 3.57 0.0006 0.0076 40,012 ± 24,268 86,737 ± 44,427 33 100
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tentatively identified as the plant-derived phenolic pyrocatechol sulfate (X-17010), based on its fragmentation 
mass. The tight relationship between these phenolic MDPs suggested they were at equilibrium with each other 
in response to alcohol, and further suggested that that their enrichment shared a similar or conserved molecular 
process or cause.

MDPs are enriched in the PAE fetus.  We asked if this ALC-dependent MDP biosignature extended 
to other maternal–fetal compartments. Five additional MDPs were detected in these tissues (kojibiose, beta-
guanidinopropanoate, hyodeoxycholate, taurohyocholate, and taurolithocholate), for a total of 75 MDPs. Many 
of the plasma MDPs were phase-II conjugates, synthesized primarily by enterocytes and hepatocytes to facilitate 
their urinary (sulfate and glucuronide) or biliary (O-methyl) excretion. However, the MDP profile of maternal 
liver (32/75) significantly differed from that of plasma (Table 4) and was dominated by secondary bile acids and 

Figure 2.   Hierarchical clustering for 813 metabolites in maternal plasma. (a) Hierarchical Clustering on 
Principal Components. Percentage composition of microbial metabolites in the hierarchical clusters of 
the sample PCA loadings, using Ward’s method. Compounds were defined as microbial-derived (red), 
endogenous-derived (blue), and unknown identity (green). (b) Hierarchical clustering of the sample PCA 
loadings, plotted against the principle component score for Dimension 1. Plant phenolics were correlated 
in Cluster 1, and secondary bile acids in Cluster 5; Cluster 3 represented metabolites largely unaffected by 
alcohol. (c) Hierarchical Clustering on Spearman’s Correlation. The microbial-derived metabolites retained 
their relationships and plant-derived phenolics were correlated in cluster 4, while the secondary bile acids were 
in cluster 1. The correlation within Clusters 4 and 5 indicate metabolites having an immediate cellular process 
affected by the alcohol treatment, whereas the former clusters contain metabolites affected more distantly. For 
(b) and (c), a positive principal component score indicates the metabolite has increased abundance in response 
to alcohol; negative scores signify reduced abundance. Sample size is n = 9 control and n = 8 alcohol-exposed 
dams.

Table 2.   MDPs that drive dimensions 1 and 2 in hierarchical clustering. The PCA loadings for these 
metabolites are presented in Supplemental Table S2, and are depicted in Fig. 2b. N = 9 control and N = 8 
alcohol-treated dams.

Cluster 1 metabolites (N = 41)

2,6-Dihydroxybenzoic acid, 2-hydroxyhippurate (salicylurate), 3-(3-hydroxyphenyl)propionate sulfate, 3-(4-hydroxyphenyl)propionate, 
3-ethylphenylsulfate, 3-formylindole, 3-hydroxypyridine sulfate, 3-indoleglyoxylic acid, 3-phenylpropionate (hydrocinnamate), 4-acetyl-
phenyl sulfate, 4-allylphenol sulfate, 4-ethylphenol glucuronide, 4-ethylphenyl sulfate, 4-hydroxycinnamate, 4-hydroxycinnamate sulfate, 
4-methylcatechol sulfate, 4-vinylcatechol sulfate, 4-vinylphenol sulfate, beta-sitosterol, caffeic acid sulfate, campesterol, catechol sulfate, 
cinnamate, enterolactone, enterolactone sulfate, ergothioneine, ferulic acid 4-sulfate, gentisate, gluconate, hippurate, histidine betaine 
(hercynine), indoleacetate, methyl-4-hydroxybenzoate sulfate, phenol sulfate, salicin, salicylate, tartarate, tartronate (hydroxymalonate), 
taurohyodeoxycholic acid, threonate, ursocholate

Cluster 2 metabolites (N = 3)

1H-indole-7-acetic acid, 4-methylbenzenesulfonate, methyl indole-3-acetate

Cluster 3 metabolites (N = 11)

2-Aminophenol sulfate, 2-oxindole-3-acetate, 4-hydroxyhippurate, cinnamoylglycine, dihydrocaffeate sulfate, erythritol, indolelactate, 
indolin-2-one, mannonate, ribitol, thymol sulfate

Cluster 4 metabolites (N = 5)

6-Hydroxyindole sulfate, N-methylpipecolate, p-cresol glucuronide, p-cresol sulfate, stachydrine

Cluster 5 metabolites (N = 11)

12-Dehydrocholate, 3-dehydrocholate, 6-beta-hydroxylithocholate, 7-ketodeoxycholate, benzoate, deoxycholate, glycocholate, indolepropion-
ate, taurodeoxycholate, tauroursodeoxycholate, ursodeoxycholate
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sugar derivatives; far fewer plant phenolics were detected (10 vs. 36). Fold-changes in response to alcohol were 
modest, and just 10 of 32 (31.2%) hepatic MDPs had significantly altered representation in ALC. Analysis in the 
T-statistic (Fig. 5a) affirmed their lower representation among the significantly altered biofeatures in maternal 
liver (10/205), suggesting that MDPs were not major drivers of metabolite variance in response to alcohol for 
this tissue.

Many metabolites within maternal plasma exchange readily across the placenta and become bioavailable to the 
fetus. Thirty-one MDPs were detected in placenta, including plant phenolics, indoles, and secondary bile acids 
(Table 4). Of these, alcohol significantly altered the abundance of 11 MDPs, and seven plant-derived phenolics 
and several betaines were enriched, while indolepropionate and gluconate were reduced.

The placental data suggested that MDPs might circulate within the fetus. Although fetal plasma was too 
scant for analysis, other fetal tissues were readily characterized (Table 4). Thirty MDPs were detected in fetal 
liver and/or brain. The fetal liver profile largely replicated that of maternal liver, and all but five (enterolactone 
sulfate and four secondary bile acids) of the 32 metabolites present in maternal liver were also detected in fetal 
liver. Responses to alcohol also trended similarly, with enrichments in hippurate (2.43-fold), catechol sulfate 
(1.83-fold), salicylate (1.46-fold), phenol sulfate (1.34-fold), and ergothioneine (1.29-fold). Although not MDPs, 
the phytosterols beta-sitosterol (1.76-fold) and campesterol (1.31-fold) were also elevated.

Sixteen MDPs were detected in fetal brain (Table 4). These included plant phenolics (benzoate, hippurate, 
p-cresol sulfate, phenol sulfate, 4-vinylcatechol sulfate), indoles (indolelactate, indolepropionate, 3-formylindole), 
sugar derivatives (mannonate, gluconate, erythritol, tartronate), ergothioneine, and campesterol. Alcohol altered 
the abundance of several MDPs, and it elevated hippurate (1.82-fold), phenol sulfate (2.72-fold), and ergothio-
neine (1.36-fold), and reduced p-cresol sulfate (0.81-fold) and gluconate (0.73-fold). In contrast to maternal 
plasma, MDPs did not explain exposure-related variance in the T-statistic (Fig. 5b,c,d), and they comprised few 
of the metabolites having significantly altered representation in placenta (11/116), fetal liver (2/29), and fetal 
brain (1/54).

Discussion
The enteric microbiome generates a complex spectrum of biochemicals that have a substantial influence on the 
host14–17. This is the first study to document that PAE significantly alters this biochemical profile within the mater-
nal–fetal dyad. This metabolite profile is derived from and influenced by the composition of the enteric micro-
biota, and the changes documented here are consistent with alcohol’s known ability to alter that composition36,37. 
Growing evidence demonstrates that microbe-derived products are mechanistic in the pathologies that underlie 
alcohol-related organ damage33–35, and our findings suggest that parallel mechanisms may operate during PAE 
with similar pathological consequences. Importantly, we show that these biochemicals cross the placenta and 
circulate within the fetus, where they could directly impact development. Indeed, many of these biochemicals 
having significantly altered representation, mostly plant-derived phenolics and secondary bile acids, have well-
documented effects upon host physiological and cellular processes16,18,44,45. Our demonstration that alcohol alters 
their abundance within both mother and fetus introduces a novel mechanism by which PAE could alter fetal 
development, and thus these findings have clinical relevance.

Moreover, these biochemicals form a plasma biosignature that distinguishes the PAE pregnancies. There is 
substantial interest in identifying biomarkers of alcohol exposure as these enable clinicians to focus interven-
tions on those pregnancies at greatest risk. In addition to the established markers phosphatidylethanol and 
ethyl-glucuronide8,9, recent studies have identified microRNA46 and cytokine-chemokine47 plasma signatures 
that may be selective for alcohol-exposed pregnancies. An MDP signature could complement those measures, 
as some features were enriched seven- to 13-fold in this model. Although the composition of any microbial 
biosignature is shaped by considerations including diet, the enteric community’s taxonomic structure, exome 

Table 3.   MDPs by cluster from the hierarchical clustering on Spearman’s correlation. Spearman’s coefficients 
for each metabolite are presented in Supplemental Table S3, and are depicted in Fig. 2c. N = 9 control and N = 8 
alcohol-treated dams.

Cluster 1 metabolites (N = 13)

1H-indole-7-acetic acid, 4-methylbenzenesulfonate, 6-beta-hydroxylithocholate, 6-hydroxyindole sulfate, benzoate, glycocholate, mannonate, 
N-methylpipecolate, stachydrine, taurodeoxycholate, taurohyodeoxycholic acid, tauroursodeoxycholate, thymol sulfate

Cluster 2 metabolites (N = 3)

Methyl indole-3-acetate, p-cresol glucuronide, p-cresol sulfate

Cluster 3 metabolites (N = 5)

3-Dehydrocholate, 7-ketodeoxycholate, deoxycholate, histidine betaine (hercynine), ursodeoxycholate

Cluster 4 metabolites (N = 5)

2-Aminophenol sulfate, 2-oxindole-3-acetate, dihydrocaffeate sulfate, erythritol, indolin-2-one

Cluster 5 metabolites (N = 45)

12-Dehydrocholate, 2,6-dihydroxybenzoic acid, 2-hydroxyhippurate (salicylurate), 3-(3-hydroxyphenyl)propionate sulfate, 3-(4-hydroxy-
phenyl)propionate, 3-ethylphenylsulfate, 3-formylindole, 3-hydroxypyridine sulfate, 3-indoleglyoxylic acid, 3-phenylpropionate (hydrocin-
namate), 4-acetylphenyl sulfate, 4-allylphenol sulfate, 4-ethylphenol glucuronide, 4-ethylphenyl sulfate, 4-hydroxycinnamate, 4-hydroxy-
cinnamate sulfate, 4-hydroxyhippurate, 4-methylcatechol sulfate, 4-vinylcatechol sulfate, 4-vinylphenol sulfate, beta-sitosterol, caffeic acid 
sulfate, campesterol, catechol sulfate, cinnamate, cinnamoylglycine, enterolactone, enterolactone sulfate, ergothioneine, ferulic acid 4-sulfate, 
gentisate, gluconate, hippurate, indoleacetate, indolelactate, indolepropionate, methyl-4-hydroxybenzoate sulfate, phenol sulfate, ribitol, 
salicin, salicylate, tartarate, tartronate (hydroxymalonate), threonate, ursocholate
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profile, and host species and sex15,48,49, our data lend proof-of-concept for the existence of such a biosignature 
that may complement existing markers and further enhance their specificity to detect PAE.

How might these microbial metabolites impact fetal development and alcohol-related pathologies? In this 
study, the dominant microbial compounds enriched by alcohol were plant-derived aromatics, mostly phenolic 
acids that originate from the fermentation of ingested lignin bedding and starch-bound flavonoids18,43,50. These 
same phytochemicals are abundant in edible plants, and the human enterocyte and microbiota have similar 
capabilities to release, convert, and absorb these compounds18. Humans consume an estimated two-plus grams 
daily of plant phytochemicals from foods and beverages, and plasma levels typically range in the nanomolar 
to low micromolar range51,52. This is the first report that these compounds circulate within the fetus. These 
compounds have a short half-life due to their rapid excretion44; that alcohol enriched both their aglycone and 
conjugated forms suggests that it enhanced and/or prolonged their enteric metabolism and intestinal absorption, 
as well as their phase II conversion. In human studies, these compounds are typically associated with improved 
health outcomes and reduced all-cause mortality. Mechanistically, phenolic acids improve vascular tone through 
stimulation of endothelial Nrf2 and nitric oxide signaling, and have anti-inflammatory actions through their 
inhibition of pro-oxidant enzyme-signaling cascades18,44; thus, their elevation in PAE may potentially mitigate 

Figure 3.   Correlation analysis identifies microbial metabolite networks that are at statistical equilibrium within 
maternal plasma. Images were generated in Cytoscape (version 3.7.2) using R-Cy3 (version 2.6.3), wherein the 
network edges represent between-node Spearman’s correlations > 0.90 (a,b) or ≥ − 0.90 (c,d); distance between 
nodes indicates strength of interaction. Colors as in Fig. 2; red indicates MDPs, blue indicates endogenous 
compounds, and green are unknown compounds. (a) Positive correlation network of metabolites in control 
(CONT) maternal plasma having Spearman’s values ≥ 0.90. (b) Positive correlation network of metabolites in 
alcohol-exposed (ALC) maternal plasma having Spearman’s values ≥ 0.90. (c) Negative correlation network of 
metabolites in control (CONT) maternal plasma having Spearman’s values ≥ − 0.90. (d) Negative correlation 
network of metabolites in alcohol-exposed (ALC) maternal plasma having Spearman’s values ≥ − 0.90. Sample 
size is n = 9 control and n = 8 alcohol-exposed dams.
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some of alcohol’s damage to the mother-fetal dyad. They also act as prebiotics and directly alter the microbiome 
composition52. Highly processed Western-style diets are low in lignins and flavonoids, and their enrichment here 
represent a novel means by which diet may modulate FASD outcome.

The microbiota-derived secondary bile acids also defined the ALC dams, but were negative drivers within the 
Principal Components and Pearson Correlation analyses. Along with their parent primary bile acids, they com-
prised a correlated network that suggests a shared mechanistic response to PAE. Bile acids and the enteric micro-
biota operate in a two-way interaction that governs both bile acid metabolism and microbiota composition45,53. 
Our data suggest that alcohol altered that regulatory relationship, and this is consistent with its known effects 
on host-microbial bile acid pools, wherein chronic alcohol abuse elevates secondary bile acid levels54,55, perhaps 

Figure 4.   Positive correlation analysis identifies a network that is enriched in microbial metabolites and is 
at statistical equilibrium within maternal plasma. Images were generated in Cytoscape (version 3.7.2) using 
R-Cy3 (version 2.6.3), wherein the network edges represent between-node Spearman’s correlations > 0.90; the 
distance between nodes indicates strength of interaction. Colors as in Fig. 2; red indicates MDPs, blue indicates 
endogenous compounds, and green are unknown compounds. The compound X-17010 is likely the MDP 
4-vinylcatechol sulfate, based on its molecular mass.
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Biochemical name

Maternal plasma Maternal liver Placenta Fetal liver Fetal brain

F–C q-value F–C q-value F–C q-value F–C q-value F–C q-value

Benzoate 1.07 0.4631 0.51 0.4090 – 0.92 1.0000 1.21 0.4628

Salicylate 3.11 0.0076 2.60 0.0161 2.03 0.0233 1.46 0.2917 –

Gentisate 3.99 0.0021 – – – –

2,6-Dihydroxybenzoic acid 2.54 0.0021 – 2.04 0.0088 – –

Methyl-4-hydroxybenzoate-SO4 3.13 0.0097 – – – –

2-Aminophenol sulfate 1.89 0.0082 – – – –

Hippurate 3.37 0.0001 1.97 0.0161 2.31 0.0125 2.43 0.0103 1.82 0.0656

2-Hydroxyhippurate 2.91 0.0040 – – – –

4-Hydroxyhippurate 2.68 0.0010 – – – –

catechol sulfate 7.41 0.0001 2.60 0.0443 6.62 0.0071 1.83 0.1381 –

4-Methylcatechol sulfate 3.11 0.0002 – 3.11 0.0178 – –

4-Vinylcatechol sulfate 3.91 0.0021 1.25 0.4090 – 1.02 0.9347 0.83 0.3213

4-Methylbenzenesulfonate 1.05 0.8168 – – – –

p-Cresol sulfate 1.03 1.0000 1.11 0.6363 0.93 0.6270 0.78 0.2917 0.81 0.2378

p-Cresol glucuronide 0.80 0.3169 0.77 0.3139 0.74 0.2932 0.86 0.6422 –

Phenol sulfate 3.20 0.0139 1.42 0.0813 – 1.34 0.0704 2.72 0.0094

4-Acetylphenol sulfate 7.69 0.0066 – – – –

3-Ethylphenylsulfate 2.05 0.0076 – – – –

4-Ethylphenylsulfate 2.11 0.0255 – 1.52 0.0515 – –

4-Ethylphenol glucuronide 3.28 0.0076 – – – –

4-Vinylphenol sulfate 1.91 0.0010 2.06 0.0240 1.39 0.0233 1.03 0.8185 –

3-Phenylpropionate 3.69 0.0076 – – – –

3-(3Hydroxyphenyl)propionate-SO4 2.61 0.0462 – – – –

3-(4-Hydroxyphenyl)propionate 3.45 0.0244 – – – –

Cinnamate 5.28 0.0076 – – – –

Cinnamoylglycine 4.86 0.0126 – – – –

4-Hydroxycinnamate 7.23 0.0021 – – – –

4-Hydroxycinnamate sulfate 7.57 0.0076 – – – –

Caffeic acid sulfate 3.21 0.0021 – – – –

Dihydrocaffeate sulfate 1.44 0.1859 – – – –

4-Allylphenol sulfate 2.53 0.0680 – – – –

Ferulic acid 4-sulfate 4.50 0.0076 – – – –

Salicin 12.98 0.0097 – – – –

Enterolactone 1.64 0.0139 – – – –

Enterolactone sulfate 5.32 0.0183 4.76 0.0207 – – –

Thymol sulfate 1.96 0.4964 – – – –

Indoleacetate 1.46 0.0021 0.94 0.7303 0.94 0.6270 0.94 0.8185 1.26 0.3213

Indolelactate 1.76 0.0021 – 1.15 0.1580 1.64 0.01653 0.99 0.3911

Indolepropionate 0.41 0.0139 – 0.29 0.0371 – –

3-Formylindole 1.50 0.0021 – 1.18 0.1802 – 0.94 0.9689

Methyl indole-3-acetate 0.77 0.7682 – – – –

3-Indoleglyoxylic acid 1.48 0.0139 – 1.17 0.8252 – –

Indolin-2-one 1.47 0.0680 – – – –

2-Oxindole-3-acetate 1.32 0.3170 – – – –

1H-indole-7-acetic acid 1.32 0.7981 – – – –

6-Hydroxyindole sulfate 0.99 1.0000 – – – –

Kojibiose – 0.82 0.4090 – 1.61 0.3733 –

Mannonate 1.21 0.8549 0.68 0.0129 1.13 0.3219 1.04 0.9183 1.06 0.5390

Gluconate 1.39 0.2131 0.65 0.0207 0.50 0.0052 0.99 1.0000 0.73 0.1278

Erythritol 1.10 0.8549 1.15 0.2990 1.05 0.9163 1.06 0.7099 1.13 0.5746

Ribitol 2.23 0.0255 0.95 0.6797 0.92 0.3219 1.10 0.5281 1.00 0.8659

Tartarate 1.59 0.1017 1.11 0.5826 1.12 0.3934 1.04 0.8618 –

Tartronate (hydroxymalonate) 1.68 0.0021 1.60 0.0161 1.03 0.6664 1.29 0.0957 0.95 0.7552

Threonate 1.86 0.0021 1.00 0.8302 1.10 0.3593 1.14 0.6778 0.85 0.1390

Ergothioneine 1.92 0.0139 1.08 0.8302 1.31 0.0432 1.25 0.3287 1.36 0.1390

Continued
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through dysregulation of hepatic bile acid synthesis56. The reductions here may reflect our shorter exposure (days 
vs. months) and perhaps influences from the pregnancy state57. We could not infer which microbial populations 
mediated these reductions because secondary bile acid metabolism is redundant across phyla45. The elevated 
taurine conjugates in the alcohol-exposed maternal liver implicate reduced microbial deconjugation and/or 
hepatic amidation as additional modifying mechanisms. Secondary bile acids modulate numerous processes. 
They stimulate the production of antimicrobial peptides that suppress the growth of proinflammatory, gram-
negative microbes58,59, and their reductions here suggest a means by which alcohol promotes the proinflamma-
tory environment that worsens fetal development47,60. Bile acid interactions with their RXR, FXR, LXRα, and 
GPBAR1 receptors affect insulin sensitivity, adiposity, and lipid metabolism, conditions that independently 
worsen gestational outcomes61. Secondary bile acids were recently detected in the porcine fetus62, suggesting 
their fetal presence is not unique to rodents; however, any biological impact upon fetal development is currently 
unknown. Taken together, these data suggest that alcohol disturbs microbiota—bile acid interactions in a manner 
that could negatively impact maternal–fetal health.

Additional MDPs altered by PAE included indoles and betaine derivatives. The betaine-like compounds 
ergothionine and hercyine scavenge free radicals and reduce oxidative damage63, and their elevation in PAE 
may confer some protection. Indoles are generated by microbial tryptophanase and can influence brain and 
behavior. Oxindole, which was elevated in plasma from ALC dams, promotes anxiety-like behaviors in the open 
field and elevated plus-maze tests in rats26, behaviors also seen in PAE. Conversely, indolepropionate confers 
protection against neuroinflammation and TLR4 signaling through interactions with the microglial arylhydro-
carbon receptor22,28, and sustains gut integrity through the pregnane X receptor (PXR)64; its sharp reduction in 
ALC plasma and placenta is consistent with alcohol’s pro-inflammatory actions38,60. Indoles also compete with 
amino acid and neurotransmitter efflux at the blood–brain barrier, and are functionally linked with anxiety, 
depression, cognitive impairment, and Parkinson’s disease20,26,65,66. As physiologically relevant agonists for the 
arylhydrocarbon receptor, they modulate not only immune function but also xenobiotic responses and insulin 
sensitivity67. We detected at least four indoles in fetal brain (indoleacetate, indolelactate, indolepropionate, 
3-formylindole), and because many indole derivatives have yet to be characterized functionally, their impact 
upon neurodevelopment merits additional investigation.

This study has several important limitations. The first is that not all MDPs could be investigated. Many remain 
unannotated and likely comprise some of the unknown metabolites detected here. We also did not analyze the 
gut microbiota, and thus do not know if and how alcohol affects its composition in pregnancy. This study was 
not designed to distinguish those metabolites having a dual microbial-host origin, such as lipids, organic acids, 
and polyamines, nor does the methodology detect the larger MDPs that contribute to alcohol’s proinflammatory 
actions, such as LPS33,38,64. Finally, we cannot distinguish the relative contributions of enteric synthesis and cecal 
permeability to the elevated MDP abundance. As alcohol promotes both dysbiosis and gut permeability33–38, 
both mechanisms likely contribute; additional studies will inform this question.

Table 4.   Comparison of MDP profiles and their abundance in maternal plasma and liver, placenta, and fetal 
liver and brain. F–C, fold change; q-value by Mann–Whitney U-test, followed by Benjamini–Hochberg FDR 
adjustment. “–” indicates not detected. N = 9 control and N = 8 alcohol-treated dams and their fetuses.

Biochemical name

Maternal plasma Maternal liver Placenta Fetal liver Fetal brain

F–C q-value F–C q-value F–C q-value F–C q-value F–C q-value

Hercynine 1.99 0.1017 – 1.44 0.0267 1.42 0.6778 –

Stachydrine 0.92 0.2850 0.64 0.0067 0.76 0.8390 0.86 0.8800 –

N-methylpipecolate 1.13 0.6096 – – – –

3-Hydroxypyridine sulfate 3.57 0.0076 – – – –

Beta-guanidinopropanoate – 0.97 1.0000 0.81 0.5468 0.85 1.0000 –

Beta-sitosterol 1.40 0.0557 1.15 0.2813 – 1.76 0.0704 –

Campesterol 1.28 0.0449 1.11 0.0992 1.29 0.0913 1.31 0.1397 1.08 0.7552

Deoxycholate 0.43 0.7171 – 0.70 0.8032 – –

Taurodeoxycholate 0.48 0.2850 1.23 0.5826 0.68 0.4297 0.77 0.9347 –

6-Beta-hydroxylithocholate 0.35 0.8818 1.66 0.2813 – – –

Taurolithocholate – 1.74 0.0991 – 1.20 0.9784 –

Ursodeoxycholate 0.18 0.1890 0.72 0.3456 0.39 0.5814 – –

Tauroursodeoxycholate 0.26 0.9162 0.85 0.5826 0.34 0.4669 0.62 0.1653 –

Taurohyocholate – 1.27 0.7303 – – –

Hyodeoxycholate – 3.51 0.0273 – – –

7-Ketodeoxycholate 0.15 0.4964 0.91 0.9547 0.24 0.3934 0.59 1.0000 –

Taurohyodeoxycholic acid 2.21 0.0905 – – – –

3-Dehydrocholate 0.09 0.8168 – – – –

12-Dehydrocholate 0.02 0.0193 – – – –

Ursocholate 2.19 0.0850 – – – –
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In summary, alcohol alters the maternal plasma MDP profile, and by inference perhaps the microbiota 
composition that produced them. Several of the MDPs elevated by PAE (catechol sulfate, 4-ethylphenylsulfate, 
erythritol, indolepropionate, oxindole, p-cresol, salicylate) have been implicated in neuroinflammation, depres-
sion, anxiety, and autism22,26,28,30,65,66, outcomes also characteristic for PAE1,2. Other compounds may confer 
benefits through effects on vascular tone and anti-inflammatory actions, and thus could mitigate some of alcohol’s 
damage to the fetus. These MDPs circulate within the fetus, where their impact is unknown. Their enrichment, 
particularly in phenolic acids, constitutes a characteristic biosignature that distinguishes the PAE pregnancies, 
and their enrichment might also signal the presence of proinflammatory MDPs such as LPS. Together, these 
data suggest the novel hypothesis that the maternal microbiome may be an important mechanistic driver in the 
pathologies that underlie FASD.

Figure 5.   T-Statistic plot of all metabolites present in maternal and fetal tissues, plotted against their − log10 
q-values. Metabolites are arranged along x-axis in alphabetical order. The black dashed line indicates the cut-off 
for the FDR adjusted value of q < 0.05, and the red dashed line indicates q < 0.01. Red dots indicate microbial-
derived metabolites having q < 0.05. (a) T-statistic plot of the 854 metabolites detected in maternal liver. (b) 
T-statistic plot of the 881 metabolites detected in placenta. (c) T-statistic plot of the 854 metabolites detected in 
fetal liver. (d) T-statistic plot of the 621 metabolites detected in fetal brain. Sample size is n = 9 control and n = 8 
alcohol-exposed dams.
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Methods
Animal husbandry and alcohol‑exposure.  Five-week-old C57BL/6 J female mice (Jackson Laborato-
ries, Bar Harbor, ME) were housed as pairs or trios in ventilated cages on aspen chip bedding (Northeastern 
Products Corp, Warrensburg NY) and cotton nesting material (Nestlets, Ancare, Bellmore NY), and a 12  h 
light/dark cycle (lights on 7am). Mice consumed the fixed-nutrient, purified diet AIN-93G (TD.94045, Envigo-
Teklad, Madison WI68) throughout the study; its composition is provided in Supplementary Table S4 online. At 
age 8 weeks, mice were mated overnight to C57BL/6 J males. The morning of vaginal plug detection was defined 
as E0.5. On E8.5, pregnant females received either 3 g/kg alcohol (ALC; USP grade) or isocaloric maltodextrin 
(control; LoDex-10; #160175, Envigo-Teklad) once daily (9am) through E17.5 via oral gavage. Experimental 
group was assigned on E8.5 using a random number generator (Excel), and mice were cohoused by treatment 
with those sharing the same plug date. Four hours after the gavage on E17.5, mice were killed by isoflurane 
overdose and their tissues were flash-frozen for analysis. Blood alcohol concentrations were quantified using 
oxometry (Analox GM7; London, UK), according to the manufacturer’s protocol. Studies were approved by the 
Animal Care and Use Committee of the David H. Murdoch Research Institute, and were performed in accord-
ance with relevant guidelines and regulations.

Experimental blocking.  We evaluated maternal plasma, maternal liver, placenta (with decidua removed), 
fetal liver, and fetal brain, from 9 Control and 9 ALC dams and their litters. To obtain sufficient fetal tissue for 
analysis, it was necessary to pool the fetuses. Specifically, for each litter, we held uterine position constant and 
defined Fetus 1 as occupying the position closest to the right ovary. Fetuses were numbered consecutively there-
after. Selecting fetuses 1 through 4, we combined half of fetal livers 1 through 4, and half of fetal brains 1 through 
4, and submitted each pooled sample for metabolome analysis. Thus, each dam is an individual biological sam-
ple, and each fetal sample is the pool from Fetus 1, 2, 3, and 4. Each placental sample was derived from half of 
placental 1 and 2, because this tissue was larger. For each group (ALC, Control), we subjected nine individual 
dams and nine fetal pools to metabolome analysis.

Metabolite analysis.  Untargeted metabolite analysis was performed by Metabolon (Morrisville, NC), and 
their detailed methods are presented in Supplemental Methods S1. To summarize, samples were treated with 
methanol to remove protein, and then divided into five aliquots for reverse phase (RP)/UPLC–MS/MS with 
positive ion mode electrospray ionization (ESI, 2 samples), RP/UPLC–MS/MS with negative ion mode ESI (one 
sample), and HILIC/UPLC–MS/MS with negative ion mode ESI (one sample); a fifth sample was reserved for 
back-up. Quality controls include technical replicates of pooled experimental samples, extracted water and sol-
vent blanks, addition of recovery standards to monitor variability and efficiency, and internal standards that 
assessed instrument variability and aided chromatographic alignment. Sampling order was randomized across 
each platform run. Compounds were identified by comparison to library entries of purified standards or recur-
rent unknown entities. Identification was based on the criteria of retention time/index, match to a mass to charge 
ratio ± 10 ppm, and chromatographic data (MS/MS spectrum). Proprietary visualization and interpretation soft-
ware were used to confirm peak identities. Peaks were quantified using area-under-the-curve.

Statistical analyses of metabolites.  In the initial analysis, we tested for unequal variance between the 
Control and ALC groups using Shapiro-Wilks test, and tested for normality using the Levine’s test, followed by 
analysis for significance using the Mann–Whitney U-test. For values that were missing, we imputed the mini-
mum value obtained for that metabolite in that tissue, and Supplemental Table S5 presents the raw LC–MS/MS 
dataset, as provided by Metabolon. P-values were adjusted for multiple testing correction using the Benjamini–
Hochberg False Discovery Rate (FDR) correction69, and are presented as q-values. Analyses were performed in 
ArrayStudio on log transformed data70. For analyses that were not standard within ArrayStudio, the program R 
(version 3.6.1)71) was used. Fold-change was determined as the difference between group averages, placing ALC 
in the numerator, and is reported in log2 values.

For the discriminant analysis between ALC and Controls, the plasma data were scaled to a zero mean with 
a standard deviation of one for each metabolite, and were then run through multivariate analysis. Principal 
Component Analysis (PCA) was performed using FactoMineR (version 2.3)72 to test for separation between 
the treatment and control groups, and to identify outliers and question trends that supported class separation 
of the experimental design; findings were visualized using Factoextra R (version 1.0.7)73. Metabolite-metabolite 
correlation analysis was calculated using Spearman’s correlation on un-scaled data, and were analyzed and visu-
alized in ggplot2 (version 3.3.0)74 using hierarchical clustering for comparison with Hierarchical Clustering of 
Principal Components (HCPC). The metabolite-metabolite correlation matrix was used to construct a network 
visualization to explore similarly affected metabolites. The correlation networks were constructed in Cytoscape 
(version 3.7.2)75 using the RCy3 package (version 2.6.3)76 and aMatReader (version 1.1.3)77. Only Spearman’s 
correlations above 0.9 were included in the network, and nodes were overlaid with descriptive statistics including 
q-value and log-fold change (logFC). To evaluate metabolites acting in concert, we explored the loadings plot of 
the sample PCA again using FactoMineR on transposed scaled data and visualized in factoextra. Hierarchical 
clustering analysis was used to cluster the regression factor scores of the loadings identified in the PCA using 
Ward’s minimum variance method and squared Euclidean distance in FactoMineR. This analysis, including the 
final k-means clustering, was identically applied to the correlation matrix and visualized in ggplot.
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